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Cell fate decisions are regulated by the coordinated activation of signalling pathways such as the
extracellular signal-regulated kinase (ERK) cascade, but contributions of individual kinase
isoforms are mostly unknown. By combining quantitative data from erythropoietin-induced
pathway activation in primary erythroid progenitor (colony-forming unit erythroid stage, CFU-E)
cells with mathematical modelling, we predicted and experimentally confirmed a distributive ERK
phosphorylation mechanism in CFU-E cells. Model analysis showed bow-tie-shaped signal
processing and inherently transient signalling for cytokine-induced ERK signalling. Sensitivity
analysis predicted that, through a feedback-mediated process, increasing one ERK isoform reduces
activation of the other isoform, which was verified by protein over-expression. We calculated ERK
activation for biochemically not addressable but physiologically relevant ligand concentrations
showing that double-phosphorylated ERK1 attenuates proliferation beyond a certain activation
level, whereas activated ERK2 enhances proliferation with saturation kinetics. Thus, we provide a
quantitative link between earlier unobservable signalling dynamics and cell fate decisions.
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Introduction

Cell proliferation, differentiation, and survival are controlled
by the time, duration, and amplitude of signalling network
activation, a paradigm of which is the extracellular signal-
regulated kinase (ERK) signalling cascade (Chang and Karin,
2001). This three-tiered kinase array (Raf, MEK1/2, and ERK1/2)
transduces signals from cell surface receptors such as receptor
tyrosine kinases (RTKs) and cytokine receptors. Despite the
wealth of knowledge regarding the components involved, their
particular contribution to controlling dynamic properties of
the pathway and links to specific biological responses are still
enigmatic.

Experimental analysis is complicated by the existence of
multiple isoforms at each level of the mammalian cascade.
Two highly related isoforms, MEK1/2 and ERK1/2, respec-
tively, act similarly in most experimental settings suggesting
that they are functionally redundant (Kolch, 2000). However,

recent results indicate that isoforms may have different
functions. Although MEK1 (Giroux et al, 1999) and ERK2
(Saba-El-Leil et al, 2003) knockout mice are embryonic lethal,
MEK2 (Belanger et al, 2003) and ERK1 (Nekrasova et al, 2005)
knockout mice are viable. The mechanisms underlying these
differences are not understood.

Signal transmission through this pathway involves activa-
tion by dual phosphorylation of MEK and ERK, respectively.
This process may proceed by a processive or distributive
mechanism. In a processive mechanism a single molecule of
MEK binds ERK, catalyses phosphorylation of both threonine
and tyrosine of the conserved TEY motif in the ERK activation
loop, and subsequently dissociates. The processive mechan-
ism implies that there is one major and rate-limiting event—
forming of the complex—followed by relatively fast phosphor-
ylation events (Burack and Sturgill, 1997). A processive
mechanism is more efficient in fully activating ERK with only
one association reaction with MEK and thereby shortening the
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time lag for activation to permit rapid signalling. On the
other hand, in a distributive mechanism, MEK binds ERK,
phosphorylates one residue, and then dissociates. Thus,
each phosphorylation step requires a separate binding event
between kinase and substrate (Patwardhan and Miller, 2007).
In a distributive mechanism the concentration of active MEK
is more important for the rate of ERK activation providing
(i) greater sensitivity to small changes in the concentration of
active MEK, which results in more efficient signal amplifica-
tion; and (ii) a kinetic proofreading mechanism by which
the necessity for a dual binding increases the specificity of
the reaction (Ubersax and Ferrell, 2007). In vitro evidence
indicated that ERK phosphorylation proceeds in a distributive
manner (Burack and Sturgill, 1997), but in vivo scaffolding
proteins could pre-assemble complexes facilitating processive
ERK activation (Levchenko et al, 2000).

To examine the dynamic properties of ERK signalling,
several kinetic simulation models for RTK-mediated activation
have been developed (Orton et al, 2005). These models
propose mechanisms to explain the diverse responses of the
phaeochromocytoma cell line PC12 to EGF and NGF stimula-
tion (Sasagawa et al, 2005), ultrasensitivity (Huang and
Ferrell, 1996), and the different effects of kinase and
phosphatase inhibition (Heinrich et al, 2002; Hornberg et al,
2005b).

In contrast to RTKs that elicit strong and nearly complete
phosphorylation of ERK, cytokine receptors that have a major
role in the haematopoietic system induce only weak phos-
phorylation of ERK suggesting major differences in system
properties. The ERK pathway induced by cytokines such as
erythropoietin (Epo) has been shown to have important
functions in cell proliferation and the prevention of apoptosis
(Chang and Karin, 2001). The cognate receptor, the erythro-
poietin receptor (EpoR), is the key regulator of red blood cell
formation (Wu et al, 1995). The unliganded EpoR exists as a
preformed homodimer at the cell surface (Livnah et al, 1999)
pre-associated with its cognate kinase JAK2 (Huang et al,
2001). Different from the interleukin-6 receptor (gp130) that
forms a stable complex with JAK1 (Giese et al, 2003;
Behrmann et al, 2004) and therefore is considered RTK-like,
the EpoR and JAK2 form a dynamic complex with rapid
intermolecular exchange (Blake et al, 2002).

Binding of Epo induces a conformational change that
activates JAK2 leading to the phosphorylation of tyrosine
residues in JAK2 and in the cytoplasmic tail of the EpoR that
act as docking sites for Src-homology 2 (SH2) domain-
containing proteins (Richmond et al, 2005). A major mediator
of termination of signalling through the EpoR is tyrosine
phosphatase SHP1 that is recruited to the phosphorylated
receptor and dephosphorylates JAK2 (Klingmüller et al, 1995).

So far, the majority of the data used for modelling has been
generated using tumour-derived cell lines that are genetically
unstable and harbour major alterations in signalling networks.
One of the most frequently altered signalling pathways in
tumour cells is the ERK signalling cascade (Bos, 1989).
Therefore, to identify dynamic properties of the pathway
regulating cell fate decisions it is important to examine
pathway behaviour in primary cells. Reliable data generation
for dynamic pathway modelling requires standardisation of
preparation as well as cultivation of primary cells (Schilling

et al, 2008). To monitor the dynamics of pathway activation,
time-resolved data can be established by quantitative
immunoblotting (Schilling et al, 2005a), but for accurate
quantification of the ratio of mono- versus double-phosphory-
lated ERK1/ERK2 advancements in quantitative mass
spectrometry would be desired.

Here, we present the first data-based mathematical model of
a cytokine receptor-activated ERK signalling network in the
context of primary cells. We show a distributive mode of ERK
activation facilitating strong signal amplification and inher-
ently short signal duration properties because of negative
feedback regulation. The model enables us to identify the
parameters that control signalling behaviour and to validate
the results by over-expression of signalling components in
primary cells. We calculate ERK activation for biochemically
not addressable Epo concentrations and quantitatively link
these results to proliferation of colony-forming unit erythroid
stage (CFU-E) cells, showing isoform-specific and dose-
dependent cell fate decision responses.

Results

A data-based mathematical model of cytokine
receptor-mediated ERK signalling

We developed a mathematical mass action model of the Epo-
induced ERK signalling network (Figure 1A; Supplementary
Figure 1). Our model is divided into a submodule describing
events at the plasma membrane and two alternative sub-
modules representing processive or distributive phosphoryla-
tion of the TEY motif in the activation loop of ERK by MEK.
The mathematical models are depicted as process diagrams
(Kitano et al, 2005), showing mass action, delay, and
enzymatic reactions without considering transient complex
formations. To capture events at the plasma membrane a
dynamic complex model (Figure 1A; Supplementary Figure
4A) was developed assuming constant Epo concentration as
input and describing activation of JAK2 in dependence of
ligand binding to the EpoR with subsequent receptor
phosphorylation. Ligand-dependent downmodulation, for
example through receptor endocytosis, as well as depho-
sphorylation were summarised in the dynamic complex model
by describing SHP1-mediated dephosphorylation of the
receptor-associated kinase and the receptor with a time delay.
We used the linear chain trick (MacDonald, 1976) to model a
soft delay with a standard deviation of 33% (Maiwald and
Timmer, 2008). To represent the experimentally observed
transient activation, it was necessary to include a time delay
because an immediate dephosphorylation mechanism without
delay would result in a new steady state. Furthermore, the
delay steps reflect the sequential dephosphorylation of the
EpoR and JAK2 at multiple phosphorylation sites. Immuno-
precipitation studies showed that only a small fraction of
intercellular JAK2 and SHP1 are associated (Wu et al, 2000).
This suggested a rapid on-off binding rate of SHP1 that allows
for flexible fine-tuning of SHP1 activity. In addition, as a
simplified alternative to represent receptor activation and
deactivation, a stable complex model (Supplementary Figure
4B) and a stable complex and subcompartment model
(Supplementary Figure 4C) were tested assuming stable
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complex formation of the receptor and JAK2 and unimolecular
conversion to a desensitised state.

Ras activation was modelled by treating SOS and its adaptor
proteins as a single entity that is recruited to the membrane by
phosphorylated EpoR. Ras and Raf activation is summarised as
a single step from SOS to Raf. For subsequent ERK activation, a
single-step processive model and a two-step distributive model

were compared considering both MEK1/2 and ERK1/2
isoforms. Isoform-specific parameters were used for substrate
phosphorylation, whereas phosphatases were assumed to
remain constant in the analysed timeframe and not discrimi-
nating between the two ERK isoforms. Several forms of
negative feedback have been proposed, including inhibitory
phosphorylation of SOS (Buday et al, 1995). In line with results

Figure 1 Mathematical modelling of the erythropoietin-induced ERK signalling network. (A) Process diagram of the dynamic signalling network model consisting of
reactions (arrows) with enzymatic, mass action, or delay kinetics. Round-headed arrows indicate enzymes catalysing the particular reaction. Erythropoietin (Epo) is used
as input function of the system. Binding of Epo to its receptor (EpoR) leads to a conformational change in the receptor, which results in phosphorylation of JAK2. Grey
shading indicates components of biological complexes that were not directly represented in the model. ERK activation is modelled using a processive or distributive
mechanism, the connection to the submodule describing events at the plasma membrane indicated by a question mark. (B) Trajectories of the fitted model variables for
processive (dashed line) or distributive ERK activation (solid line). Experimental data are depicted as open circles. Source data is available for this figure at http://
www.nature.com/msb.
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obtained with related cytokine receptors, for example the
growth hormone receptor (Vanderkuur et al, 1997), the main
negative feedback loop activated by the EpoR was assumed to
be ERK-mediated inhibitory phosphorylation of SOS (Supple-
mentary Figure 2). Thus, a negative feedback from ERK
resulting in phosphorylation and displacement of SOS from the
membrane and dephosphorylation by a constant phosphatase
was incorporated.

To calibrate the model and estimate kinetic parameters
densely sampled time-resolved data were acquired from
primary murine erythroid progenitor (CFU-E) cells continu-
ously stimulated with Epo (Figure 1B). The amount of
phosphorylated and total EpoR, JAK2, MEK2, MEK1, ERK1,
ERK2, and SOS in these cells were determined by quantitative
immunoblotting (Supplementary Figure 2), normalised using
calibrator or normaliser proteins and merged as described
earlier (Schilling et al, 2005a). The specificity of the polyclonal
antibodies to monitor double-phosphorylated MEK and
double-phosphorylated ERK was confirmed by using residue-
specific monoclonal antibodies (Supplementary Figure 3).

Total protein levels remained constant during the time
investigated, thus justifying application of mass conservation
in the model. As for phosphorylated proteins only relative and
not absolute amounts could be determined, scaling factors
were included in the observation function for each species. As
the sum of mono- and double-phosphorylated ERK could be
directly determined by analysing the fraction with retarded
migration in the SDS–polyacrylamide gel, constraints were
introduced to define the maximum amount of the sum of
mono- and double-phosphorylated ERK as 30% of total ERK.
The number of EpoR on the cell surface was determined by a
saturation-binding assay with [125I]-labelled Epo.

The parameters were estimated using the MATLABs

toolbox PottersWheel (Maiwald and Timmer, 2008) by a
trust-region optimisation approach, minimising w2, the sum of
weighted and squared residuals between our measurements
and the model trajectory. Standard deviations of the measured
data were estimated with a smoothing spline approach
(similar to Rice, 1984).

To decide which receptor model is most suited for our
studies, we estimated parameters for the three receptor models
connected to the distributive ERK module using 1000 fits to
experimental data (Figure 1B) with random initial parameter
guesses and analysed the trajectories of pJAK2 and pEpoR for
the best fit (Supplementary Figure 4). The dynamic complex
model and the stable complex and subcompartment model
were sufficient in describing the data, with the dynamic
complex model having the lowest w2-value and being ranked
best by the Akaike information criterion (AIC). To examine the
ability of the two models to predict signalling responses for
higher and lower Epo concentrations, model simulations were
compared with experimental data obtained from CFU-E cells
stimulated with Epo concentrations ranging from 0.1 to
1000 U/ml, analysing the phosphorylation of JAK2 by quanti-
tative immunoblotting (Supplementary Figure 5A). Again the
dynamic complex model was in line with the experimental data
(Supplementary Figure 5C), whereas the stable complex and
subcompartment model failed to describe the experimental
data (Po0.05 based on the w2 distribution). Therefore, we used
the dynamic complex model for subsequent analyses.

We next compared the goodness-of-fit to the experimental
data using the model describing a processive versus a
distributive mechanism for ERK phosphorylation after
parameter estimation. The w2-value for the distributive ERK
activation model was significantly lower than the w2-value for
the processive ERK activation model and a log-likelihood-ratio
test showed that the distributive model describes the data best
with a P-value o10�6 (Figure 1B). Furthermore, we calculated
an AIC of 679.1 and 878.7 for the distributive and the
processive model, respectively. By using enzymatic reactions
with the reaction rate proportional to the product of substrate
and enzyme concentration, we assume in our modelling
approach that all enzymes are far from being saturated by their
substrate. To verify that this assumption does not influence our
results, we created additional models by adding complex
formation to the phosphorylation reactions of MEK and ERK
(Supplementary Figure 6) and show that saturation of the
kinases does not explain the signalling behaviour.

As the processive model cannot explain our quantitative
data, the hypothesis ‘can both MEK and ERK phosphorylation
be described by a processive mechanism’ is rejected. Detailed
analysis of the determined kinetic rate constants (Supplemen-
tary Figure 7B) showed that MEK activation in vivo is catalysed
by a processive mechanism whereby the second phosphoryla-
tion occurs much faster than the first, whereas ERK activation
uses a distributive mechanism in which both phosphoryla-
tions take place at similar rates. As a distributive mechanism
with the first rate much smaller than the second would mimic a
processive mechanism, analysis of the parameters showed
that MEK phosphorylation can be regarded as a processive
mechanism modelled with a slow first and a fast second step,
whereas this does not apply to the ERK phosphorylation.
These results obtained by mathematical modelling of MEK and
ERK phosphorylation in primary CFU-E cells are in line with
earlier described in vitro studies that suggest that MEK
activation is processive (Alessi et al, 1994), whereas ERK
phosphorylation is distributive (Burack and Sturgill, 1997).
In vivo, scaffolding proteins could convert an underlying
distributive mechanism into processive phosphorylation of
ERK. However, our results indicate that in primary cells ERK
phosphorylation is distributive.

Validation of the model-predicted distributive
mechanism for ERK phosphorylation

To verify the ERK phosphorylation mechanism indicated by
the model, we calculated the theoretical fraction of non-,
mono-, and double-phosphorylated ERK1 and ERK2 predicted
for a processive or distributive mechanism of ERK phosphor-
ylation (Figure 2A). These calculations predicted that for
processive ERK phosphorylation only double-phosphorylated
ERK1 and ERK2 should be detectable, representing approxi-
mately 30% of the total ERK1 and ERK2 pool at maximal
activation of the pathway, as defined by the model constraints.
On the other hand, distributive ERK phosphorylation would
results in the presence of mono- and double-phosphorylated
ERK1 and ERK2, with only 10% of total ERK being double
phosphorylated.

To experimentally determine the fraction of mono- and
double-phosphorylated ERK in CFU-E cells at maximum
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stimulation, we established a label-free quantitative mass
spectrometric (MS) approach. In ERK1 and ERK2, the two
regulatory phosphorylation sites are located in a single tryptic
peptide that differs between ERK1 and ERK2 by two homo-
logous amino acid exchanges and therefore can be distin-
guished by MS analysis. To establish a strategy to reliably
detect phosphorylation at the two closely adjacent sites we
examined synthetic ERK phosphopeptides by MS in nano-
electrospray ionisation (ESI) mode. First, synthetic ERK
phosphopeptides were analysed by MS, reliably identifying

non-phosphorylated (-TEY-), mono-phosphorylated on Thr
(-pTEY-) or Tyr (-TEpY-), and double-phosphorylated (-pTEpY-)
peptides (Supplementary Figures 8 and 9A). Second, we used
ultra-performance liquid chromatography (UPLC) of these
synthetic reference peptides to determine the elution order for
the ERK tryptic activation loop peptides (Supplementary
Figure 9B). From this analysis we derived correction factors
for converting ion intensities into relative protein concentra-
tions. The correction factors compensate for differences in
the individual recoveries of the non-, mono-, and double-

Figure 2 Mass spectrometric validation of theoretically predicted distributive ERK activation. (A) Predicted fractions of non-phosphorylated (light grey), mono-
phosphorylated (grey), and double-phosphorylated (dark grey) ERK1 and ERK2 are compared for the processive and distributive ERK activation model. Shaded areas
indicate standard deviations of the predictions. (B) UPLC-MS analysis of ERK1 and ERK2 phosphorylation status in CFU-E cells before and after 7-min stimulation with
50 U/ml Epo. The extracted ion chromatograms for the [Mþ 3H]3þ ions of the non-, mono-, and double-phosphorylated tryptic peptides are shown as indicated.
(C) Molar abundances of the non-, mono-, and double-phosphorylated peptide species derived from ERK1 and ERK2 before and after stimulation with Epo determined
by UPLC-ESI-MS. Source data is available for this figure at http://www.nature.com/msb.
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phosphopeptides by the UPLC separation and for differences in
ionisation efficiency during ESI (Supplementary Figure 9C).
Thus, we were able to discriminate non-, mono-, and double-
phosphorylated ERK1 and ERK2 in a reliable and quantitative
manner. By our quantitative MS analysis, we detected both
mono- and double-phosphopeptides for ERK1 and ERK2 on
Epo stimulation (Figure 2B). The mono-phosphorylated
peptides detected were modified at Tyr, in line with the finding
that Tyr is phosphorylated before Thr (Ferrell and Bhatt, 1997).
In CFU-E cells more ERK2 than ERK1 is observed, and
approximately 30% of total ERK (Supplementary Table S1) is
phosphorylated on maximal Epo stimulation confirming that
cytokine receptors are weak activators of ERK signalling. Both
mono- and double-phosphorylated ERK are contained in the
band with retarded migration in SDS–polyacrylamide gel
observed on stimulation of the pathway. The mono-phos-
phorylated form is present in excess with only approximately
one-third representing the double-phosphorylated form. These
experimentally observed ratios (Figure 2C) correspond
directly to the theoretical values predicted by the model of
distributive ERK phosphorylation (Figure 2A). Furthermore,
earlier reports that the first dephosphorylation step of ERK by a
dual-specific phosphatase is on Tyr (Zhao and Zhang, 2001)
argue against a selective dephosphorylation of double-
phosphorylated ERK on Thr as an explanation for the
experimentally observed peptides mono-phosphorylated on
Tyr. We therefore could refine our model constraints, defining
the maximum amount of mono- and double-phosphorylated
ERK as 20 and 10% of total ERK, respectively. Thus, by
combining model prediction with label-free quantitative MS
analysis we show that in primary cells ERK phosphorylation
involves a distributive mechanism. Although distributive ERK
phosphorylation was shown earlier in vitro with recombinant
enzymes using constitutively active MEK (Burack and Sturgill,
1997), to our knowledge this is the first evidence that ERK
phosphorylation in mammalian cells also occurs through a
distributive mechanism, and that scaffolds that could mimic a
processive mechanism apparently do not have a major role in
primary erythroid progenitor cells.

Establishment of an identifiable ERK model

To evaluate possible further model improvements we tested
the necessity to include additional feedback mechanisms that
have been identified for the MAPK signalling pathway in other
systems (Kholodenko, 2007; Santos et al, 2007). Our model
contains the negative feedback from activated ERK to SOS that
leads to a disruption of the SOS complex at the cell membrane
and termination of Ras activation by SOS (Langlois et al,
1995). However, several positive and negative feedback loops
within the core kinase module (Raf, MEK, and ERK) triggered
by active MEK or ERK, respectively, were reported (Alessan-
drini et al, 1996; Eblen et al, 2004; Dougherty et al, 2005). To
evaluate the effects of these additional feedbacks, we system-
atically incorporated them into our model by considering
additional negative feedback (ppERK enhancing dephosphor-
ylation of ppMEK or pRaf; ppMEK enhancing dephosphoryla-
tion of pRaf) or positive feedback (ppERK enhancing
phosphorylation of MEK or Raf; ppMEK enhancing phosphor-
ylation of Raf). The w2-values of these six extended models

were compared statistically with the value of the original
model based on likelihood-ratio tests. The results (Supple-
mentary Table 2) showed that the inclusion of neither positive
nor negative feedbacks in the kinase module yielded a
significant improvement of the fitting result, and therefore
they were not included in our final ERK model.

To analyse system properties by using a mathematical model
it is important to identify the values of all relevant parameters.
Thus, we developed strategies to reduce our model to be
identifiable. Often, partially observed reaction-based dynamic
models such as our ERK model are not identifiable, that is
parameter values cannot be determined unambiguously.
Groups of parameters may exist that can compensate each
other resulting in the same goodness-of-fit and leading to
measurement-compliant multi-dimensional manifolds in the
parameter space (Hengl et al, 2007). Thus, we performed
iterative cycles of parameter estimation and detection of non-
identifiable, dependent parameters (Supplementary Figure
10). We identified nine groups of parameter doublets, triplets,
or quadruplets that were dependent (Supplementary Figure
11) and fixed subsets of the parameter groups. Ultimately, we
succeeded in identifying 21 parameters with a standard
deviation of 15% or less. These strategies enabled us to
generate fit trajectories that adequately represent the time
courses of the quantitative experimental data for the eight
measured observables. The w2-values are comparable to the
number of data points, indicating good agreement of the model
with the data. On the basis of a goodness-of-fit test relating the
w2-value to the w2-distribution with N¼236 degrees of freedom
given by the number of data points, we calculated a P-value
40.05 that our ERK model with 32 parameters is sufficient for
describing the quantitative experimental data.

Information processing through bow-tie structure

To identify mechanisms regulating information processing
in the ERK cascade, we analysed system properties of our
signalling network. ERK activation in response to Epo
stimulation is transient, as model trajectories (Supplementary
Figure 12A) and quantitative experimental data (Supplemen-
tary Figure 2) show rapid activation and a return to basal levels
after 30–40 min. Remarkably, activation and deactivation of
MEK and ERK follow a much sharper peak than phosphoryla-
tion and dephosphorylation at the receptor level. Similar
observations have been reported in a computational model of
EGF-induced ERK activation in HeLa cells (Schoeberl et al,
2002). Plotting the trajectories for the variables (Supplemen-
tary Figure 12A) indicates that this effect is caused by the
negative feedback of double-phosphorylated ERK to SOS,
leaving a very narrow time window for activation of Raf, that is
the first 10 min. On the other hand, receptor downmodulation
is delayed, requiring about 20–30 min. To investigate informa-
tion processing through the signalling cascade, we theoreti-
cally calculated signal amplification and attenuation for each
step (Supplementary Figure 12B) by plotting the model
trajectories for the number of activated molecules and
determining the amplitude of the curve. As expected, EpoR
activates the ERK pathway only weakly, leading to substantial
signal attenuation between EpoR and the membrane-asso-
ciated factors SOS and Raf. However, this weak signal is
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massively amplified by MEK and ERK. Although the total
protein concentrations of MEK and ERK only differ by a factor
of 3.5, the concentrations of activated proteins are increased
by a factor of 5000. In line with theoretical considerations
(Heinrich et al, 2002), strong signal amplification is observed
for activation of ERK signalling by a receptor that weakly
activates the pathway such as the EpoR. Thus, signal
processing in the Epo-triggered ERK pathway represents a
bow-tie architecture (Figure 3A). This phosphorylation bow
tie is shaped by signal attenuation and signal amplification
between membrane-associated and cytoplasmic kinases. The
phosphorylation bow tie resembles a regulatory bow tie, an
organisational theme that has been proposed to occur

commonly in biology based on theoretical considerations
(Csete and Doyle, 2004). One of the common features is that
the main source of fragility is the knot in the bow tie, therefore
indicating that activation of Ras by SOS and Raf by Ras
represents a sensitive step in the signalling cascade.

Identification of proteins controlling amplitude
and duration of ERK activation

To systematically identify proteins and reactions that control
ERK activation, we performed a sensitivity analysis. We
analysed the target quantities peak amplitude (maximum
activation), integrated response (area under the activation

Figure 3 Sensitivity analysis shows isoform repression by negative feedback and signal amplification. (A) Bow-tie architecture of the signalling network. Abundance of
activated molecules is shown in grey; standard deviations of the model predictions are indicated as dashed solid lines. (B) Control coefficients of the initial protein
concentrations for amplitude, integrated response, peak time, and duration of double-phosphorylated ERK1 and ERK2 were calculated. Positive control is indicated by
shades of red; negative control is shown by shades of blue, whereas green fields represent no control. (C) The impact of over-expressing ERK1 on the activation of
upstream molecules by the negative feedback. Elevated ERK1 levels enhance the negative feedback on membrane-associated SOS. The slight reduction in activation of
SOS and Raf (see insets) is propagated and amplified to MEK and ERK, thus reducing double-phosphorylated ERK2 levels.
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curve), peak time (time of maximum activation), and duration
(time until signal drops down to 10% of its maximum
activation) of double-phosphorylated ERK1 and ERK2 as
exemplified in Supplementary Figure 13A. We calculated
control coefficients for the kinetic rate constants of our model
(Supplementary Figure 13B). As can be shown by summation
theorems, the sum of all control coefficients for the kinetic
rates is equal to 0 for peak amplitude and to �1 for the other
quantities analysed (Peletier et al, 2003; Hornberg et al,
2005b). Positive control over the peak amplitude and
integrated response of double-phosphorylated ERK1 and
ERK2 were distributed among the parameters associated with
activation of SOS and Raf, whereas highest negative control
was associated with dephosphorylation of Raf. Dephosphor-
ylation of Raf and MEK was also the only parameters
significantly controlling peak time and duration of double-
phosphorylated ERK1 and ERK2, supporting the theory that
phosphatases have the strongest influence on duration of
signalling (Heinrich et al, 2002).

To calculate control coefficients for protein amounts, we
varied the initial concentrations of the signalling molecules in
our model (Figure 3B), which were determined experimentally
or by parameter estimation and are in physiologically mean-
ingful ranges and consistent with concentrations reported in the
literature (Fujioka et al, 2006). Initial concentrations of EpoR,
SOS, and Raf controlled the peak amplitude of double-
phosphorylated ERK1 and ERK2. Consistent with the different
time scales of the negative feedback acting on SOS and at the
receptor level, SHP1 levels and other receptor downregulating
events did not control these quantities. Our model indicated that
because of the strong negative feedback loop from ERK to SOS,
ERK signalling is terminated before downregulation of the EpoR
becomes apparent. Varying the initial concentrations of signal-
ling molecules in silico had a major impact on amplitude and
integrated response, but virtually no influence on peak time
and duration of ERK activation, indicating that the negative
feedbacks prevent sustained signalling. Interestingly, ERK1
exerted major positive control over the peak amplitude of
double-phosphorylated ERK1 and minor negative control over
double-phosphorylated ERK2, whereas the control coefficients
of ERK2 were reciprocal. To analyse the underlying cause for
this behaviour, we simulated the theoretical trajectories for the
activated pathway components for control cells and cells over-
expressing ERK1 (Figure 3C). When ERK1 is elevated, the
negative feedback of activated ERK to SOS slightly reduces SOS
activation. Consequently, activation of Raf and MEK is further
reduced, and the effect is intensified on signal amplification,
ultimately reducing ERK2 activation. As the phosphorylation
reactions were considered to happen very fast and we did not
consider enzyme–substrate complexes in the model, this is not
caused by competition for the substrate. Thus, the negative
feedback from ERK to SOS is responsible for reciprocal control
of phosphorylated ERK1 and ERK2.

Experimental validation of the model-predicted
reciprocal control of phosphorylated ERK1 and ERK2

To experimentally address that the two ERK isoforms
cross-regulate each other’s activation through a feedback

mechanism, we performed optimal experimental design using
our mathematical model. We determined at which time point
the largest difference in ERK phosphorylation could be
expected between over-expressing versus control cells. The
in silico investigations showed that, as only a minor fraction of
SOS is recruited to the membrane, a threefold increase in ERK1
or ERK2 is predicted to only result in an approximately 1%
increase in pSOS levels, which is below the detection limit of
quantitative immunoblotting with an average standard devia-
tion of about 20%. However, major differences are expected
for the phosphorylation patterns of ERK1 and ERK2, the most
informative time point being 7 min after stimulation. Thus, we
over-expressed ERK1 or ERK2 in CFU-E cells and analysed
total as well as phospho-levels of ERK by quantitative
immunoblotting. As shown in Figures 4A and B, a tenfold
increase in ERK1 and a threefold increase in ERK2 expression
were achieved. These over-expression levels were used for
model simulations to predict the effects on the time course of
double-phosphorylated ERK1 and ERK2 (Figure 4C, solid
lines). In line with the sensitivity analysis, raising the ERK1
concentration is predicted to increase the amplitude of double-
phosphorylated ERK1 but to reduce the amplitude of
double-phosphorylated ERK2. On the other hand, raising the
ERK2 concentration would increase the amplitude of double-
phosphorylated ERK2 but reduce the amplitude of double-
phosphorylated ERK1. The experimentally observed ERK
activation in response to Epo stimulation (Figure 4C, open
symbols) is in good agreement with the in silico predictions,
showing that over-expression of an ERK isoform reduces
activation of its counterpart and thus validating the predictive
power of our model.

Linking pathway activation to cell fate decisions

Next, we addressed correlation of the extent of ERK activation
as a function of initial protein concentrations as well as
different Epo levels and biological responses such as cellular
proliferation. We focused on the integrated response of double-
phosphorylated ERK1 and ERK2, that is the area under the
activation curve, rather than steady state or amplitude. Owing
to the strong negative feedbacks, phosphorylation levels at
steady state are indistinguishable for different initial protein
concentrations (compare late time points in Figure 4C). Cell
proliferation could also be linked to the peak amplitude of
ERK activation; however, as peak amplitude and integrated
response are highly correlated (compare Figure 3B), we
concentrated on the integrated response, which has been
linked to DNA synthesis earlier (Asthagiri et al, 2000).

To predict the integrated signalling response for different
Epo concentrations, we made use of the capacity of the model
to predict the sigmoidal dose–response curve experimentally
observed for the amplitude of JAK2 phosphorylation
(Figure 5A, solid line). Therefore, the model that was
calibrated as described earlier using experimental data
obtained from cells stimulated with 50 U/ml Epo (Figure 1B)
allowed us to calculate the integrated response of double-
phosphorylated ERK1 and ERK2 for different initial concentra-
tions of ERK1 and ERK2 and for Epo concentrations ranging
from 10�3 to 104 U/ml (Figure 5B). Low Epo concentrations are
biochemically not addressable, as ERK phosphorylation levels
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elicited by Epo concentrations lower than 0.1 U/ml are below
the detection limit of immunoblotting or MS analyses.
However, these values are of important physiological sig-
nificance as Epo plasma levels can vary between 1.5�10�3

and 10 U/ml in healthy persons (Jelkmann, 2004). Further-
more, the simulations showed that over-expression of ERK
isoforms affected primarily the saturation amplitude and
predicted that over-expression of double-phosphorylated
ERK1 increased the integrated response of ERK1 while
reducing the integrated response of double-phosphorylated
ERK2, and vice versa.

To analyse the effect of changes in protein concentrations on
Epo-dependent proliferation, we transduced CFU-E cells with
ERK1, ERK2, vector control, and AKT and measured Epo-
dependent proliferation at the cell population level by
thymidine incorporation (Figure 5C). Different Epo concentra-
tions resulted in a sigmoidal dose–response curve. However,
over-expression of ERK1 or ERK2 reduced the saturation
amplitude of proliferation and increased differentiation
(Supplementary Figure 14), with ERK1 having a stronger
effect. This suggests that ERK hyperactivation has a negative
impact on proliferation of CFU-E cells whereas apoptotic
responses were not altered (data not shown). To control for
general non-specific inhibition of cell proliferation because of
over-expression of signalling components in primary cells we
over-expressed AKT, another component of EpoR-mediated
signalling (Bouscary et al, 2003; Ghaffari et al, 2006) and could
show that proliferation was not affected (Figure 5C). We
showed in two ways that the differential effects of ERK1 and
ERK2 are highly significant: in a two-factorial analysis of
variance with the null hypothesis ‘over-expression of ERK1
and ERK2 has the same effect on proliferation’, the null
hypothesis is dismissed with a P-value of 2.3�10�9. Addi-
tionally, in a likelihood-ratio test with the null hypothesis ‘cells
over-expressing ERK1 and ERK2 have the same maximum
proliferation as determined by a four-parameter Hill regres-
sion’ the null hypothesis is dismissed with a P-value of
9.7�10�11. Both analyses show that over-expression of ERK1
and ERK2 has a distinct effect on Epo-dependent proliferation
of primary cells. Thus, we could show that the over-expression
of ERK2 and to an even larger extent the over-expression of
ERK1 inhibited cell proliferation. These results were unex-
pected, because by intuition one would rather expect an
increase in proliferation as a consequence of over-expression
of components of the MAP-kinase signalling cascade.

To link these effects on proliferation to the extent of pathway
activation described by our mathematical model, we statisti-
cally analysed the impact of the integrated response of double-
phosphorylated ERK1 and ERK2 on proliferation. We therefore
formulated a nonlinear regression model in which prolifera-
tion additively depended on a spline-estimated integrated

Figure 4 Prediction and validation of ERK signalling control by protein levels.
(A) Murine CFU-E cells retrovirally transduced with ERK1, ERK2, or vector
control were stimulated with Epo for 7 min or left untreated and subjected to
quantitative immunoblotting. (B) Total ERK1 and ERK2 levels in (A) were
quantified and over-expression levels compared to control were calculated. Error
bars represent standard deviations of six replicates. (C) The effect of elevated
concentrations of ERK1 and ERK2 was simulated in silico and trajectories
of double-phosphorylated ERK1 and ERK2 were plotted (solid lines). The
phosphorylation levels of ERK depicted in (A) were quantified and scaled to
the predicted values (open symbols). Error bars represent standard deviations of
three replicates. Source data is available for this figure at http://www.nature.
com/msb.
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response of ERK1 or ERK2. Thus, proliferation is considered as
a function of activated ERK1 and activated ERK2. To visualise
our result, we plotted the integrated response of ERK1 and
ERK2 (derived from Figure 5B) on the x- and y axes,
respectively, and depicted the proliferation rates predicted by
the nonlinear regression model by a heat map (Figure 6A). The
red circles correspond to the integrated response of double-
phosphorylated ERK1 and ERK2 for control CFU-E cells
stimulated with 0.001 (bottom left corner of the graph) to
50 U/ml Epo (middle of the graph). As proliferation levelled at
50 U/ml Epo, we assumed constant proliferation for higher
Epo doses in control cells. Additionally, the respective
integrated responses for CFU-E cells subjected to elevated

levels of ERK1 (light green triangles) or ERK2 (dark green
triangles) are indicated. The regression model accurately
represents our measured proliferation rates (shown in
Figure 5C); with the best predictive power close to the
measured data points. Extrapolating the contribution of the
ERK isoforms to proliferation (Figure 6B) predicted that
phosphorylated ERK1 supports proliferation up to a certain
level, after which high levels of activated ERK become
detrimental for proliferation. On the other hand, phosphory-
lated ERK2 stimulates proliferation with a saturation kinetics
response. Taken together these results suggest that ERK2
drives proliferation, whereas ERK1 prevents proliferation in
case of ERK hyperactivation.

Figure 5 Over-expression of ERK1 and ERK2 in CFU-E cells leads to reduced proliferation in an Epo-dependent and isoform-specific manner. (A) Phosphorylation
levels of JAK2 at 7 min after stimulation for Epo concentrations ranging from 0.1 to 1000 U/ml were simulated in silico (solid line). CFU-E cells were stimulated with the
indicated Epo concentrations for 7 min and phosphorylation levels (open circles) were determined by quantitative immunoblotting and scaled to the predicted values.
Error bars represent standard deviations of three biological replicates. The Epo concentration that was used for model calibration is indicated by a dashed vertical line.
(B) Integrated responses of double-phosphorylated ERK1 and ERK2 were calculated for different Epo concentrations for the original model as well as for models with
elevated ERK1 or ERK2 levels. Dashed vertical lines indicate the Epo concentration that was used for model calibration. (C) Retrovirally transduced CFU-E cells were
incubated with increasing Epo concentrations for 14 h and proliferation was measured by [3H]-thymidine incorporation. The Epo concentration that was used for model
calibration is indicated by a dashed vertical line. Error bars represent standard deviations of four replicates. Lines depict sigmoidal regression curves. Source data is
available for this figure at http://www.nature.com/msb.
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Discussion

By combining experimental analysis and mathematical mod-
elling, we show that ERK signalling contributes to cell fate
decisions in a dose-dependent and isoform-specific manner.
With our ERK model we were able to dissect the contributions
of activated ERK1 and ERK2, which provided us with a
predictable quantitative model for cellular proliferation. So far,
previous simulation models focused on ERK that is strongly
activated by RTKs in cell lines (Orton et al, 2005). Theoretical
calculations (Heinrich et al, 2002) predicted that signal
amplification is less pronounced if a pathway is strongly
activated. Cytokine receptors such as the EpoR are weak
activators of the ERK pathway, as we show by quantitative
mass spectrometry that only 10% of the ERK molecules are
converted to the double-phosphorylated, active form. In line
with the theoretical predictions (Heinrich et al, 2002), we

show that this facilitates strong signal amplification. Further-
more, we show inherently transient signalling by strong
feedback control.

A major challenge in mathematical modelling is the
discrepancy between the number of parameters and experi-
mentally measured data points, leading to remarkable varia-
tion in model parameters (Fujioka et al, 2006) and thus
preventing quantitative predictions. To address this issue, we
used recently developed methods for data normalisation and
integration (Schilling et al, 2005a, b) and improved identifia-
bility analysis (Hengl et al, 2007). Thereby, we could establish
a mathematical model with identifiable parameters quantita-
tively describing Epo-induced ERK activation and feedback-
mediated deactivation.

It has been suggested that under physiological conditions
only a minor pool of MEK and ERK is engaged by scaffolds
(Kortum and Lewis, 2004). Here, we show in primary

Figure 6 Cellular proliferation is controlled and confined by the integrated response of ERK1 and ERK2. (A) Integrated responses of double-phosphorylated ERK1
and ERK2 calculated in Figure 5B are depicted with symbols for control cells and cells over-expressing ERK1 or ERK2. The values correspond to CFU-E cells stimulated
with Epo concentrations ranging from 0.001 to 50 U/ml. Assumed constant proliferation for very high doses of Epo is depicted by grey circles. The data points
corresponding to the Epo concentration that was used for model calibration are indicated by dashed squares. Predicted proliferation by a nonlinear regression model is
shown by a blue to red colour map, based on the measured CFU-E proliferation for these Epo concentrations as shown in Figure 5C. (B) Positive and negative
contribution to average proliferation of double-phosphorylated ERK1 and ERK2 is depicted by a black line. Dashed lines indicate confidence intervals.

Cell fate decisions predicted by ERK modelling
M Schilling et al

& 2009 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2009 11



mammalian cells that ERK activation proceeds through a
distributive, two-collision mechanism that appears not to be
affected by scaffolding proteins. Therefore, although they may
have important roles in determining particular responses by
reducing threshold properties (Levchenko et al, 2000),
scaffolds have limited impact on shaping the overall response
of the ERK population in primary cells. The distributive ERK
activation mechanism results in strong signal amplification
and directly provides a strategy to protect cellular proteins
against unspecific phosphorylation by kinetic proofreading.
Conceptually, this strong signal amplification to ERK resem-
bles observations reported for T-cell receptor (TCR) signalling
whereby the final biological response to antigen stimulation is
determined by integrating the TCR signal versus downstream
propagation (Stefanova et al, 2003). A mathematical model for
the signalling cascade downstream of TCR engagement
showed that this is caused by a digital positive feedback based
on ERK activation and a analogue negative feedback involving
SHP1 (Altan-Bonnet and Germain, 2005).

Our model showed a bow-tie architecture of the information
processing through the Epo-induced ERK pathway. Bow-tie
structures have been predicted to dominate complex mamma-
lian physiology, metabolism, and signalling (Csete and Doyle,
2004), but so far lacking solid experimental proof. Input from
EpoR on the plasma membrane converges into a small number
of activated Raf-1 molecules, which represent the knot in the
bow tie. From there, the signals fan out to produce a large
amount of activated ERK to elicit cell fate decisions. In a bow
tie, the major source of fragility is the knot, which in our
system is Raf. This is consistent with the dominant role of Raf
in oncogenic pathways (Hornberg et al, 2005a; Dhillon et al,
2007). As we treated the activation steps leading from SOS to
Ras-GTP to Raf as one step for simplification, the same
argument holds true for Ras, which is another oncogene
involved in various human cancers (Bos, 1989). The theore-
tical prediction (Nakabayashi and Sasaki, 2005) that the
optimal number of reaction steps should be similar to the order
of magnitude of the response amplification was experimen-
tally confirmed by our analysis of the stoichiometry of
activated and total protein levels. In our model, the number
of activated molecules is increased by three orders of
magnitude from Raf to ERK. As this module comprises three
kinases, the theoretical prediction is verified. By theoretical
sensitivity analysis based on the mathematical model, we
discovered that over-expression of an ERK isoform leads to
feedback-mediated inhibition of upstream components and
reduced activation of the other isoform. Rather than by
competition of ERK isoforms for the same upstream kinase,
that is, MEK, we show both theoretically and experimentally
that this effect is caused by the negative feedback from double-
phosphorylated ERK to SOS. Thus, we provide further
evidence that signalling systems are composed of multiple
feedback functions that generate the input–output behaviour
of a cell (Brandman and Meyer, 2008).

A major problem in connecting results derived from
signalling studies to physiological events such as cellular
responses is the different ligand concentrations applied for
these assays. For example, IFN-a reduces the amount of HCV
RNAs in a human hepatoblastoma cell line with a 50%
inhibitory concentration of about 5 to 10 IU/ml (Windisch

et al, 2005), which does not result in detectable STAT1
phosphorylation that is required for signalling. In our study,
the parameters of the model were established for Epo
concentrations that allow biochemical analysis of protein
phosphorylation states. By using the mathematical model we
could calculate the integrated response of ERK1 and ERK2 for
lower doses of Epo. We predicted the extent of ERK activation
for a wide variety of stimulus concentrations that cannot be
investigated experimentally. Thus, mathematical modelling
facilitates to bridge the large discrepancy of ligand concentra-
tions used in physiological (e.g. proliferation) and biochemical
(e.g. signalling) assays.

By linking the calculated integrated responses of ERK1 and
ERK2 to measured proliferation rates by a nonlinear regression
model, we derived a proliferation graph for every possible
combination of the integrated responses of double-phosphory-
lated ERK1 and ERK2. Proliferation of erythroid progenitor
cells is strictly dependent on Epo. Besides the ERK cascade,
other pathways such as the JAK2-STAT5 and the PI3K/AKT
pathway are also regulating proliferation and preventing
apoptosis in CFU-E cells. Although activation of JAK2-STAT5
signalling has been primarily associated with survival signal-
ling (Yoon and Watowich, 2003), it has been shown that for
differentiation PI3K/AKT signalling (Ghaffari et al, 2006) and
ERK signalling (Zhang and Lodish, 2007) are important.
Likewise, an essential role of PI3K/AKT (Bouscary et al,
2003) and ERK signalling (Sakamoto et al, 2000) for
proliferative responses has been shown. In our experiments,
we could show that though over-expression of AKT had no
effect on proliferation of erythroid progenitor cells, over-
expression of ERK1 and ERK2 had a highly reproducible
differential effect and reduced proliferation of erythroid
progenitor cells in a dose-dependent manner. On the contrary,
differentiation of erythroid progenitor cells (Supplementary
Figure 14) was enhanced with over-expression of ERK1, once
more having a stronger effect compared with over-expression
of ERK2. No effect was detected on survival signalling in
response to ERK1 and ERK2 over-expression in erythroid
progenitor cells. Thus, though it does not exclude the
contribution of other pathways, our studies show that the
level of ERK activation has a profound and isoform-specific
influence on proliferation of CFU-E cells.

The results showed that (i) as quantified by our dynamical
pathway model the integrated response of double-phosphory-
lated ERK1 and ERK2 is a function of Epo and (ii) that
proliferation of primary cells can be described by a generalised
additive model as a function of double-phosphorylated ERK1
and ERK2 (all other pathways being unchanged) using the
experimentally determined integrated response for double-
phosphorylated ERK1 and ERK2 as input and the correspond-
ing extent of proliferation as output. Both phosphorylation
levels and proliferation values are averages for cell popula-
tions. By linking the average integrated response with the
average proliferative response, we predicted the individual
contributions of ppERK1 and ppERK2 to proliferation for
integrated responses observed in wild-type cells, cells over-
expressing ERK1, and cells over-expressing ERK2. Recent
studies using siRNA-mediated knock down of ERK1 and ERK2
in cell lines (Lefloch et al, 2008) suggested that the overall
ERK activation level correlates with proliferation. By our
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mathematical modelling approach based on data derived from
primary cells, we could pinpoint the individual contribution of
each isoform to proliferation. We show that the proliferative
response curve supported by activated ERK1 is negative
beyond a certain activation level, but that activated ERK2
favours proliferation, even for maximum stimulation. Thus,
ERK2 promotes proliferation of CFU-E cells, whereas ERK1
limits it. This is consistent with distinct phenotypes of
knockout mice, with ERK2 knockout being lethal, whereas
ERK1 knockout mice are viable. As our nonlinear regression
model enables us to predict proliferation rates in areas that at
present cannot be analysed experimentally, it provides means
to guide future experiments. For example, the proliferation
values at the origin of the graph where the integrated response
of double-phosphorylated ERK is close to zero are in line with
genetic studies in mice. Raf-1 deficiency accelerates erythro-
blast differentiation that depletes the foetal liver of erythroid
precursors (Kolbus et al, 2002). Reconstitution with kinase-
defective Raf-1 also accelerates differentiation whereas
activated Raf-1 delays it (Rubiolo et al, 2006). These results
are captured in our model in which removal of Raf-1 sets ERK
responses to zero and favours differentiation instead of
proliferation.

In summary, our computational model gives new insights
into how Epo regulates cell fate decisions in the erythroid
lineage. We dissect the roles of the isoforms ERK1 and ERK2
and therefore provide an important basis for systems-oriented
drug design (Kitano, 2007), opening new possibilities for
interventions against cancer.

Materials and methods

Primary cell cultures and time-course experiments

Primary erythroid progenitor cells of the CFU-E were prepared from
foetal livers of 13.5-day-old Balb/c mouse embryos as described
earlier (Ketteler et al, 2002). For one experiment, timed matings were
performed with 60 male and 120 female Balb/c mice resulting in
approximately 20 pregnant mice. Of these approximately 70�106 CFU-
E cells were obtained sufficient for about 14 time points in a
quantitative immunoblotting experiment. Briefly, isolated foetal livers
were resuspended in ice-cold phosphate-buffered saline (PBS)
supplemented with 0.3% bovine serum albumin (BSA) and passed
through a 40 mm cell strainer (BD Biosciences), treated with Red Blood
Cell Lysing Buffer (Sigma-Aldrich) to remove erythrocytes and washed
by centrifugation through 0.3% BSA/PBS. For negative depletion,
foetal liver cells were incubated with rat antibodies against the
following surface markers: GR1, CD41, CD11b, CD14, CD45, CD45R/
B220, CD4, CD8 (all purchased from BD Pharmingen), Ter119 (gift
from Albrecht Müller, Julius-Maximilians-University, Würzburg,
Germany), and with the rat monoclonal antibody YBM/42 (gift from
Suzanne M Watt, University of Oxford, Oxford, UK) for 30 min at 41C.
Cells were washed three times in 0.3% BSA/PBS and were incubated
for 30 min at 41C with anti-rat antibody-coupled magnetic beads and
negative sorted with magnetic activated cell sorting (MACS) columns
according to the manufacturer’s instructions (Miltenyi Biotech). For
highly sampled time-course experiments, isolated CFU-E cells were
frozen in liquid nitrogen in 90% FCS/10% DMSO and several
isolations were pooled before cultivation. CFU-E cells were cultivated
for 16 h in Iscove’s Modified Dulbecco’s Medium (IMDM; Invitrogen),
30% foetal calf serum, and 50mM b-mercaptoethanol supplemented
with 0.5 U/ml Epo (Cilag-Jansen). CFU-E cells cultivated for 16 h were
starved in Panserin 401 (PAN Biotech) supplemented with 1 mg/ml
BSA (Sigma-Aldrich) for 1 h and were stimulated with 50 U/ml Epo
(Cilag-Jansen). For each time point, 8�106 cells were taken from the
pool of cells and lysed by adding 2� Nonidet P-40 lysis buffer, thereby

terminating the reaction. For over-expression experiments, retroviral
transduction (10–30% efficiency) was combined with MACS
of transduced cells resulting in cellular material for one or two
time points.

Quantitative immunoblotting and computational
data processing

For immunoprecipitation, 2 ng of GST-EpoR and 18 ng of GST-JAK2
were added as calibrator to each cytosolic lysate. The lysates were
incubated with anti-EpoR antibodies (Santa Cruz) and anti-JAK2
serum (Upstate Millipore). For cellular lysates, protein concentrations
were measured using BCA assay (Pierce). Immunoprecipitated
proteins and 50mg of cellular lysates were loaded in a randomised
manner on an SDS–polyacrylamide gel as described elsewhere
(Schilling et al, 2005b), separated by electrophoresis and transferred
to PVDF or nitrocellulose membranes. Proteins were immobilised with
Ponceau S solution (Sigma-Aldrich) followed by immunoblotting
analysis using the anti-phosphotyrosine monoclonal antibody 4G10
(Upstate Biotechnology), the anti-double-phosphorylated MEK1/2
antibody (Cell Signalling Technologies), or the anti-SOS-1 antibody
(Santa Cruz). Antibodies were removed by treating the blots with
b-mercaptoethanol and SDS as described earlier (Klingmüller et al,
1995). Reprobes were performed using anti-EpoR antibody (Santa
Cruz), anti-JAK2 serum (Upstate), anti-double-phosphorylated p44/42
MAPK, anti-p44/42 MAPK, and anti-MEK1/2 antibodies (all Cell
Signalling). For normalisation, antibodies against b-actin (Sigma-
Aldrich) and Clathrin HC (Santa Cruz) were used. The antibodies used
to confirm specificity of the polyclonal antibodies were monoclonal
antibodies that specifically only recognise the double-phosphorylated
MEK (Cell Signaling #9154, rabbit monoclonal antibody, clone 41G9)
or the double-phosphorylated ERK (Sigma M9692, mouse monoclonal
antibody, clone MAPK-YT) and do not cross-react with single-
phosphorylated species according to the manufacturers. Secondary
horseradish peroxidase-coupled antibodies (anti-rabbit HRP, anti-goat
HRP, protein A HRP) were purchased from Amersham Biosciences.
Immunoblots were incubated with ECL substrate (Amersham) for
1 min and exposed for 10 min on a LumiImager (Roche Diagnostics) or
with ECL Advance substrate (Amersham) for 2 min and exposed for
1 min on a LumiImager. Data were quantified using LumiAnalyst
software (Roche Diagnostics).

To analyse whether a possible cross-reaction with single-phos-
phorylated MEK/ERK would affect our results, we stimulated primary
CFU-E cells for different times and loaded the cellular lysates on two
gels in triplicates. The first blot was analysed with the polyclonal
antibodies that were used in this study, the second blot with
monoclonal antibodies that specifically only recognise double-
phosphorylated MEK or double-phosphorylated ERK and do not
cross-react with the single-phosphorylated species (Supplementary
Figure 3A). Quantification of the results showed that both types of
antibodies result in comparable dynamics (Supplementary Figure 3B)
and we show that a strong and linear correlation of the results is
obtained with the polyclonal antibodies and the monoclonal anti-
bodies (Supplementary Figure 3C).

Quantitative immunoblotting data were processed using GelInspec-
tor software (Schilling et al, 2005a). The following normalisers were
used: GST-JAK2 for pJAK2 and JAK2, GST-EpoR for pEpoR and EpoR,
b-actin for ppERK1, ppERK2, ERK1 and ERK2, and Clathrin HC for
pSOS and SOS. For first estimates, MATLAB csaps-splines were used
with a smoothness of 0.2 for pJAK2, JAK2, pEpoR, and EpoR; 0.5 for
ppERK1, ppERK2, ERK1, and ERK2, and 0.3 for pSOS and SOS. As the
values for pSOS had a rather high background, the lowest value of the
time course was subtracted from all data points. In case of biological
replicates (Figure 5A), the mean values of the respective replicates
were used as first estimate. To calculate phosphorylation levels after
over-expression of ERK1 and ERK2, we subtracted the lowest value of
the time course from each technical replicate (N¼3). The values of
double-phosphorylated ERK1 and ERK2 of each replicate were scaled
to the theoretically predicted number of phosphorylated molecules per
cell using the two highest values as reference followed by calculation
of mean values and standard deviations. Similarly, the measured
phosphorylation levels of JAK2 (mean value and standard deviations
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of three biological replicates) were background corrected and scaled to
the theoretically predicted number of phosphorylated molecules per
cell using the three highest values as reference.

Mathematical modelling, parameter estimation,
and simulations

The model was developed and calibrated using the Matlab toolbox
PottersWheel (Maiwald and Timmer, 2008). The linear chain trick
method (MacDonald 1976) was used to model a soft delay. In delay
differential equations a system variable depends on an earlier time
point, that is x(t)¼g(t�t). It was proven earlier (supplement of
Maiwald and Timmer, 2008) using Laplace transformations that the
delay can be approximated by setting x(t)¼xN(t) and determining xN(t)

by an additional set of reactions, referred to as linear chain:

.
x1 ¼ kgðtÞ � kx1
.
x2 ¼ kx1 � kx2

. . .

.
xN ¼ kxN�1 � kxN

Error bars for model calibration were estimated using a smoothing
spline approach. In highly sampled time-series experiments, the
standard deviation of a data point can be estimated either based on
repeated measurements for the same time point or by a sliding window
approach, using the information that the true signal is time continuous
and therefore ‘smooth’. The latter case was applied for the data
depicted in Figure 1B. The mean deviation between the measurements
y and an approximation of the true signal ŷ based on a smoothing
spline was determined as

ŝ2
i ¼

1

2h

Xh

i¼�h

ðyiþh � ŷiþhÞ2

The window size was set to 5, that is h¼2. As a spline algorithm, csaps
from the Matlab spline toolbox has been used with stiffness 0.05.
See Supplementary Figure 6B for estimated standard deviations.

Parameters were estimated in logarithmic parameter space,
based on a deterministic trust-region algorithm. For each fit up to
100 iterations were performed with a w2 tolerance of 10�7 and fit
parameters tolerance of 10�7. Using the best fit as starting value,
1000 fits were carried out, each time varying all parameters with a
disturbance strength s of 0.4 corresponding to pnew¼pold� 10(s� e),
with e being normally distributed with mean 0 and variance 1. Initial
values for EpoR, JAK2, MEK1, and MEK2 were fixed to the values
determined by saturation binding or quantitative immunoblotting
divided by 104. By analysing the fraction of shifted ERK1 and ERK2 on
the immunoblot, we calculated a maximum fraction of 30% being in
either the mono- or double-phosphorylated state. Thus, we included
the following constraints in the model: (pERK1þppERK1)max/
ERK1max¼0.3 and (pERK2þ ppERK2)max/ERK2max¼0.3. We deter-
mined by mass spectrometry that a maximum fraction of 20% is in the
mono- and 10% is in the double-phosphorylated state. We therefore
refined the constraints accordingly (Supplementary Figure 1).

The effect of enzyme saturation was analysed by establishing two
additional models by adding complex formation to the phosphoryla-
tion reactions of MEK and ERK as shown in Supplementary Figure 6A.
Parameters for these models were estimated using PottersWheel and
the best fit of each model was analysed (Supplementary Figure 6B).
The w2-value and the AIC were calculated and a log-likelihood-ratio
test was performed (Supplementary Figure 6C). As AIC favoured
the distributive model and the log-likelihood-ratio test rejected the
complex distributive model, we focused subsequent analyses on the
distributive model.

Model simulations of over-expressing ERK1 and ERK2 were
performed using PottersWheel by multiplying the initial values of
ERK1 and ERK2 by the determined over-expression levels and plotting
the dynamics of double-phosphorylated ERK1 and ERK2.

The mathematical model presented here will be made available
to the public on the BioModels Database (http://www.ebi.ac.uk/
biomodels).

Label-free quantitative mass spectrometry

The regulatory phosphorylation sites of ERK1 and ERK2 are located in
a single tryptic peptide of about 2 kDa in size. The corresponding
sequences of these peptides are IADPEHDHTGFLTEYVATR for ERK1
and VADPDHDHTGFLTEYVATR for ERK2 (phosphorylated residues
are underscored). The two peptides differ only by two homologous
amino acid exchanges (ERK1- ERK2; I-V and E-D) at and near
their N-terminus. As a result, the molecular weight of the ERK2 peptide
is reduced by 28 Da relative to that of the ERK1 peptide. The two
phosphorylated positions are T202/Y204 for ERK1 and T182/Y184 for
ERK2 (counted without the N-terminal Met residue). As a basis for the
safe identification of the in vivo phosphorylation status of ERK, four
synthetic tryptic ERK2 peptides were generated, representing the non-
phosphorylated species (-TEY-) and all possible phosphorylation
states (-TEpY-, -pTEY-, -pTEpY-). These peptides were investigated
with respect to their UPLC elution, collision-induced dissociation, and
relative ionisation efficiency. The MS/MS spectra for the phosphory-
lated peptides are shown in Supplementary Figures 8 and 9A.
According to the MS/MS spectra, all three phosphopeptides could be
reliably identified because of the clear sequence information covering
the phosphorylated region (Supplementary Figure 8A) and because of
reporter fragmentations for pT and pY, respectively (Supplementary
Figures 8B and 9A). The neutral loss of phosphoric acid is visible for
the pT-containing peptides (Supplementary Figure 8B upper and lower
panels), whereas it is absent for the pY-mono-phosphopeptide
(Supplementary Figure 8B, middle panel). The pY immonium ion is
visible for the pY-containing peptides (Supplementary Figure 9A,
middle and lower panel), whereas it is absent for the pT-mono-
phosphopeptide (Supplementary Figure 9A, upper panel). Using
UPLC-MS, detection of the differently phosphorylated forms is
facilitated because the ERK-derived tryptic phosphopeptides are
separated, including the two structural isomers of the mono-phospho-
sphorylated species (Supplementary Figure 9B). The elution order
observed for both the ERK1 and ERK2 tryptic peptides was -TEpY-,
-pTEpY-, -TEY-, -pTEY-.

Following these basic investigations using synthetic peptides, ERK
isolated from foetal mouse liver by a combination of immunopreci-
pitation and 1D gel electrophoresis was analysed by UPLC-MS.
Gel-isolated proteins were reduced in the gel, alkylated with
iodoacetamide, and digested with trypsin as recommended by the
manufacturer (Roche). Samples were prepared according to standard
protocols (Shevchenko et al, 2006) and citrate was added to a final
concentration of 50 mM (Winter et al, 2009). Analysis was performed
by UPLC (nanoAcquity, Waters) coupled to a Q-TOF-2 mass spectro-
meter (Waters). The chromatographic column used was of the type
nanoACQUITY UPLC BEH 130-C18, 1.7mm (particle size), 100mm
(i.d.) � 100 mm (length). Solvent A: water, 0.1% formic acid; B:
acetonitrile, 0.1% formic acid. No trap column was used. After
injection, 1% B was delivered for 24 min at a flow rate of 400 nl/min;
then a linear gradient from 1% B to 30% B in 30 min was started. Data
were evaluated by MassLynx 4.1 and MASCOT 2.2.

The results are displayed in Figure 2C, in which the data of ERK1
and ERK2 are combined so that the changes in the phosphorylation
status following stimulation are visualised. First, it was recognised that
mono-phosphorylation almost exclusively exists on tyrosine, as the
species carrying only the pT residue was undetectable. The second
finding was that after stimulation, single and double phosphorylation
increases both in ERK1 and ERK2. The third observed detail was that
the mono-phosphorylated species prevails over the double-phos-
phorylated species both before and after stimulation. Finally, the data
in Figure 2C show that before stimulation the non-phosphorylated
species prevail, whereas their abundances are reduced to about 70%
after stimulation. For the conversion of the relative ion intensities as
given in Figure 2B to relative molar abundances, correction factors are
required to compensate for the individual recoveries of the non-,
mono(pY)-, and double-phosphopeptides by the UPLC separation and
for an individual ionisation efficiency during ESI. The UPLC correction
factors were determined by recording the ion intensities of a mixture of
the non-, mono(pY)-, and double-phosphopeptide by nanoESI-MS and
by UPLC-MS separation. A set of the tryptic ERK2 peptides VADPDH
DHTGFLTEYVATR, VADPDHDHTGFLTEpYVATR, and VADPDHDHTGF
LpTEpYVATR were used. Two correction factors were determined,
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compensating the individual UPLC recovery and the individual ESI
efficiency, respectively. In each case, the signal intensity of the
phospho-species was normalised to that of the non-phosphorylated
analogue. The relative UPLC recovery was determined by comparing
the signal intensities of a roughly equimolar three-component mixture
measured by nanoESI-MS and by UPLC-MS. The relative ionisation
efficiencies of the three compounds were determined by analysing an
equimolar two-component mixture containing the mono- or double-
phosphorylated peptide and the non-phosphorylated analogue. The
correction factors were summarised into a combined correction factor
(see Supplementary Figure 9C), which was used to convert the
experimental data. The correction factor determined on the basis of
synthetic ERK2 peptides was also applied for correcting the ERK1 data,
as the two peptides differ only by two homologous exchanges (I- V
and E- D). In this way, a somewhat higher recovery for the two
phosphopeptides relative to the non-phosphorylated species was
observed. The corresponding relative ESI efficiencies were determined
by analysing an equimolar mixture of the non-phosphorylated peptide
with the corresponding single or double-phosphorylated analogue,
respectively. The ionisation efficiency of both phosphorylated species
was found to be in excess of the non-phosphorylated peptide. This
finding is in agreement with earlier observations on peptides carrying
several basic groups (Steen et al, 2005). In this way, combined
correction factors of 1.67 and 1.51 were obtained for the -TEpY- and -
pTEpY- peptide, respectively, normalised to the behaviour of the non-
phosphorylated analogue. Supplementary Table 1 summarises the
relative molar abundances of the differently phosphorylated species of
ERK1 and ERK2 as calculated from the experimental data using these
correction factors.

It would be useful to analyse the phosphorylation status of MEK by a
similar strategy, however, in primary erythroid progenitor cells only
about 1.5% of MEK is phosphorylated at maximum stimulation
(Supplementary Figure 12B), cf. with 5% in HeLa cells stimulated with
excess EGF (Fujioka et al, 2006). Unfortunately, this results in a
concentration that was below the detection limit of our quantitative
MS methods.

Non-identifiability analysis

Most models are non-identifiable, that is model parameters exist that
cannot be determined unambiguously. Often, non-identifiability
manifests itself in functionally related parameters (see linear relation-
ships, hyperbolas, and two-dimensional surfaces in Supplementary
Figure 11). However, sensitivity analysis is a local approach because
derivations are evaluated at a certain point in parameter space. Thus,
without prior knowledge, it can in principle not be determined
statistically at which point in parameter space sensitivity analysis has
to be performed. To deal with this problem, we took the following
approach: The model was fitted 1000 times to the experimental data.
Each fit yielded different estimates for the non-identifiable parameters.
Non-identifiabilities were detected by non-parametric bootstrap-based
identifiability testing with the mean optimal transformation approach
(Hengl et al, 2007), and sensitivies were calculated at the actual point
along the non-identifiability, here the linear relationships, the
hyperbolas, and the two-dimensional surfaces. As the derived system
variables are invariant to changes along the non-identifiabilities, the
results of the sensitivity analysis for identifiable parameters do not
depend on the values we chose for the non-identifiable parameters.
Another strategy would be to calculate derived parameters (e.g. the
ratio between two parameters that are linearly dependent). These
parameters are identifiable and can be used for sensitivity analysis.

Sensitivity analysis

Sensitivity analysis was used to investigate relative changes of derived
system quantities K as a result of relative changes in parameter values pi

SK
pi
¼ pi

K
� qK

qpi
ð1Þ

We analysed: peak amplitude (the concentration at the maximum);
integrated response (area under the curve from stimulation start to the

time when the curve drops to 10% of its maximum); peak time (time at
the maximum); and duration (distance between the time when the
curve first reaches 10% of its maximum and the time it drops to 10% of
its maximum). Hornberg et al (2005a) derived summation laws for
sensitivies of derived system quantities such as signal amplitude, signal
duration, and integrated response. The proofs for the summation laws
(Hornberg et al, 2005b) can be extended to show the existence of
summation laws for the system quantities investigated in our approach:

X

i

Speak amplitude
pi

¼ 0 ð2Þ

X

i

Sintegrated response
pi

¼ �1 ð3Þ

X

i

Speak time
pi

¼ �1 ð4Þ

X

i

Sduration
pi

¼ �1 ð5Þ

Plasmids and retroviral transduction

ERK1, ERK2, and AKT1 cDNAs were cloned into the retroviral
expression vector pMOWSnrMCS, which is a derivative of pMOWS
(Ketteler et al, 2002), in which the puromycin resistance gene was
replaced by the LNGFR cDNA (Miltenyi Biotech) that allows magnetic
bead selection of transduced cells. To generate retroviral expression
vectors, a multiple cloning site with the restriction sites BamHI, PacI,
PmlI, EcoRI, NdeI, and BclI was introduced into the BamHI EcoRI locus
of pMOWS (Ketteler et al, 2002). Furthermore, the puromycin
resistance cassette was replaced by HindIII AfeI digestion with
the LNGFR cDNA (Miltenyi Biotech), resulting in the vector
pMOWSnrMCS (vector control). The cDNA of ERK1 was cloned into
pMOWSnrMCS by digesting pGEX-ERK1 (Klingmüller et al, 1997) with
BamHI and EcoRI, resulting in pMOWSnr-ERK1 (ERK1). The cDNA of
ERK2 was cloned into pMOWSnrMCS by PCR amplification of
pcDNA3-HA-ERK2 (kind gift of John Blenis, Harvard Medical School,
Boston, MA) and digestion with BamHI and NdeI resulting in
pMOWSnr-ERK2 (ERK2). ERK cDNAs are of rat origin, with 100%
amino acid identity to mouse. The cDNA of murine AKT1 was cloned
into pMOWSnrMCS by PCR amplification of pCMV-AKT1 (kind gift of
Thomas F Franke, New York University School of Medicine, New York,
NY) and digestion with BamHI and EcoRI resulting in pMOWSnr-AKT1
(AKT). Retroviral expression vectors were transiently transfected into
Phoenix-eco cells using the calcium-phosphate method (Ketteler et al,
2002). Six hours after transfection of Phoenix cells, the medium was
changed to IMDM containing 50mM b-mercaptoethanol and 30%
foetal calf serum. Twenty-four hours after transfection, the virus-
containing supernatant was collected and filtered through a 0.45-mm
filter. For over-expression experiments, spin infection was performed
by adding 4.5 ml of supernatant containing 8mg/ml Polybrene (Sigma-
Aldrich) to 5�106 CFU-E cells in 500ml Panserin 401 (PAN Biotech)
and centrifuging for 2 h in a Heraeus centrifuge with 2500 r.p.m. at
room temperature. The cells were washed three times with Panserin
401 and seeded in Panserin 401 supplemented with 0.5 U/ml Epo and
cultured for 16 h. Positive selection was performed using MACSelect
LNGFR selection kit (Miltenyi Biotech) according to the manufac-
turer’s instructions.

Thymidine incorporation

IMDM/sct was prepared by supplementing IMDM (Invitrogen) with
15% foetal calf serum, 1% BSA (Sigma-Aldrich), 200mg/ml hHolo-
Transferrin, 10mg/ml insulin, 50 ng/ml rmSCF, 10 ng/ml rmIL-3, 10 ng/
ml rhIL-6 (all from R&D), and 10 U/ml Epo (Cilag-Jansen). Spin
infection was performed by adding 4.5 ml of supernatant containing
8 mg/ml Polybrene (Sigma-Aldrich) to cells isolated from three foetal
livers in 500ml IMDM/sct (PAN Biotech, Aidenbach, Germany) and
centrifuging for 2 h in a Heraeus centrifuge with 2500 r.p.m. at room
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temperature. The cells were seeded in IMDM/sct and cultured for 18 h.
CFU-E cells were sorted by negative selection as described above.
Positive selection was performed using MACSelect LNGFR selection kit
(Miltenyi Biotech, Bergisch-Gladbach, Germany) according to the
manufacturer’s instructions. 2�104 LNGFR-positive cells were culti-
vated in Panserin 401 supplemented with 0.001, 0.005, 0.01, 0.05, 0.1,
0.5, 1, 5, 10, or 50 U/ml Epo for 4 h. [3H]-thymidine was added and
cells were cultivated for 14 h. Cells were collected and the incorporated
radioactivity was measured using a scintillation counter. Regression
lines are calculated with a four-parameter Hill regression
(y ¼ y0 þ ðaxb=cb þ xb). As the logarithmic transformation is a
monotonic transformation, the sigmoidality of the curve is also true
for a linear axis.

FACS analysis of transduced erythroid progenitor
cells

For FACS analysis, transduced CFU-E cells cultivated for 24 h were
positive selected using MACSelect LNGFR selection kit (Miltenyi
Biotechy) according to the manufacturer’s instructions. LNGFR-
positive cells were cultivated in Panserin 401 for another 24 h. Cells
were stained with APC-conjugated anti-Ter119 antibody (eBioscience)
and a Biotin-conjugated anti-CD71 antibody (BD Pharmingen) in
combination with PerCP-conjugated streptavidin (BD Pharmingen).
For haemoglobin content, cells were permeabilised and stained with
an anti-haemoglobin a antibody (Santa Cruz) in combination with a
FITC-conjugated anti-goat secondary antibody (DakoCytomation).
Gated cells were analysed for haemoglobin a and CD71/Ter119 surface
marker expression by a FACSCalibur (BD Biosciences) and analysed
with CellQuest Software (BD Biosciences).

Link of ERK responses to erythroid progenitor
proliferation

Different input scenarios were simulated by changing the input
function of the model accordingly and calculating the integrated
response of double-phosphorylated ERK1 and ERK2. Similarly, the
initial values of ERK1 or ERK2 were multiplied threefold and integrated
responses were obtained. To link these integrated responses of double-
phosphorylated ERK1 and ERK2 to erythroid progenitor proliferation,
we used the following quasi-non-parametric, generalised additive
model:

thy � s ðir:ppERK1Þ þ s ðir:ppERK2Þ

thy denotes incorporated [3H]-thymidine (� 104 c.p.m.), ir.ppERK1
and ir.ppERK2 denote integrated response of double-phosphorylated
ERK1 and ERK2, respectively (min� 104 molecules/cell), and s
denotes a spline function that has to be estimated (Wood, 2003). The
model includes an offset that has to be estimated, too. We chose a thin-
plate regression spline. As both splines may only be estimated up to a
constant, an additional identifiability constraint—the offset of one of
the spline functions is set to zero—is imposed on the model before
fitting. The problem can then be formulated as a linear model, the
(basis) parameters are estimated by minimising least squares
penalised with the wiggliness of the curves. Statistical and graphical
analysis of the model was performed with R (R-project, http://www.
r-project.org).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (http://www.nature.com/msb).
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