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Abstract

The evidence for the aperiodic self-excited oscillations of flow-conveying collapsible tubes being mathematically chaotic is re-
examined. Many cases which powerfully suggest nonlinear deterministic behaviour have not been recorded over time-spans which
allow their exhaustive examination. The present investigation centred on a previously recorded robust and generic oscillation, but
more recent and more discerning tests were applied. Despite hints that a low embedding dimension might suffice, the data
appeared on most indices high-dimensional. A U-shaped return map was found and modelled using both radial basis functions
and polynomials, but lack of detailed structure in the map prevented effective parameter estimation. On the basis of power-law
rather than exponential divergence of nearby trajectories, and of inability to discriminate against behaviour which would also be
manifested by a surrogate consisting of a noise-perturbed nonlinear periodic oscillator, it is concluded that the data do not sup-
port the idea that the aperiodicity in the particular oscillation examined is caused by deterministic chaos. There was evidence that
the distributed nature of the physical system might underlie aspects of the high dimensionality. We advocate equally searching
testing of any future candidate chaotic oscillations in the investigation of collapsed-tube flows.
# 2003 IPEM. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Fluids are transported in the mammalian body
through conduits which, having flexible walls, are
potentially collapsible. The study of collapsible tubes is
motivated partly by the desire to understand the
properties of these biological conduits, but also by the
intriguing nature of the physical system per se. Investi-
gation readily shows that when the conduit is collapsed
by external pressure, and there is a through-flow at
substantial Reynolds number (a few hundred or more),
self-excited or flow-induced oscillation can occur.
Nonlinear dynamics allows us to understand how

low-dimensional deterministic models give rise to
complex, apparently stochastic, behaviour [1]. In high-
Reynolds-number experiments on aqueous flow
through rather thick-walled collapsible tubes, Bertram
et al. [2] observed both periodic and aperiodic self-exci-
ted oscillations. On the evidence of the relation
between transmural pressure and tube cross-sectional
area, the system is highly nonlinear, and as a dis-
tributed fluid-dynamic system it is dissipative and has
an infinite number of degrees of freedom. Dynamical
chaos requires nonlinearity and a minimum of three
degrees of freedom; dissipation tends to simplify the
topological structure of trajectories in phase space,
allowing an infinite-dimensional system to exhibit
finite-dimensional behaviour [3]. The circumstances are
thus sufficient for the appearance of low-dimensional
chaos. Furthering this expectation is the richness of
variety of oscillation modes of which the system is
known to be capable; Bertram et al. [2] showed 11
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qualitatively distinct waveforms, many aperiodic, while
in a thinner tube of similar material, Bertram and
Elliott [4] distinguished 19 periodic waveforms.
Bertram et al. [2] applied then-available dynamical

systems methods to the analysis of the aperiodic oscil-
lations. They mapped their observations into a
two-dimensional control space, corresponding to the
control of the experiment through adjustment of
the flow-driving head or upstream pressure pu and the
pressure applied external to the flexible conduit, pe.
However, it was found that replacement of pe with the
dependent variable �ppe2 ¼ pe � �pp2, where p2¼pressure at
the tube exit and �pp is the time-average of p, allowed
divergent instabilities to be mapped as disallowed zones
in control space. This use of a dependent variable
departed from usual dynamical systems practice. Ber-
tram et al. [2] showed amplitude/frequency spectra,
phase-plane portraits of pairs of their recorded time-
variables (p1, p2, Q2 and A, where p1 ¼ pressure at the
tube entrance, Q2 ¼ volume outflow-rate and A ¼ tube
area at the ‘throat’, the site of maximal oscillatory
activity), and time-delay phase-plane portraits. Section-
ing the trajectories so formed, they derived first-return
maps, demonstrating that some of the aperiodic oscilla-
tions had the character of a noisy amplitude-modulated
waveform. In the case of one aperiodic mode, it was
demonstrated by overlaying sections that there was
approximate repetition of a complex cycle which on the
basis of its autocorrelation function appeared to be a
period-8 oscillation.
Singular value analysis [5] was used to demonstrate

that another aperiodic mode had the main structure of
a 2-torus, with a further small-amplitude higher-
frequency oscillation superimposed at one consistent
phase (maximal collapse at the tube throat). After
reconstruction from the principal components of the
singular spectrum, and in places where the data density
allowed, local dimension was estimated by the method
of Broomhead et al. [6]. The estimates ranged between
two and five [2], although problems of data sparsity
prevented conclusive results.
Qualitative bifurcation topologies were evolved to

explain the main features of the oscillatory dynamics as
exposed in the modified-control-space mappings. The
most promising candidate topology combined a pair of
fold bifurcations (explaining the observed hysteresis
and divergence) with a supercritical Hopf and a homo-
clinic connection (explaining the gradual onset and
abrupt disappearance of oscillation with pe-
reduction)—see Thompson and Stewart [3] for further
explanation of these terms. However, despite these suc-
cesses of dynamical system methodology, Bertram et al.
[2] concluded that deterministic chaos had not been
proven to underlie the observed aperiodic oscillations.
Nevertheless, Jensen [7], who investigated a one-

dimensional model of a collapsible tube, found encour-
aging signs that the system might indeed be chaotic.
His model, based on that of Cancelli and Pedley [8],
proved to contain overlapping regions of ð�QQ; �ppe2Þ-con-
trol space where a given mode of oscillation was
unstable, constituting the first theoretical evidence cor-
responding to the multiple modes that Bertram et al.

[2] had observed. At ð�QQ; �ppe2Þ-coordinates where more
than one mode was simultaneously unstable, he com-
puted oscillations suggestively similar to the observed
amplitude-modulated aperiodic modes, and also an
oscillation that was aperiodic by intermittent switching
between waveform morphologies. However, he did not
apply exhaustive tests for the existence of chaos.
Further analysis of the observed aperiodic oscilla-

tions was conducted by Bertram and Tian [9] and by
Bertram [10]. The largest Lyapunov exponent was
approximated by the method of Wolf et al. [11] and
shown to be significantly positive. Since the data were
regarded as possibly emanating from a chaotic attrac-
tor with added noise, a method based on singular value
analysis and cross-correlation of two parallel computa-
tions of local trajectory divergence was devised which
yielded a ‘degree of chaos’ index. This could be
extrapolated to the situation of zero noise. The 1995
paper [10] reviewed further dynamical system methods
which had been applied to the data. These included
searching for close returns to the same local neighbour-
hood on contiguous ‘orbits’, both graphically and
numerically, on the basis that unstable periodic orbits
organise the aperiodic flow on a chaotic attractor [12].
However, these further data analyses did not resolve
the question of whether low-dimensional chaos caused
the observed aperiodicity.
In a different approach, Armitstead et al. [13] used

continuation software [14] to map the loci in two-
dimensional parameter space (pu, pe) of bifurcations in
the dynamical behaviour of a lumped-parameter model
of flow in a collapsed tube. The model [15], while
extremely crude, had predicted realistic-looking self-
excited oscillations and demonstrated their dependence
on the extent of downstream resistance and inertia.
Armitstead et al. [13] showed that the model, although
of third order, was confined to a two-dimensional cen-
tral manifold by an eigenvalue that always remained
real and negative. Thus repetitive limit-cycle oscilla-
tions were all that could be expected; chaos was not
possible, at least in the parameter regime examined.
In yet another approach, the question was posed:

what happens if forcing oscillations are imposed from
upstream on a collapsible tube executing repetitive self-
excited oscillation? A servo-controlled hydraulic actu-
ator was used to power a piston pump providing a
pulsatile addition to the previously steady upstream
head, while the tube remained at an operating point in
parameter space that otherwise yielded periodic
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oscillation. Predominantly, entrainment of the tube by
the forcing led to complex long-period cycles represent-
ing ‘mode-locking’, i.e. a fit between several cycles of
the forcing and a different number of cycles of the tube
oscillation [16]. However, extensive aperiodic oscil-
lation was also encountered, and this was shown by
fractal dimension and other standard tests to result
from the action of a low-dimensional chaotic attractor
[17].
This experimental finding paralleled the result of

adding analogous upstream forcing to the lumped-
parameter model, in the process converting it to
a fourth-order system. With the almost unlimited
resolution available numerically, the classic signs of a
chaotic system could be obtained, including a period-
doubling cascade leading to aperiodicity, and a
toroidal oscillation topology which in Poincaré section
had fractal structure [18].
The clear evidence of chaos in the forced system,

both the numerical one and the experimental, and the
lack of capability for same in the unforced model, rein-
forced doubt that the aperiodic oscillations from the
unforced experiment could be ascribed to this expla-
nation. In this paper, we reopen the question of what
caused these aperiodic oscillations, using now tools of
nonlinear dynamics which were not available at the
time of the earlier analyses.
2. Methods

Our collapsible-tube experiment has been fully docu-
mented in published papers referred to in the Introduc-
tion, particularly that by Bertram et al. [2], so only the
briefest of descriptions will be given here. The tube was
of silicone rubber (Dow Corning Silastic1), of nominal
inside diameter 12.7 mm and wall thickness 2.4 mm.
Tubes of four different lengths were investigated, but
that in use when the data to be analysed here were
recorded was 17.4 diameters long once suspended (in
air) with slight longitudinal tension between the rigid
pipe connections to the recirculating-flow system. The
fluid within was basically water, with minor admixtures
of ionic solutes providing conductivity for area
measurement by conductance catheter (not used here),
and buffering for corrosion resistance in the recirculat-
ing flow tanks. Operating points in a range up to
200 kPa of driving head pu and 0.5 l/s of flow-rate Q
were investigated using a constant-pressure source. The
observed behaviour at the operating point is also affec-
ted by the passive hydrodynamic properties (resistance
to flow, fluid inertia, etc.) of the apparatus upstream
and downstream of the tube, particularly downstream;
oscillation is inhibited by excess downstream resistance,
and the natural frequency varies inversely with down-
stream inertia. Upstream inertia (between the delivery
point of the flow-driving constant head and the tube
entrance) determines the extent to which the tube is
perfused at constant pressure. The downstream resist-
ance here corresponded to that labelled R0

2 in Bertram
et al. [2], wherein full details of the lumped properties
of the apparatus were given; the distributed (frequency-
dependent) properties of the apparatus were measured
by Bertram and Butcher [19]. Recordings were made
using a 12-bit a/d converter at 500 Hz; this rate suf-
ficed to avoid aliasing in the oscillatory content of the
pressure signals, and comfortably exceeded the 100 Hz
bandwidth of the electromagnetic flowmeter signals (set
by the internal demodulation filter). The pressure-
transducing systems measuring p1, p2 and pe were all
carefully calibrated to 20 kPa/V, thus allowing us to
monitor by real-time voltage subtraction during the
experiment the difference signal representing
pe2 ¼ pe � p2, of which the low-pass-filtered time-aver-
age component was used as one of the experimental
control parameters to set the operating point. Simi-
larly, the two channels of electromagnetic flowmeter
signal were set to the same calibration as each other, a
sensitivity that was chosen to allow all operating points
in the range that could be reached to be recorded in a
�10 V a/d converter input range without recalibration.
These choices of experimental procedure meant that
the upstream signals p1 and Q1, which varied less than
their downstream counterparts p2 and Q2 when the
operating point was oscillatory, covered only a fraction
of the whole 12-bit a/d converter range.
At the time when the aperiodic oscillations were first

observed, our recording equipment was not capable of
acquiring long continuous stretches of data at a high
sample rate, as was needed in order to fill a potentially
high-dimensional embedding space with trajectories
even in rarely visited locations. This need was in due
course met, but some of the most intriguing waveform
morphologies captured in all-too-brief recordings ear-
lier could not be found again. In this paper, we concen-
trate on a particular aperiodic waveform morphology
which appeared robust enough that multiple long
recordings could be made of it. Known to us as lg9,
32,700 samples of the data were recorded at an operat-
ing point defined by pu ¼ 171 kPa, pe ¼ 173:5 kPa,

yielding �ppe2 ¼ 134 kPa, �QQ ¼ 227 ml=s. The Reynolds
number based on tube diameter was about 23,000. A
window of the lg9 p2-data formed Fig. 7 of Bertram
[10], and Fig. 7c of Bertram et al. [2] showed a wave-
form of approximately the same morphology. Our soft-
ware was set up for recording six channels
simultaneously; of these three were devoted to moni-
toring variables needed to assure us of stationarity, so
the oscillation was registered by means of the time-
variables p1, p2 and Q1. In another dataset of equal
length (lg8), Q2 was also recorded; a window of these



204 C.D. Bertram et al. / Medical Engineering & Physics 26 (2004) 201–214
data is illustrated in Fig. 1. The lg8 dataset is available
for downloading at http://www.gsbme.unsw.edu.au/
download.htm.
3. Analysis

3.1. Software

The nonlinear analyses of the previous papers on the
aperiodic collapsible-tube data were performed using
software written for the purpose. In the interim, soft-
ware packages have become available which perform
most of the standard tests. The package utilised here
was Tisean (TIme SEries ANalysis) v2.1 by Hegger
et al. [20]. Thorough documentation is provided at the
website (http://www.mpipks-dresden.mpg.de/~tisean/
TISEAN_2.1), but additional background material is
given by Kantz and Schreiber [21]. Other routines were
written in Matlab, C, IDL and Fortran. Details of the
function of each test are given in the rest of this sec-
tion.
3.2. Waveforms

For dynamical-system purposes, a first step is to nor-
malise time series to zero mean and unit standard devi-
ation, so the units of the original signal are irrelevant.
For this reason the traces in Fig. 1 are presented in a/
d-converter integers. The calibrated ranges were 142.8
to 187.1 kPa for p1 and �77.5 to 147.7 kPa for p2 (rela-
tive to atmospheric pressure at the downstream exit to
the recirculating-system collecting tank); Q1 varied
between 202 and 261 ml/s. As can be seen in the figure,
the recorded signals for p1, p2, Q1 and Q2 varied over
approximately 450, 2300, 125 and 550 integers, respect-
ively, the proportions 450:2300 (0.20) and 125:550
(0.23) being true measures of the upstream-to-down-
stream relative peak-to-peak variation of the pressures
and flow-rates, respectively. We conclude that Q1 in
particular, while apparently smoothly delineated in
Fig. 1, is subject to a discretization artefact. The flow-
rate signals show predominantly two components: a
large-amplitude oscillation and a smaller, higher-
frequency oscillation. The period of this faster compo-
nent occupies about ten data points; thus its orbital
trajectories in phase space will be polygonal rather
than smoothly curved, unless the data are interpolated.
In the pressure signals, the same two dominant compo-
nents are seen, although the higher bandwidth is mani-
fested in sharper peaks and troughs. The downstream
pressure also exhibits a third component, a small-
amplitude high-frequency transient occurring at the
time of waveform troughs; this is caused by flutter
between the opposite walls of the tube at the throat at
the instant of maximal collapse. This third component
represents an additional complexity from the point of
view of dynamical systems analysis. Thus, of the sig-
nals p1, p2 and Q1 available in lg9, we regarded p1 as
ta points (out of 32,700) for each channel in the file lg8. The channels are, from the top, upstre
Fig. 1. The first 1000 da am pressure (p1), down-

stream pressure (p2), upstream flow-rate (Q1) and downstream flow-rate (Q2), all in a.d.c. integers.
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the best candidate for detailed examination. However,
some of the outcomes could be established without dif-
ficulty on the Q1 signal, and in some cases tests on all
three signals yielded informative comparisons.
3.3. Nonlinearity and stationarity

A fundamental test is whether the system from which
the signals emanate is nonlinear. An objective and non-
trivial test can be mounted by comparing the data with
suitable surrogates. The surrogates are realizations of
the null hypothesis that the data were generated by a
constrained linear random process, where the con-
straints force the surrogates to share certain properties
with the data. Fourier-based surrogates share the
amplitude spectrum of the original data, but have ran-
domised phase. It is then desirable to constrain the sur-
rogates further, to have the same distribution of values
as the data. This two-step approach is realized itera-
tively in the algorithm used [22].
A basic requirement of the data is that they emanate

from a stationary system; nonstationarity would cause
the system erroneously to appear high-dimensional
even if it were not. This property can be examined in a
recurrence plot, consisting of the time-index coordi-
nates (i, j) of pairs of points whose delay vectors are
separated by e or less.
3.4. Portraits

For all the sophistication and complexity of math-
ematical tools for the analysis of nonlinear data,
inspection of the trajectories in phase space remains
among the most powerful techniques. Much effort was
devoted to creating Poincaré sections of the data, in an
attempt to find structure that could be the subject of a
critical test of any parametric or nonparametric model-
ling endeavours. A fundamental theorem of nonlinear
dynamics [23] states that structure revealed by a
judicious embedding and sectioning is a characteristic
signature of the data, no matter how many other sec-
tions fail to show it.
The optimal delay for embedding purposes is usually

thought to be that delay at which the mutual infor-
mation [24] has its first minimum. However, mutual
information, which should be preferred for complex
attractors such as the bi-lobar Lorenz, involves density
estimation and, therefore, depends on parameters
which have to be chosen optimally according to the
system under investigation. For simpler oscillating sys-
tems such as the Rössler or the van der Pol, optimal
delay is more reliably assessed using the autocorrela-
tion function. Although the oscillations here present
both larger, slower and smaller, faster cycles, the over-
all pattern is predominantly comparable with the aperi-
odic limit cycles of the velocity-forced van der Pol
system [9].
The Tisean routine for creating Poincaré sections

only dealt with time-delay embedding of a single data
set. In view of the fact that three channels of data were
available for lg9 and four for lg8, two-dimensional
Poincaré sections could be created from three-dimen-
sional data sets. This also allowed sections and return
maps to be created of data after projection along the
first three principal components, using Tisean to per-
form the principal-component analysis.
We also applied nonlinear filtering to the experi-

mental return map. A simple algorithm from Tisean
was initially used, which takes a locally constant
approximation to the dynamics and replaces the centre
point. However testing on noise-corrupted versions of
the logistic map revealed that this algorithm worked
unevenly, being much more effective where the section
being filtered was aligned with the axes than where it
was diagonally inclined. Consequently, Tisean’s more
sophisticated locally projective algorithm [25], which
worked satisfactorily on our test data, was used
instead.
3.5. Dimensions

Theoretically, the minimum proper embedding
dimension m for an attractor lying in a smooth
D-dimensional manifold is m ¼ 2Dþ1 [23]. However,
fewer dimensions may suffice for particular manifolds
[26], and D is usually not known. Alternative methods
are therefore needed to estimate m. The method of
false nearest neighbours [27] posits that an adequate
choice of m will result in only true neighbours in
attractor space being neighbours in embedding space,
and that after mapping according to the smooth
dynamics, the neighbours will still be neighbours, in a
neighbourhood distorted according to the Lyapunov
exponents. Too small a choice of m will give false
neighbours which will map to quite different regions of
the attractor.
Another approach to the question of an adequate

embedding space is found in the concept of singular-
value decomposition, whereby the principal-component
vectors are calculated from the eigenvalues of the
covariance matrix formed from the data [5]. The data
are then reconstructed in principal-component space,
using just that number of vectors needed to reach the
cumulative variance of the original data.
The most widely accepted way to estimate attractor

dimension is the method of Grassberger and Procaccia
[28], in which the correlation integral C(e) is computed
for a variable range of neighbourhood size e. The slope
of this plot, if constant over an adequate range of e,
indicates the (noninteger) correlation dimension d2.
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3.6. Unstable periodic orbits

Unstable periodic orbits are considered an organis-
ing principle of chaotic attractors, which approach
them arbitrarily closely (the closer, the longer) before
diverging back to normal chaotic trajectories. How-
ever, while unstable periodic orbits are fundamental to
dynamical theory, it is not clear that they are robust to
even small amounts of noise. Bertram [10] used a close-
return method (D.P. Lathrop, personal communi-
cation) to identify the relative frequency of occurrence
of approximately closed orbits of varying lengths in the
lg9 data. Tisean’s routine for finding unstable periodic
orbits works on a model of the data, not the data
themselves, and it was found difficult to relate the
reported orbits to the lg9 data. Instead we applied the
Lathrop method to surrogate data generated from a
stochastic differential equation (SDE), representing
noise applied to the acceleration term of the otherwise-
periodic Van der Pol oscillator.
3.7. Lyapunov exponents

Bertram and Tian [9] computed significantly positive
values of the largest Lyapunov exponent k1, indicating
exponential divergence of initially close starting points,
one of the characteristic behaviours of a chaotic sys-
tem. However, the algorithm used then [11] assumed
that any divergence was exponential, and did not test
this assumption. Today the question is examined
graphically, plotting semi-logarithmically an index S(e,
m, t) of the separation against time t (in units of sam-
ples), e being the initial neighbourhood size. Quoting
from Tisean documentation, ‘‘If S exhibits a linear
increase with identical slope for all m larger than some
m0 and for a reasonable range of e, then this slope can
be taken as an estimate of the maximal exponent.’’
3.8. Prediction

Linear prediction of the data has been introduced
already in the context of surrogates. Several further
approaches to prediction were applied. The simplest
and most robust method of nonlinear prediction is to
approximate the dynamics locally by a constant. Quot-
ing from the relevant Tisean documentation, the ‘‘pro-
gram makes a zeroth order ansatz and estimates the
one step prediction errors of the model on a multi-
variate time series. This is done by searching for all
neighbours of the point to be forecasted and taking as
its image the average of the images of the neighbours.
The given forecast errors are normalized to the stan-
dard deviations of each component.’’
A next step in sophistication ‘‘makes a local linear

ansatz and estimates the one step prediction error of
the model ... as a function of the neighbourhood size’’.
The graph of average forecast error against neighbour-
hood size is Casdagli’s [29] DVS-plot (deterministic vs.
stochastic). Four outcomes are distinguished: the sys-
tem is linear or nonlinear, and there is or is not a
source of noise. From the large-neighbourhood right-
hand side of the plot, one sees whether the system is
linear (prediction error is independent of size) or non-
linear (prediction error increases with size, as the sys-
tem curves away from the hyperplane prediction).
From the small-neighbourhood left-hand side of the
plot, one sees whether there is noise in the system; if
there is, prediction error increases abruptly at some
minimum neighbourhood size at which the noise makes
the hyperplane fit inaccurate. This point moves to lar-
ger sizes as m increases because of the requirement to
find an adequate number of neighbours while the noise
becomes ever more sparsely distributed in m dimen-
sions. If the system is noise-free, the hyperplane fit will
work down to the same minimum neighbourhood size
irrespective of m, because the data all lie on the attrac-
tor, which has its characteristic shape, independent of
how many dimensions are used to embed.
4. Results

4.1. Nonlinearity and stationarity

Nineteen surrogates of the first 1536 points of the Q1

trace, rescaled to zero mean and unit standard devi-
ation, were created. A locally constant nonlinear pre-
dictor was then used to forecast the progress of the
time series, one point ahead, on the basis of the points
found in a local neighbourhood which was 10% of the
time-series standard deviation in radius in a three-
dimensional delay embedding. In this case the delay
used was one point, which is sub-optimal (see above),
but the result is not in doubt. The prediction error was
found to be less for the data than for any of the surro-
gates, allowing rejection of the null hypothesis at the
confidence level p < 0:05.
A recurrence plot was made of the rescaled Q1 with

m ¼ 2, d ¼ 10 (the plot is reasonably insensitive to the
choice of m), and a neighbourhood size e equal to 10�3

of the data interval. The recurrence plot is reproduced
as Fig. 2, showing almost ideal stationarity. This is a
belated tribute to the precautions taken to achieve
accurately constant upstream head in the recirculation
system [30].
4.2. Portraits

The autocorrelation and mutual information meth-
ods for finding optimum delay were applied to all three
variables (Q1, p1 and p2). Applied to the above window
from the Q1 trace, the computation of the mutual
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information (based on a simple fixed mesh of boxes)
showed a shallow minimum at delay d¼ 17, but decline
had effectively ceased at d¼ 9. Working with all 32,700
data, the first zero of the autocorrelation occurred at
d¼ 4 for p1, between d¼ 3 and d¼ 4 (closer to 4) for
p2, and between d¼ 6 and d¼ 7 for Q1. For p1 and p2
there was a very weak local minimum of mutual infor-
mation agreeing with the autocorrelation result, but
not for Q1. With a shortest main period of the order of
ten points, it is clear that d¼ 3 is indeed the best result,
presumably obscured by the discretization artefact in
Q1.
Working with first-return maps of the section times,

we found a clumping of the return times as shown in
Fig. 3, such that returns tended to occur at multiples of
a basic period about ten sample points long. Of the
two largest groups in the map, both corresponding to
the basic period, long times were usually followed by
short times, and short times by short or long times, but
seldom long by long.
By two-dimensional Poincaré sectioning we dis-

covered a further interesting structure: a U-shaped
return map, seen for instance in the (p1, Q1)-plane sec-
tion times from the re-scaled lg9 data, sectioned at
re-scaled p2¼ 0 in the rising direction, as shown in
Fig. 4a. To test whether the low-dimensional dynamics
thus seen could be modelled using a deterministic map,
we used the method of optimal transformations [31].
This method is based on a nonparametric additive
model estimation, utilising the ACE algorithm [32].
The most optimal fit to the data shown in Fig. 4a was
achieved with a six-component additive model. For
numerical integration of the nonparametric model esti-
mate, sixth-order polynomials were used. As can be

seen from Fig. 5, this model reproduced the main

shape. Not being limited to the 1300 or so section-

plane intersections of the original experimental data,

the model produced a return map with much

additional fractal structure.
Effort was accordingly devoted to nonlinear filtering

of the experimental return map, to see whether similar

structure could be discerned. Such additional structure

is needed to enable one to tell whether such a model

such as our polynomial one fitted the data by chance

or by virtue of its similarity to the mechanism underly-

ing the data. A locally projective algorithm gave results

as shown in Fig. 4b. However, the structure so revealed

did not resemble particularly closely that in the poly-

nomial model’s section. In this context it is pertinent

also to remember [20] that nonlinear filtering, while

adept at apparently ‘cleaning-up’ a noisy map, can cre-

ate pseudo-structure where none exists.
4.3. Dimensions

Applying the method of false nearest neighbours to

Q1 (not re-scaled), by m¼ 3 the fraction of false neigh-

bours was already down to 0.0059, thence declining to

0.0031 at m¼ 4, 0.0016 at m¼ 5 and 0.0006 at m¼ 7.

This confirmed the well-known finding that while it

works well on analytical attractors, the method does

not give unambiguous answers for data which include
Fig. 2. The recurrence plot for Q1 from the file lg9, with m¼ 2,

d¼ 10 and e¼ 10�3.
Fig. 3. First return map of a Poincaré section for p2 from the file

lg8, time-delay-embedded in three dimensions with d¼ 3, sectioned

normal to the first axis at data-point value 1250, showing clumping at

Dt¼ 20 and multiples thereof.
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any noise. However, the result does suggest that m¼ 3
may be adequate for noncritical uses in this case.
The principal components of the re-scaled Q1 were

found with m¼ 20 and d¼ 1; the cumulative variance
reached essentially one using six principal components.
Projections of the first 2000 points onto the (pc1, pc2)-,
(pc1, pc3)- and (pc2, pc3)-planes were also drawn, as
part of the investigation of phase space and Poincaré
sections.
The correlation integral was calculated for all three

variables (Q1, p1 and p2) after re-scaling, with d¼ 3 and
5, and d(log C[e])/d(log e) was plotted against e, for m
from 1 to 10. Large fluctuations were present from one
value of e to the next for all m with Q1. Slightly better
results were achieved using p1; a still fluctuating but
reasonably constant level (which however increased

with m) was achieved over one and a half decades of e.
Smoothing arithmetically the slope output over an

interval of 2aþ1 points gave best results with a¼ 4.

Over two decades of readable result were obtained

using p2 (see Fig. 6); clearly the discretization noise in

Q1 and, to a lesser extent, p1, is a problem here. The

correlation dimension d2 increased with m, reaching

about 4 at m¼ 10. Combining 10-dimensional delay-

embedding (d¼ 3) and all three signals, a total embed-

ding dimension of 30 was reached, with the d2 plateau

no longer really flat, but rather sloping from a mini-

mum of 4 at e¼ 1 to a maximum approaching 6 at

e¼ 0:2. This is not to be believed; quite aside from lack

of constancy, a dimension of six would be one imposed
f first-return times achieved by a Poincaré section normal to the p2-axis of the re-sca
Fig. 4. The U-shaped map o led three-dimensional (p1, p2,

Q1)-plot from the file lg9. The raw data are shown in panel a; panel b shows the result of nonlinear noise reduction by three iterations of a locally

projective algorithm on a two-dimensional manifold with m¼ 6, using a neighbourhood radius of 0.5 and a minimum of 50 neighbours.
Fig. 5. The first-return map produced by the sixth-order-polynomial

nonparametric model fitted to the map data shown in Fig. 4a.
Fig. 6. The slope of the correlation integral plotted against local

region size e, with local smoothing (a¼ 4). The p2 signal from lg9 was

used with 10-dimensional delay (d¼ 3) embedding, giving a

maximum m¼ 10 and a corresponding number of curves. Successively

higher values of m yield progressively greater slopes.
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by the length of the data set rather than attractor
dynamics.
4.4. Unstable periodic orbits

We generated two Van der Pol oscillator-space time-
variables, each of 32,000 points. Applied to the time-
variable representing location, with d¼ 5 as indicated
by autocorrelation minimum, our close-return detec-
tion scheme found instances of both the basic orbit
length of around 20, and multiples of it. The ability of
such nonchaotic surrogates as these to fool a close-
return method indicates the necessity to examine the
stability of purported unstable periodic orbits, for
instance by the method of So et al. [33], which reverses
the dynamics in the map vicinity of an unstable per-
iodic orbit so as to zero in on it. These of course are
methods available to the investigator of a mathematical
attractor which are denied to those interested in the
analysis of experimental results.
4.5. Lyapunov exponents

The algorithm of Kantz [34] was applied first to the
rescaled Q1 data of lg9 with m¼ 2, 3 and 4. All the
curves for values of e up to 0.0296 and a given m coin-
cided exactly; only that for e¼ 0:0527 differed, being
always slightly higher. At m¼ 4, any possibly linear
slope was interrupted by regularly occurring slope dis-
continuities, every five samples, this being the value of
d specified. At m¼ 3, the effect was less, and at m¼ 2,
approximate linearity was present for times between
three and nine samples.
The solution to the problem creating the dis-

continuities is to resample the data so as to keep only
every dth point, then compute S with d¼ 1. On this
basis, the same plot was generated for p1 of the lg9
data. Against linear time, S showed no linear portion
for any of m¼ 3 to 6; against log time, S was close to
linear, as shown in Fig. 7. Since the definition of S
incorporates a logarithm already, this is power-law
behaviour. Of course, to measure the slope, if S is cal-
culated with natural logarithms, so must one plot loge
t. We found slopes in the region of one: 0.86 with
m¼ 5, 0.95 with m¼ 6, and 0.97 with m¼ 7. These
slopes are not Lyapunov exponent estimates, being
taken from log-log plots, and thus indicating non-
exponential divergence of neighbouring points.
4.6. Prediction

The locally constant nonlinear predictor algorithm
was applied to all three lg9 channels (p1, p2 and Q1)
after re-scaling, with d¼ 5 and 10. The forecast errors
were in general least for Q1, although all the prediction
errors exceeded 0.5 by forecast time equal to seven
samples. The results with d¼ 5 and 10 were almost

identical.
The DVS procedure was also applied to the rescaled

lg9 data. We produced curves of average forecast error

against neighbourhood size for p1, p2 and Q1, with

d¼ 1, 2 or 3 and for m¼ 2 to 10; those for p2 at d¼ 3

are shown in Fig. 8. The behaviour of the pressure

curves for d¼ 1 at low neighbourhood sizes was

intriguing: between m¼ 2 (p1) or 3 (p2) and m¼ 10, the

small-neighbourhood onset of the deterministic part of

the curve started at sizes ranging over less than a dec-

ade, emphasizing (as did the shape of the curves) that
Fig. 8. The DVS plots for p2 from the lg9 data, time-delay-embed-

ded with d¼ 3. The embedding dimension m varied from 2 (top

curve) to 10.
Fig. 7. The plot of S vs. loge t, for p1 from the file lg9, showing

approximately constant slope indicating power-law divergence. The

top band of curves is for m¼ 3; successively lower bands are for

m¼ 4, 5, 6 and 7. Within each band, curves are plotted for five choi-

ces of e.
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there was very little noise in the data. Probably as a
result of the relatively large discretization artefact,
amounting to noise, the Q1 curves yielded less infor-
mation. The curves effectively ceased varying for m	 6,
indicating that this many dimensions were needed for
an adequate embedding of the data. By producing
similar families of curves for the Rössler attractor sub-
jected to similar amounts of digitisation artefact (lim-
ited number of samples per cycle, and of bits of range
resolution), we showed that the apparent embedding
dimension was increased from 3 to 4 by these effects.
On this basis, it can be argued that the embedding
dimension indicated for the lg9 system in the absence
of these data effects would be 5, still high-dimensional.
The increasing prediction error with size at all m in the
lg9 data clearly shows nonlinear behaviour. However,
while the relatively small range of neighbourhood sizes
at which the ability to fit is lost suggests a low noise
level, nevertheless the eventual left-hand-side up-swoop
of each curve at a point that depends on m does show
that there was a source of stochasticity present. Thus
the system is presumed by default to be irregular
(aperiodic) as a result of nonlinear stochastic rather
than nonlinear deterministic processes.
Going beyond the locally linear predictors, we tried

to fit a globally nonlinear model to the U-shaped
return map of Fig. 4. Since Hegger et al. [20] warn that
‘‘polynomials diverge outside the data and hence can
be unstable under iteration’’, we used Tisean’s radial-
basis-function1 routine, and fits were compared over
the range m¼ 1 to 6 and p¼ 6 to 40, p being the num-
ber of radial basis functions, as shown for p¼ 10 to 38
in Fig. 9. Calculated out-of-sample prediction error
was consistently least at the maximum p but with
m¼ 3, whereas the corresponding plot by no means
seemed the best fit to the input data. By inspection, the
model for m¼ 3 and p¼ 18 was selected for further use.
We calculated S(e, m, t) for the data of that map, along
with the data of the raw-data return map which
inspired it, and the data of the map produced by our
polynomial model.
The raw section data were, like the original flow

data, linear in S vs. ln t, indicating power-law (stochas-
tic) divergence. The slope was 0.97 with m¼ 5, and 1.1
with m¼ 6 and 7. Both the radial-basis-function and
1 Radial basis functions were introduced into time series analysis

by Broomhead and Lowe [35]. Following Kantz and Schreiber [21],

one defines scalar U(r), where r is positive, and the vector positions yi
of the k centres, then Fð~xxÞ ¼ a0 þ

Pk
i¼1 aiUð ~xx� ~yyik kÞ. Typically U is

bell-shaped with maximum at r¼ 0. If the centres and widths are kept

constant, determining the kþ1 coefficients ai, i¼ 0 to k, is then a lin-

ear problem of least-squares fitting. The width can be optimised by

testing several values, since the least-squares problem for each is

quick to solve. The Lorentzian radial basis function used here is

U ¼ 1
1þr2=a2.
polynomial models were far from linear on these axes,
but close to linear in S vs. t, as shown in Fig. 10, indi-
cating the expected deterministic behaviour.
5. Discussion and conclusions

The data were shown to be stationary (via recurrence
plotting) and to emanate from a nonlinear system (by
comparison with surrogates). Application of the false-
nearest-neighbours method suggested that an embed-
ding dimension of 3 might suffice, but on the other
hand, attempts to find a correlation dimension gave no
consistent answer in the range 4–6. Similarly, the out-
comes of locally linear prediction, as expressed in the
Casdagli DVS plot, suggest that an embedding dimen-
sion of at least 6 is needed. There was a hint here,
through deliberately creating similar effects in an ana-
lytical attractor, that the underlying dimension might
be lower were the data not subject to the combined
influences of excessive discretization in both time and
signal level.
Despite signs also from the radial-basis-function

modelling of the U-shaped return map that an embed-
ding dimension of 3 might be sufficient, overall the
tests applied to the data tended to show outcomes that
varied with embedding dimension up to 6, indicating
that the oscillation complexity is ruled by processes
which manifest in time-series data as high-dimensional
dynamics.
There were signs that the distributed nature of the

system was playing a role in this: the clumping of first-
return times suggests, as did behaviour seen by
Bertram and Sheppeard [16], that there are preferred
oscillation periods, probably set by wave travel and
reflection between the ends of the tube, a phenomenon
which is not comprehended in data sets consisting of
the variable value vs. time only. Such non-
comprehended behaviour would lead time-series data
sets to show high-dimensional determinism, since it is
essentially a manifestation of the spatially distributed
nature of the system. If therefore the system, being
fluid-dynamic and ultimately ruled by (infinite-dimen-
sional) partial differential equations, does not confine
itself to effectively low-dimensional (ordinary differen-
tial equation) behaviour, analysis of time series is
doomed to find the result that the dimension is high.
This may result from either genuinely high- but finite-
dimensional dynamics (as in the Mackey-Glass delay
differential equation model of blood generation for leu-
kaemia patients—see Farmer [36]), or distributed
effects amounting to infinite-dimensional dynamics, or
stochastic influences on a nonlinear deterministic sys-
tem.
Thus the analyses of the lg8 and lg9 data point to

the necessity of analysis of data which reflect the spa-
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tially distributed nature of the system. Data on the

instantaneous variation of internal cross-sectional area

and pressure along the length of the oscillating collaps-

ible tube, i.e. A(x, t) and p(x, t), were obtained by Ber-

tram and Godbole [37], but the methodology used

necessarily limited the observations to strictly periodic

oscillations. One of the initial premises of this investi-

gation was that aperiodic oscillations might contain

information on the nature of the system which is

absent from fully periodic oscillations, information

which could be revealed through application of the

tools of nonlinear dynamics. Nevertheless, we con-

sidered the possibility of fitting an appropriate dis-

tributed model to the A(x, t) and p(x, t) data. We

recreated the one-dimensional model of Jensen [7]. The

model involves partial differential equation integration

by the two-step MacCormack method [38], and is far

from robust or straightforward to implement. Jensen

originally achieved solutions only by extremely prob-

lem-specific modifications to the basic integration
scheme, modifications which we found we had to emu-

late in detail. The eventual computation proved inten-

sive, even by the improved standards of today’s

personal computers, to the point where a parameter fit

by iteration of the model against the distributed data

would have been impractical. We were in any case dis-

couraged from pursuing such a parameter fit by irrec-

oncilable differences between the assumptions

underlying the equations of the Jensen model and the

circumstances of the experiments reported by Bertram

and Godbole; these differences are discussed by Jensen

[7] and Bertram et al. [39].
We attach great importance to the result of our

investigations of largest Lyapunov exponent. The

power-law divergence of initially neighbouring points

was interpreted as implying a nonchaotic origin of the

stretching. In theory, if this log-log slope is 1=2, the

implication is that the distance growth could be diffus-

ive (Brownian motion), although in an SDE, interac-

tion between the dynamics and the noise can be shown
9. The first-return maps achieved by radial-basis-function models with m¼ 1 to 6 and p¼ 10 to 38 fitted to the U-shaped return map
Fig. of

Fig. 4a. Of the 2166 data points, 500 were used to fit the model in each case; the remainder were used to estimate out-of-sample error.
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to cause slopes that vary from this value [40]. The non-
exponential divergence of near neighbours pointed
unambiguously to stochastic, rather than deterministic,
nonlinear dynamics. If stochastic influences are partly
or wholly responsible for the aperiodicity of the
observed oscillations, then the underlying system, like
the noise-perturbed Van der Pol oscillator that we pro-
posed as a surrogate, might well be periodic in the
absence of the random forcing2.
This outcome should be considered along with the

shape of the DVS plots. The latter showed conclusively
that the data portrayed a nonlinear system. In view of
the sigmoidal shape of the tube law relating transmural
pressure to cross-sectional area (a relation strictly valid
only for an infinitely long tube) for a collapsible tube,
this is perhaps unsurprising. Of greater interest was the
finding that the ability to predict the future course of
the data on small scales was affected by noise, albeit of
small amplitude. The data cannot therefore be dis-
tinguished from those which could be produced by a
good surrogate which was perturbed from periodicity
only by such noise. We give an example of a plausible
surrogate based on the Van der Pol oscillator, which
has itself been proposed in the past as a black-box
(nonfluid-mechanically based) model of a collapsible
tube. There is thus no basis on which to maintain that
the recorded data are a manifestation of chaotic
2 Aperiodicity can also arise in theory through the addition of

noninteracting oscillators of incommensurate period, but this is not a

realistic model of the physical system here.
dynamics. Despite the large number of intriguing beha-
viours noted herein and in past papers of Bertram and
colleagues suggestive of deterministic aperiodicity, it is
not necessary to postulate a deterministic mechanism
behind the data examined here, and so this unnecessary
hypothesis should be rejected.
This conclusion is somewhat surprising, in that the

dynamical preconditions for chaotic behaviour are
clearly satisfied in a collapsible tube. We cannot say
that collapsible tubes are incapable of chaotic dynam-
ics, but we do say that the data on the subject thus far
do not verify the notion. The great majority of investi-
gations of collapsible-tube oscillations have found only
periodicity; indeed a recent study of a thinner-walled
tube in our laboratory, with all conditions similar to
those used previously except tube thickness [4], found
large numbers of qualitatively distinct periodic oscil-
lation waveforms but no aperiodic oscillation. This is
particularly notable in that the prime candidate for the
source of stochastic forcing in the thick-walled collaps-
ible tube considered here is the turbulent flow through
the tube, at Reynolds numbers around 100 times the
flow-rate in ml/s. The flow-rates through the thin-wal-
led tube reached Reynolds numbers in excess of 30,000,
but without provoking significant aperiodicity. Since
investigations elsewhere have likewise concentrated on
relatively thin-walled tubes, and have not found aper-
iodicity, it must be presumed that thick-walled tubes
are pre-disposed to aperiodic behaviour. This may
relate to the somewhat higher thresholds of flow-rate
and negative transmural pressure that are needed to
and S vs. ln t for the selected radial-basis-function model (m¼ 3, p¼ 18), and the six
Fig. 10. The plots of S vs. t th-order-polynomial nonpara-

metric model, both fitted to the return-map data of Fig. 4. The polynomial model is shown in panels a and b; the radial-basis-function model is

shown in panels c and d.
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induce oscillations in such a tube. It may also relate to
the extreme changes in compliance which are found for
such a thick-walled silicone-rubber tube as it moves
from distension to first buckling and to first opposite-
wall contact [41]. In contrast, thinner silicone-rubber
tubes, and latex ones, seem to display a more progress-
ive collapse behaviour. This idea is reinforced by con-
sideration of the tapered-thickness tube investigated by
Bertram and Chen [42], which at the upstream end had
the same thick wall as the uniform tubes in which the
aperiodic oscillations were observed. Collapse was pro-
gressive at every cross-section of the tapered tube,
because of the greater stiffness just upstream, and again
only periodic oscillations were observed (excluding
modes specific to such tapered tubes).
The other intriguing aspect of the outcomes of this

investigation is the extent to which they reinforce the
apparent similarity between the experimental fluid-
dynamic system and the lumped–parameter model of
Bertram and Pedley [15]. In the world of collapsible-
tube-flow models, this model is considered thoroughly
obsolete relative to the more detailed models that have
followed, which have allowed the continuous specifi-
cation of variables in one, two or even three spatial
dimensions. Yet the experimental data available so far
seem to follow two important predictions [13,18] stem-
ming from that model: (1) that despite strong non-
linearity and at least three degrees of freedom, chaotic
oscillation is impossible while the upstream pressure
head is steady, and (2) that chaotic behaviour ensues
(as it does—see Bertram and She [17]) once the
upstream head is itself made pulsatile at a frequency
that competes with the natural frequency of self-excited
oscillation. The computational difficulty associated
with integration forward in time of most if not all of
the spatially distributed models has so far inhibited the
production of equally forthright predictions for experi-
mental test. We can therefore conclude that this reap-
praisal of what had earlier seemed to be chaotic
oscillation of flow through a collapsible tube with
steady driving head brings the experimental and theor-
etical sides of this subject into a happy correspondence
for the time being.
Finally, the outcome of this investigation shows

clearly the need for great care in the analysis of aperi-
odic data. While we are not the first to make this point,
the results shown here, taken together with those of
Bertram et al. [2] and Bertram [10], demonstrate how a
system can exhibit behaviour that predisposes to the
assumption of chaos. From there, it is a short step to
being all too easily satisfied by the outcomes of incon-
clusive or ambiguous tests that chaos has indeed been
found. In this case the data emanate from an experi-
mental system, but the problem can equally arise in the
context of numerical modelling, where it is com-
pounded by the possibility of the physics behind the
model equations being changed artefactually in the
numerical realization. We advocate a very high thresh-
old of suspicion, and rigorous testing along the lines
reported here, before acceptance of aperiodicity as
chaos.
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