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Variations in Substitution Rate in Human and Mouse Genomes
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We present a method to quantify spatial fluctuations of the substitution rate on different length scales
throughout genomes of eukaryotes. The fluctuations on large length scales are found to be predomi-
nantly a consequence of a coarse-graining effect of fluctuations on shorter length scales. This is verified
for both the mouse and the human genome. We also found that the relative standard deviation of
fluctuations in substitution rate is about a factor three smaller in mouse than in human. The method
allows furthermore to determine time-resolved substitution rate maps of the genomes, where the
corresponding autocorrelation functions quantify the velocity of spatial chromosomal reorganization.
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The detailed knowledge of the mechanisms of mu-
tations in living organisms is of fundamental impor-
tance for understanding the evolution of genomes. The
basis of development in multicellular organisms is the cell
devision cycle and mutations are changes made in DNA
during the process of chromosome replication. Nonlethal
mutations occurring in the germline are passed onto the
next generation. A large fraction of these mutations are
substitutions of single nucleotides (A,T,G or C) while
other mutations are due to insertions or deletions of one
or more nucleotides into the DNA sequence. In recent
time there has been growing acceptance that the substi-
tution rate is not spatially constant inside the genomes of
mammals [1–8]. This is a surprising result at first sight, as
nucleotide substitutions resulting from replication errors
should be fairly independent on the actual position, at
least on large length scales. However, this picture is too
simple, as there exist strong correlations in the mamma-
lian genome between mutation rate and other evolution-
ary rates (e.g. recombination rate) [8–10]. Although the
origin of the substitution rate bias in genomes of mam-
mals is unknown, it is highly important to quantify the
length and time scales where changes are occurring. This
is because the amount of conserved sequences between
the genomes of different species depends crucially on the
fluctuations of the local mutation rate. However, these
conserved sequences give the best insight into which
parts of the genomes carry function and are therefore
under selective constraint.

Here, we present a method to calculate substitution
rates in genomes of eukaryotes. The basis of our method
is to make use of interspersed repeats [8,11,12]. Inter-
spersed repeats are sequences of 3� 102 � 5� 103 base
pairs in length whose copy was inserted up to 106 times in
the human genome. Each copying machinery has only
worked for a short time in the history of the organism and
from that time on, the copies of a specific repeat type have
accumulated substitutions and other mutations. Because
of the large number of copies the original sequence can be
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reconstructed quite accurately. Differences between a
given copy (repetitive element) of an interspersed repeat
and its consensus sequence allows us to estimate the
mutation rate at the position of this repetitive element if
the time is known when the copying machinery was
active (c.f. Refs. [11]). In the human genome there have
been classified more than 600 different interspersed re-
peats which occupy in total more than 45% of the ge-
nome. This gives us a large set of sequences at hand which
is most likely under no selective constraint [12]. We
visualize interspersed repeats as ’’measurement devices’’
for the underlying local substitution rate. This requires us
to solve three major problems: (i) single repetitive ele-
ments are usually too short and have on average accumu-
lated too few substitutions to give a reliable estimate for
the substitution rate at their position in the genome;
(ii) the elements show a very broad length distribution
(implying that our ’’measurement devices’’ differ in their
’’sensitivity’’, which is proportional to their length); and
(iii) the repetitive elements belonging to different types
differ in general in their age (thus, the measurement
devices have been measuring over different periods of
time). Now the major theoretical task is to derive from the
large amount of repetitive elements, which have large
diversity in their age and sensitivity, reliable information
about the underlying substitution rate at different posi-
tions and at different times in the genome.

For our analysis we use a set of 649 different types
of interspersed repeats [13] as identified by the
REPEATMASKER program [14] in the complete genomes
for human (hg16) and mouse (mm4) from the UCSC
bioinformatics site. The consecutive sequences are taken
from the RepBase database [11]. To investigate variations
in the substitution rate on different length scales we
divide the two genomes into equally sized partitions.
The total number of bases of all repeats of type � in
the partition � is denoted by N�� and the corresponding
number of base changes from the consensus sequence
i ! j with i; j 2 fA;T;G;Cg is given by kji��. Next, we
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define for each partition (�) and each repeat type (�) the
average divergence, Qji

��, which is the probability to
observe a substitution of base i in the consensus sequence
by base j in the corresponding genomic sequence. For
statistically independent substitutions, the probability to
find kji�� mismatches in interspersed repeats of type �
located in the partition �, is given by
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��	. Thus, the average divergence, Q��, can be esti-

mated from the knowledge of k�� and N�� by a least
mean square fit.

To gain information from the quantities Q�� about the
local substitution rate in partition �, denoted by m��t	, we
now introduce a microscopic model for base substitutions.
Statistically independent changes of a base at a given
position in the genome at time t can be described by the
following Master equation

@tp�t	 
 w�t	  p�t	; (2)

where the elements pb�t	 of the vector p�t	, with b 2
fA;T;G;Cg, denote the probability of observing the
base b at a certain site in the genome at time t given the
initial state p��t0	. The transition matrix w�t	 has the
elements wbb0 �t	 
 m��t	qbb0 �t	 for b � b0 and wbb�t	 

�
P

b0�bm��t	qb0b�t	 [15]. Here, the elements qbb0 �t	 of the
matrix q�t	 are the transition probabilities that a base b0

mutates to a base b whenever a substitution occurs.
From the relation p�0	 
 Q��  p��t�	 follows that

the average divergence from the consensus sequence is
given by

Q �� 
 exp
�Z 0

�t�
m��t	q�t	dt

�
: (3)

Here, t� denotes the time distance from today to the
moment when the interspersed repeat of type � was
inserted into the genome for the first time. We emphasize
that nearest neighbor effects have an impact on the sub-
stitution rate pattern (c.f. Ref. [16]) but seem not to
dominate the fluctuations in substitution rate on the large
length scales considered [8]. Now, we define the genome-
wide average substitution rate as m�t	 
 1=Z

PZ
�
1 m��t	,

with Z the number of partitions, and the spatial deviations
from this rate as ���t	 
 m��t	 �m�t	. We further intro-
duce the time-averaged mean substitution rate by �m� 
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m�t	dt and the corresponding deviations as
���� 
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R
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���t	dt. For our purposes we can take
to good approximation the transition matrix as time-
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independent q 
 q�t	. With these definitions, the argu-
ment in the exponential of Eq. (3) reads q

R
0
�t�

m��t	dt 

q� �m�t� � ����t�	. It is clear now that we can obtain only
the time-averaged quantities �m�; ���� from the knowledge
of Q��.

The repetitive elements can be divided into lineage-
specific repeats (defined as those introduced by trans-
position after the divergence of human and mouse) and
ancestral repeats (defined as those already present in the
common ancestor). In the following we first analyze
ancestral repeats, as these were used in previous work
to report on local variations in substitution rates [8,10].
By taking ancient repeats from a sufficiently narrow time
window close to the speciation time (ca. 70 Myr) we can
make the approximations ��� � ���� and �m � �m�. The
time scales are given by setting the substitution rate of
the transversions qAC 
 qTG 
 0:05 to a fixed value and
defining �mHuman 
 1 and �mMouse 
 1. One should note,
however, that by using physical time scales the mean
substitution rate in the mouse lineage is about a factor
two larger than in the human lineage since the time of
speciation (c.f. Ref. [8]).

We start our calculations by determining iteratively the
transition matrix, q, and the individual age of the repeats,
t�, by maximizing the corresponding log-likelihood
functional of Eq. (1) using a multiple shooting method
[17]. The multiple shooting method integrates Eq. (2) and
performs a least mean square fit to determine the free
parameters in a robust way. As start values for the itera-
tion scheme we use equal transition rates (Jukes-Cantor
approximation), qbb0 
 1=4 for b � b0, resulting in t� 
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ji
��. The resulting transition rates are given after

convergence by qAC 
 qTG 
 0:050, qAT 
 qTA 
 0:056,
qCG 
 qGC 
 0:057, qCA 
 qGT 
 0:070, qAG 
 qTC 

0:172, qGA 
 qCT 
 0:372, and are thus close to the one
reported in Refs. [12,18]. After determination of q and t�
from a whole genome analysis we partition the genomes
to estimate the time-averaged local substitution rates, ���,
using again maximum likelihood estimation. The results
for ancient repeats within the human genome are shown
in Fig. 1 for a partition size of 106 base pairs (Mbp) using
the time window [0.479, 0.675]. The speciation time in
our time scales is given by � 0:49. In the inset of Fig. 1 we
show results for the local substitution rates for chromo-
some 22. The local substitution rates are averaged over
five neighboring partitions of 106 base pairs in steps of
106 base pairs. The differences in the local substitution
rates as measured by long interspersed nucleotide ele-
ments (LINEs) (see Ref. [12] for informations about
LINEs) and measured by the whole set of annotated
repeats is mostly due to still significant variations of the
substitution rate on length scales smaller than 106 base
pairs. As LINE repeats comprise just one third of the total
amount of repetitive elements within this time window
208102-2
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FIG. 1. Time-averaged local substitution rate of the human
genome for 106 base pairs partition size using ancestral repeats.
The chromosomes are concatenated in increasing order. The
inset shows the results for chromosome 22. The repetitive
elements of only the LINE class (solid line) is compared
with all major classes (LINE, SINE, LTR, DNA) of repetitive
elements (solid line with circles).
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(more than 6� 104 base pairs per partition) the sampling
error is clearly larger than in the full set of repetitive
elements. The standard deviations of these fluctuations,
��A 
 �1=Z

PZ
�
1 ��

2
�	

1=2, are shown in Fig. 2 for different
partition sizes. On length scales larger than 5� 106 base
pairs the variations in substitution rates result from coarse
graining of statistical independent partitions of smaller
size as can be shown by rescaling the standard deviation,
��A, with the number of partitions, Z, (c.f. inset of Fig. 2).
If the fluctuations were statistically independent for the
highest spatial resolution, Z 
 Zmax 
 2864 (106 base
pairs partition size), then Z�1=2 ��A would be constant
for all Z < Zmax and this seems to be the case for parti-
tions of size > 5� 106 base pairs in the human genome.
By comparing the variations in substitution rate between
mouse and human we find an almost three fold higher
standard deviation, ��A, for the human than for the mouse
lineage, Fig. 2. The reason can be seen by a much higher
rate of deletions and insertions in mouse resulting in a
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FIG. 2. Standard deviation ��A of the local fluctuations of the
substitution rate versus the size of the partitions for the human
and mouse genome. The inset shows the normalized standard
deviations ��A=
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higher rate of chromosome reorganizations in mouse than
in human. Consequently, we expect the correlations
among adjacent partitions to be smaller in mouse and
indeed this is found by our analysis as shown in the inset
of Fig. 2. Here, the rescaled standard deviation of fluctua-
tion remains almost constant for the mouse lineage even
for partition sizes below 5� 106 base pairs. We also
checked the bias due to the incomplete coverage of the
genomes by repetitive elements by performing block wise
bootstrap [19]. Confidence intervals of 95% for determin-
ing the values ��A are shown in Fig. 2 by the error bars.

So far, we have computed ��� for a specific time window
for the class of youngest ancient repeats. Including also
the lineage-specific repeats, we can repeat our optimiza-
tion procedure but now using all repetitive sequences but
grouped in eight equally distant age classes within the
time interval [0.17, 0.77]. This time interval is obtained
from the ages of all annotated repeat types in RepBase by
removing the 5% youngest and oldest repeats. We then ap-
proximate ���i	� 


R
0
��ti�ti�1	=2

���t	dt�1=Mi
P

� ���� where
the sum runs over the Mi interspersed repeats, �, whose
ages are within time window i 2 f1; ::; 8g, ti < t� < ti�1.
We recall that ���i	� is a time-averaged quantity, so it does
not reflect the strength of fluctuations of the substitution
rate ���0	 as found today in the human and mouse ge-
nomes. The biological reason for ���t	 for t < 0 being
different from ���0	 is because by reorganizations of the
chromosomes, i.e., by insertions and deletions of sequen-
ces, the local substitution rate as measured by repetitive
elements changes in time. This effect can be due to
changes of base compositions (e.g., GC content) or simply
by a shift of repetitive elements by insertions and deletion
in regions of different local substitution rate. It is then
clear that the substitution rate fluctuations for ancestral
repeats as shown in Fig. 1 are significantly smaller in
amplitude than the true (i.e., actual) variations in sub-
stitution rate ���0	. To give a good estimate of the mag-
nitude of the true fluctuations we have to include the
effect of genome reorganizations in our model.

Within a certain large partition � of size >5 Mbp the
number of repeats belonging to the same time window is
sufficiently large and the substitution rate across this
partition is the result of coarse graining over almost
independent fluctuations on smaller length scale, c.f. inset
of Fig. 2. Therefore, we can employ the central limit
theorem to predict that the distribution of ���t	 will be
close to a Gaussian distribution. This gets supported by
our analysis of ancient repeats, c.f. Fig. 1. Furthermore, as
the time scales for genomic rearrangements to become
fixed within a population are much smaller than the
relevant time scales of our model the underlying process
which changes the local substitution rate can be taken to
be Markovian. Then, assuming this process to be quasi-
stationary, one is tempted to write for the actual variation
of the local mutation rate, ���t	, within a continuous time
208102-3
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FIG. 3. The time-averaged correlation function titjC�ti; tj	
versus ti � tj � jti � tjj using eight equally sized time win-
dows within the interval [0.17, 0.77]. The lines are determined
by linear regression of Eq. (5), which determines the parame-
ters a and � for different partition sizes. We have restricted the
time correlations to values jti � tjj � 0:15 and ti; tj > 0:32,
leading to small contributions of the exponential functions in
the last line of Eq. (5) and thus justifying a linear fit to the data.
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model

@t���t	 
 a�t	���t	 � ���t	: (4)

This is because by Doob’s theorem it is essentially the
only process satisfying the conditions stated above. Here,
a�t	 is slowly varying, reflecting changes in the genome-
wide substitution rate and ���t	 can be chosen to be white
noise with zero mean on the time scales considered. The
autocorrelation function of the process, Eq. (4), is expo-
nentially decaying. Thus, we obtain for the autocorrela-
tion function C�ti; tj	 
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with �2 
 1=Z
PZ

�
0 ���t	���t	 and a decay rate a 
 a�t	.
Taking the fit parameters � and a time independent is a
reasonable approximation for the human species (c.f.
Refs. [8,12]). Figure 3 shows the correlation function,
tt0C�t; t0	, for the human lineage. The free parameters
� 
 ��Z	 and a in Eq. (5) are obtained by a least mean
square fit from the data. For the partition sizes (1, 5, 10,
50) in units of 106 base pairs, we obtain the values a 

�1:79; 1:79; 1:78; 2:09	 and the corresponding standard
deviations are given by � 
 �0:079; 0:058; 0:049; 0:023	.
Thus the standard deviation for the fluctuations in sub-
stitution rate as found today in the human genome are
about a factor 1.7 larger as found in the analysis using
ancestral repeats �A 
 �0:050; 0:036; 0:028; 0:013	 (c.f.
Fig. 2). The physical time for the correlations to decay
208102-4
to e�1 of their maximum values is about 85 Myr and thus
slightly larger than the speciation time of human and
mouse (70 Myr).

This decay time gives us an impression how fast chro-
mosomal reorganizations alter local substitution rates in
the human genome. The results also justify a posteriori
the assumption of quasistationarity for our model, Eq. (4).

A central result of this work is that correlations of
spatial fluctuations in substitution rate occur only on
length scales smaller than 5� 106 base pairs for the
human and mouse genome. Therefore, differences in
mean substitution rates between chromosomes, as re-
ported in Ref. [12], arise simply from a coarse-graining
effect. Furthermore, a time-resolved analysis has shown a
significant underestimation of these fluctuation when
measured by ancestral repeats as done in previous work
[8,10]. For the case that the decay time for variations in
the substitution rate exceeds the speciation time for any
two species, a higher amount of conserved sequences
between these species can be expected.
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