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Abstract

Biochemical reactions can often be formulated mathematically as ordinary differential equations. In the
process of modeling, the main questions that arise are concerned with structural identifiability, parameter
estimation and practical identifiability. To clarify these questions and the methods how to solve them, we
analyze two different second order models for anaerobic waste water treatment processes using two data
sets obtained from different experimental setups. In both experiments only biogas production rate was
measured which complicates the analysis considerably. We show that proving structural identifiability of
the mathematical models with currently used methods fails. Therefore, we introduce a new, general method
based on the asymptotic behavior of the maximum likelihood estimator to show local structural identifi-
ability. For parameter estimation we use the multiple shooting approach which is described. Additionally
we show that the Hessian matrix approach to compute confidence intervals fails in our examples while a
method based on Monte Carlo Simulation works well. � 2002 Elsevier Science Inc. All rights reserved.

Keywords: Parameter estimation; Structural identifiability; Practical identifiability; Confidence intervals; Waste water

treatment processes

1. Introduction

Anaerobic waste water treatment processes are of interest for two main reasons: the ecological
effect, including depollution of higher organic loading, and the energetical effect because the final
product is methane. In recent years more and more complex mathematical models of anaerobic
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digestion were introduced involving many biochemical processes. Yet, due to the scarcity of
measured data, it is almost impossible to obtain reliable estimates of unknown dynamical pa-
rameters. Therefore either simpler, manageable models are needed or data acquisition has to be
improved which is difficult especially for microorganisms [1].

In this work we investigate the parameter identification problem in second order models applied
to two different experimental settings. These models describe the degradation of volatile fatty acids
as the most important step, since it is assumed to be a limiting stage in waste water purification [2].

Many investigations concerning Monod models are available in the literature [2–7], but only for
cases where substrate and/or microorganism concentrations are measurable. Yet in many ex-
perimental settings only biogas production rate data is available which complicates the parameter
identification. Therefore, to make sure that all parameters of the model can be estimated, a
structural identifiability analysis has to be carried out. After that, estimation of the parameters
using experimental data is necessary which is still a huge problem when only few dynamical
variables are observable and a priori information about the parameters and starting values is
hardly available. A reliable method to overcome these problems is the multiple shooting technique
[8] which we implemented in our investigations. We show that this algorithm is more stable than
previously used fitting techniques. Furthermore, we address the problem of practical identifiability
[3]. Since we are estimating parameters using measured data sets which are corrupted by obser-
vational noise, confidence intervals for the estimates have to be determined. We show that this can
be done reliably with a method based on Monte Carlo Simulation (MCS) [9].

The paper is organized as follows: In Section 2 we describe the biochemical background and
formulate the mathematical model. In Section 3 we summarize known results about structural
identifiability and present a new method to show local structural identifiability. In the next section
we deal with the problem of estimating parameters and starting values in non-linear ordinary
differential equations (ODE). In this paragraph we describe the multiple shooting method. Section
5 summarizes results about practical identifiability and confidence intervals. In Sections 6 and 7
we present results and conclusions from the two experimental setups we have analyzed.

2. Experiments and modeling of waste water treatment processes

In this study, we used two experimental data sets. The first data set and the experimental methods
used to obtain this data have been published previously [10]. The second data set is described in [11].
Here we briefly describe the experimental conditions: all experiments were conducted in a 5l au-
tomated-stirred fermenter. The working volume of the reactor was 2l. During all processes, the
digester was maintained at a temperature of 34:0� 0:5 �C, that is, the processes were mesophilic.
The monitoring of the methane reactor was conducted by a dedicated data acquisition system of
on-line sensors, which provide measurements of pH, temperature, rH and biogas flow rate.

The complexity of mathematical models of anaerobic digestion processes is evident from the
stoichiometry described in [12,13]. A complete mathematical treatment of the process would re-
quire the simultaneous solution of the mass balance equations for each individual substrate
and bacterial population along with the interphase mass transfer between the slurry and the
gas phases. Clearly, such a treatment is extremely complex, yielding equations with numerous
parameters. Therefore, simpler treatments have been developed to predict the steady state and
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dynamic behavior of digesters [4]. In our work we use simpler second order models and two dif-
ferent experimental data sets for batch processes from dairy farming waste waters. While for the
first experiment a simple Monod model without decay coefficient (b ¼ 0) is sufficient, the model
for the second experiment is more complex due to the observed substrate inhibition during the
process. We chose the non-competitive inhibition equation including the decay of methanogenic
bacteria.

The dynamical behavior of the system is described by

_XX ¼ ðlðSÞ � bÞX ;

_SS ¼ �k1lðSÞX ;
ð1Þ

with observation

y ¼ k2lðSÞX
and where either

lðSÞ ¼ lmS
ðks þ SÞ ðfirst modelÞ

or

lðSÞ ¼ lmS
ðks þ Sð1þ ks=kiÞ þ S2=kiÞ

ðsecond modelÞ:

Here S is the concentration of volatile fatty acids (mg/l), X is the concentration of total bacteria
(mg/l), y is the biogas production rate (l/day), lðSÞ is the specific growth rate of bacteria as a
function of S (1/day), k�1

1 is the yield coefficient for bacteria (mg organism/mg total biodegradable
organics), k2 is the yield coefficient with respect to gaseous output (l2/mg), b is the decay coefficient
for bacteria (1/day), ks is the saturation constant for bacteria (mg/l), lm is the maximum specific
growth rate for the bacteria (1/day), ki is the inhibition coefficient for the bacteria (mg/l).

In both models we assume the parameters lm and k2 as known from previous investigations
[10]. In this work lm was obtained under the assumption of no substrate inhibition so that it is
possible to use this value in both of our models. In addition, the starting value S(0) is known from
direct measurement. With help of a literature review [11] we are able to obtain boundary values
for all parameters and to use constrained optimization in our estimation.

3. Structural and local structural identifiability

There are several methods to show structural identifiability for a given ordinary differential
equation (ODE) model [14]. To analyze our models we first transformed them to simpler forms,
see Appendix A. After that we used the Taylor series expansion [15], implemented in MATHE-

MATICAMATICA, and the method of characteristic sets by Ritt [16] and Wu [17], implemented in MAPLE
[18], to investigate structural identifiability.

The idea of the Taylor series approach [15] is that the observed output yðtÞ and its successive
time derivatives can be evaluated in terms of the dynamic parameters p and variables z at time t0,
usually t0 ¼ 0, using the observation equation, that is,
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yðtÞ ¼ gðzðtÞ; pÞ ¼
X1
k¼0

gðkÞðzðt0Þ; pÞ
ðt � t0Þk

k!
;

where

gðkÞðzðtÞ; pÞ ¼ dkg
dtk

ðzðtÞ; pÞ:

By calculating higher order derivatives, the problem reduces to determining the number of
solutions for the parameters in a set of algebraic equations, since the coefficients in the Taylor
series expansion are unique:

yðkÞðt0Þ ¼ gðkÞðzðt0Þ; pÞ k ¼ 0; 1; 2; . . . ð2Þ
In general, Eqs. (2) are non-linear in the parameters. By definition the parameter set is globally
structurally identifiable if there is a unique solution [3,15].

The method of characteristic sets, the Wu–Ritt method, aims at proving structural identifi-
ability using differential-algebraic theory. As shown in [19], see also [16,17], a parameter h is
structurally identifiable if there exist functions U and W, with W of full rank, so that

Uðy; _yy;€yy; . . . ; pÞ þ hWðy; _yy; €yy; . . . ; pÞ ¼ 0; ð3Þ

where p is a set of known parameters which do not have to be estimated and y is the observed
variable. In principle, this method tries to simplify the original set of differential equations by
eliminating unobserved variables (in our case S and X) and unknown parameters by rearranging
the differential equations to get an equation of type (3).

Both the Taylor series approach and the Wu–Ritt method are working well for relatively simple
models. As shown in [18–20], in more complex cases these methods can produce complicated and
lengthy expressions which are difficult to solve even with the aid of modern symbolic manipu-
lation packages. For example, in a first attempt, we were not able to prove structural identifi-
ability even for the original Monod model using the Taylor series approach. This was the main
reason for using the transformed model, presented in Appendix A, where structural identifiability
can be shown. Because of these computational problems, we were not able to prove structural
identifiability of the transformed inhibition model neither using the Taylor series approach nor
with the Wu–Ritt method. For this reason we introduced a new method for investigating local
structural identifiability, which we now describe.

Since we use the maximum likelihood approach for estimating parameters and starting values,
the estimates ĥh are asymptotically normally distributed with covariance matrix Cn, depending
on the number of data points n, i.e.,

ffiffiffi
n

p
ðĥh � htrueÞ ! Nð0;CnÞ, n ! 1. Although this is only valid

for the limit case, we are able to investigate this situation by simulating many, say N experiments
Ei
nj , (i ¼ 1; . . . ;N), with a fixed number of data points nj, using a vanishing noise level and the

appropriate known error model from a biochemical expert analysis of the laboratory data thus
assuming perfect data without measurement noise. Estimating parameters in all simulated ex-
periments Ei

nj
with the multiple shooting method one obtains an approximation of the joint

probability distribution of the estimates depending on the number of data points nj. Increasing the
number of data points, n1 < n2 < 
 
 
 < nk, one obtains an approximation of the limit behavior of
this distribution.
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In the case of non-identifiability there exists a functional relationship for at least two param-
eters and the probability distribution does not follow a normal distribution. For example, if the
parameters p1 and p2 are related by the functional relationship p1 ¼ ap2, then the joint probability
distribution would be a straight line. In such cases the covariance matrix of the probability dis-
tribution does not have full rank and the condition number, the ratio of the largest to the smallest
eigenvalue of this matrix tends to infinity. Therefore, local structural identifiability can be verified
by investigating the limiting behavior of the condition number of the covariance matrix.

The assumption that the probability distribution of the observational noise giðtÞ follows a
normal distribution is certainly not always the case. But as long as it is of the exponential family
all conclusions remain valid because all correction terms vanish asymptotically [21]. The method is
applied first for initial parameter values, and after that for parameter estimates.

4. Parameter estimation in ODE models

The mathematical model of the dynamics of waste water treatment processes can be described
generally by a set of non-linear ODEs

_~zz~zz ¼ ~ff ð~zz;~ppÞ; ~zz 2 Rn; ð4Þ
depending on a set of parameters~pp 2 Rp and starting values~zz0 ¼~zzðt0Þ. Since in our case we know
the starting value Sð0Þ ¼~zz2ðt0Þ, only the starting value X ð0Þ ¼~zz1ðt0Þ has to be estimated.

The observed biogas production rate is denoted by yDðtiÞ:
yDðtiÞ ¼ gð~zz;~ppÞðtiÞ þ gðtiÞ;

where gð~zz;~ppÞðtiÞ is a known observation function. Observational noise gðtiÞ is assumed to be
normally distributed with zero mean and known variance r2

i , known from expert analysis of the
laboratory data.

With initial guesses for parameters and starting values of the variables one is able to integrate
the ODE, e.g. with special integrators for stiff ODE problems, see [9], and to calculate the time
course of the simulated ySðt;~pp;~zz0Þ. Our aim is to find the maximum likelihood estimators of~pp and
~zz0, which amounts to globally minimizing the objective function

v2ð~pp;~zz0Þ ¼
XN
i¼1

ðyDðtiÞ � ySðti;~pp;~zz0ÞÞ2

r2
i

ð5Þ

with respect to ~pp and~zz0, (see [22]).

4.1. The initial value approach

In principle v2ð~pp;~zz0Þ can easily be minimized using state of the art optimization algorithms.
Much has been accomplished in this field of research and many routines are readily available, see
[9,23] for an overview.

Given initial guesses for ~pp and~zz0, one integrates the ODE, calculates v2ð~pp;~zz0Þ via Eq. (4) and
uses optimization routines to estimate~pp and~zz0. This is the so called initial value approach (IVA).
Although this technique can be easily implemented, there exist many examples where the IVA
does not work. As shown by [8] there are even examples where the IVA is determined to fail
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always, independent of the minimization routine. Additionally v2ð~pp;~zz0Þ will usually have many
local minima in which the IVA is bound to run into, see [24].

4.2. The multiple shooting method

Originating from the context of boundary value problems in ODEs, [25], the multiple shooting
method has been used as a parameter estimation technique first in [26]. In [27] this approach was
analyzed thoroughly and convergence behavior was investigated.

The idea of the multiple shooting method is to subdivide the time interval into many smaller
intervals. The parameter vector~pp is fitted simultaneously in each subinterval, while every interval
gets different starting values. The advantage of this method is that much more information from
the measured dynamics of the system can be used to estimate initial conditions since the trajectory
stays close to the data. In contrast, the IVA effectively uses only the first data point to derive
initial estimates.

On the other hand the trajectory is now discontinuous since the state variables at the end of a
subinterval do not equal the state variables at the beginning of the next subinterval. To make sure
that the minimization procedure will yield a continuous trajectory in the end, continuity con-
straints are imposed on the solution. This transforms the original minimization problem into a
minimization problem of much higher dimension with additional constraints. Details of the
mathematical and implementational aspects can be found in [8]. Fig. 1 shows the mechanism of the
method with simulated data following closely the experimental data which we will analyze later.

5. Practical identifiability and confidence intervals

After fitting parameters~pp and starting values~zz0 to data, it is desirable to obtain some measure
of the quality of the estimates which is related to uncertainty analysis [28]. Unfortunately, in non-
linear systems an analytical description of the probability distribution of the parameters exists
only in the limit of large number of data points, [22]. In this case, the Hessian at the convergence
point h ¼ ð~pp;~zz0Þ

Hij ¼
o2v2ð~hhÞ
ohiohj

is half of the inverse of the covariance matrix C. Then parameters are normally distributed with
the 95% confidence interval at �1:96

ffiffiffiffiffiffiffi
Cjj

p
for parameter hj. As mentioned above, this approach

works only in the limit of large number of data points and is normally not feasible with small
sample sizes like in our experiments where the number of data points is roughly 50. A different
approach to practical identifiability which does not depend on a large number of data points is the
sensitivity analysis [3,29–33]. The main problem with this approach is related to the fact that it
is difficult to include all information from the graphical analysis of sensitivity functions into
quantitative criteria. There are such attempts [32,34], but no clear way to overcome these prob-
lems could be established and work in this direction still has to be improved.

In order to solve these problems practically, we use a MCS method, see [9]. The idea of the MCS
is that the probability distribution P ð~pp;~zz0Þ at the convergence point does not differ substantially
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from the probability distribution at the true values, since we assume that our estimate is close to the
true parameters. Keeping in mind that we know the variance of the measurement error at every
time point, we are able to use our estimate to simulate many data sets closely related to the original
data set. By using these simulated data sets to estimate~pp and~zz0 many times, we obtain a probability
distribution for the estimates and hence can calculate 95% confidence intervals for all parameters.

In this way data dependent non-identifiability of parameters and starting values of dynamical
variables can be detected reliably. Moreover, interdependencies between two or more parameters
can be analyzed with help of the estimated joint probability distributions.

6. Results

6.1. Results for the first model

Proving structural identifiability for the simpler model is possible using the Taylor series ex-
pansion as well as the Wu–Ritt method, see Appendix A.

Fig. 1. Convergence of the multiple shooting algorithm applied to simulated data similar to the experimental data: after

the initialization of the method the trajectory is discontinuous. After several iterations the fitting procedure leads to a

smaller distance to the data while forcing the trajectory to become continuous.
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Parameter estimation was done with the multiple shooting method which needed seven itera-
tions to converge at the minimum of v2 ¼ 103:7. Fig. 2(a) shows the fitted trajectory for the first
model. It turns out that the model is too simple and is not able to describe the dynamics. Table 1
lists all estimates of parameters and starting values and their confidence intervals. Fig. 3 shows
examples of the probability distributions of some parameters and starting values determined by a
MCS with 200 simulations as explained in Section 5. Every simulation consists of 50 time points as
in our experiment and noise with the appropriate error distribution was added. The estimated
parameters and starting values of the simulations approximate the true probability distribution. In
the limit case we would expect a normal distribution but due to the small number of data points this
is not the case. The probability distribution as displayed in Fig. 3(a) is asymmetric and the cal-
culation of confidence intervals with the Hessian matrix would yield inappropriate results. From
the joint probability distribution, as displayed in Fig. 3(b), it can be seen that X ð0Þ and ks of the first
model estimated with data set 1 are highly correlated with correlation coefficient r2 ¼ 0:98. This
non-identifiability can be also be seen in Table 1, left column. Confidence intervals for both esti-
mates are quite large which means that these parameters are practically non-identifiable.

Fig. 2. (a) Best fit of the Monod model to the biogas production rate of data set 1. (b) Best fit of the model with non-

competitive inhibition to the biogas production rate of data set 2.

Table 1

Estimated parameters and starting values and their 95% confidence intervals for both models

Model 1 with data set 1 Model 2 with data set 2

Sð0Þ� (mg/l) 3.0 6.0

b� (1/day) – 0.004

l�
m (1/day) 0.4 0.4

k�2 (l2/mg) 75.0 75.0bXX ð0Þ (mg/l) 0:054þ0:024
�0:010 ð4:5þ2:5

�1:5Þ10�4

k̂ks (mg/l) 27:6þ11:1
�4:6 4:13þ0:63

�0:52

k̂ki (mg/l) – 17:2þ32:1
�4:3

k̂k1 56:2� 1:9 102:6� 5:1

Confidence intervals were computed with a MCS. Parameters and starting values marked with ‘�’ are known from other

experiments or from direct measurement.
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6.2. Results for the second model

To the best of our knowledge, there is no proof that the parameters k1, ks and ki and the starting
value X ð0Þ in the second model are structurally identifiable. Additionally both methods for
proving identifiability, Taylor series expansion and the Wu–Ritt approach, fail due to the algo-
rithmic complexity of the problem. Therefore we applied the local structural identifiability test as
introduced in Section 3 choosing parameters ki and b from the literature [13] and taking all other
parameters from the first experiment. Fig. 4 shows the condition number and its convergence
behavior for increasing number of data points. We find that the condition number decreases for
increasing number of data points. If structural non-identifiability would be the case we would

Fig. 3. Sample probability distributions of the fit of model 1 to data set 1: (a) Probability distribution of estimated

starting value X ð0Þ. (b) Joint probability distribution of estimated starting value X(0) and parameter ks. Both distri-

butions do not follow a normal distribution.

Fig. 4. Behavior of the condition number of the estimated covariance matrix for increasing number of data points.

While in the case of non-identifiability the condition number would tend to infinity, in our case the condition number

decays.
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expect the condition number tend to infinity, with the number of data points having no effect
at all.

Therefore we assume local structural identifiability and estimate parameters and starting values
as in the first experiment. Local structural identifiability was then also tested for the estimated
parameters leading to similar results. The condition number also decreases for increasing number
of data points. The fitted trajectory for model 2 with data set 2 is displayed in Fig. 2(b), the
estimates with confidence intervals are displayed in Table 1.

In experiment two, as in the first experiment, the probability distributions do not allow the
computation of confidence intervals with the Hessian matrix, see Fig. 5. Again we obtain an
asymmetric probability distribution for the estimated starting value X(0), see Fig. 5(a). Moreover,
parameter ks and starting value X(0) are highly dependent, this time in a non-linear way.
Therefore practical identifiability of these values cannot be established. This can be also seen in
Table 1, right column. Parameter ki and starting value X (0) cannot be estimated reliably and are
therefore not practically identifiable; confidence intervals of both are very large.

7. Conclusions

The applicability of dynamical models in waste water treatment processes strongly depends on
two types of identifiability: the structural identifiability of parameters inherent in the model
structure, and the practical identifiability of parameters depending on the quality of the measured
data.

For the first type, many problems are still not solved since currently available methods fail even
in simple models due to the algorithmic complexity of the problems. The introduced new method,
based on the asymptotic behavior of the maximum likelihood estimator, is able to overcome some
of these limitations and is a promising tool to show local structural identifiability for complex
problems.

Fig. 5. Sample probability distributions of the fit of model 2 to data set 2: (a) Probability distribution of estimated

starting value X(0). (b) Joint probability distribution of estimated starting value X(0) and parameter ki. Both distri-

butions do not follow a normal distribution.
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In contrast, practical identifiability relates to the problem of assessing the quality of an estimate
in case of noisy data and/or unobserved components, and detecting interdependencies between
variables. The new method, based on computing joint probability distributions for estimated
parameters and starting values of dynamic variables with help of MCSs, is able to present this
information in a convenient way.

Using two mathematical models applied to different experimental situations, we showed the
applicability of both methods in a realistic setting. Applying the methods in more complex sit-
uations will be an interesting topic of further research.
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Appendix A

Starting from the biochemical description of Eq. (1), we apply the following transformation to
obtain a simpler representation of the mathematical models:

x ¼ k2X s ¼ k2
k1
S

a ¼ ksk2
lmaxk1

b1 ¼ 1
lmax

c ¼ k1
k2kilmax

b2 ¼ kiþks
kilmax

We get the following simpler ODEs, on the left for the Monod model, on the right for the more
complex model, describing the same dynamical behavior with less parameters:

_xx ¼ s
aþb1s

x _xx ¼ s
aþb2sþcs2 � b

� �
x

_ss ¼ � s
aþb1s

x _ss ¼ � s
aþb2sþcs2

� �
x

y ¼ _xx y ¼ _xx

Theoretically, all information about yðtÞ is available which allows us to compute
y0ðtÞ:¼

R t
0
yðt0Þdt0 ¼

R t
0
_xxðt0Þdt0. This simplifies the proof of structural identifiability for the simple

model due to the new observable y0ðtÞ:
y0ðtÞ ¼ xðtÞ � xð0Þ
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with

_yy 0ðtÞ ¼ _xxðtÞ
and with

xð0Þ ¼ _yy 0ð0Þ sð0Þ
a þ b1sð0Þ

� 	�1

:

A.1. Structural identifiability analysis of the simpler Monod model

Using both Taylor series expansion and the Wu–Ritt method it can be shown that the dy-
namical parameters k1 and ks and the starting value X ð0Þ in the simpler Monod model are
structurally identifiable. Here we present the results from the Taylor series expansion approach.

Let xðiÞ ¼ dixð0; pÞ=dti, then the transformed simpler model takes the form

xð1Þ ¼ sð0Þxð0Þ

a þ b1sð0Þ
ðA:1Þ

sð1Þ ¼ � sð0Þxð0Þ

a þ b1sð0Þ
ðA:2Þ

yð0Þ ¼ xð1Þ: ðA:3Þ
Using the Taylor series approach, firstly we need to determine the first three derivatives of the
model output y:

yð1Þ ¼ xð0Þsð0Þ sð0Þða



þ b1s
ð0ÞÞ � axð0Þ

�
a



þ b1s
ð0Þ��3 ðA:4Þ

yð2Þ ¼ xð0Þsð0Þ sð0Þ
2ða

h
þ b1s

ð0ÞÞ2 � 4asð0Þxð0Þða þ b1s
ð0ÞÞ þ aða � 2b1s

ð0ÞÞxð0Þ2
i

a



þ b1s
ð0Þ��5 ðA:5Þ

yð3Þ ¼ xð0Þsð0Þ sð0Þ
3ða

h
þ b1s

ð0ÞÞ3 � 11asð0Þ
2

xð0Þða þ b1s
ð0ÞÞ2 þ asð0Þð11a � 14b1s

ð0ÞÞða þ b1s
ð0ÞÞxð0Þ2

� aða2 � 8ab1s
ð0Þ þ 6b2

1s
ð0Þ2Þxð0Þ3

i
a



þ b1s
ð0Þ��7

: ðA:6Þ

We then have to solve the system of algebraic equations (14)–(17) with respect to the parameters
a, b1 and starting values sð0Þ and xð0Þ. The solutions of the system which could be found using
MATHEMATICAMATHEMATICA are

Psð0Þ ¼ yð0Þ
2

�
� 6yð1Þ

3 þ 7yð0Þyð1Þyð2Þ � yð0Þ
2

yð3Þ � 18yð1Þ
6

�
� 54yð0Þyð1Þ

4

yð2Þ þ 55yð0Þ
2

yð1Þ
2

yð2Þ
2

� 18yð0Þ
3

yð2Þ
3 � 2yð0Þ

3

yð1Þyð2Þyð3Þ þ yð0Þ
4

yð3Þ
2
�1=2

�
3yð1Þ

4
h

� 2yð0Þyð1Þ
2

yð2Þ

� 3yð0Þ
2

yð2Þ
2 þ 2yð0Þ

2

yð1Þyð3Þ
i�1

;
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xð0Þ ¼ yð0Þ
2

6yð1Þ
3

�
� 7yð0Þyð1Þyð2Þ þ yð0Þ

2

yð3Þ � 18yð1Þ
6

�
� 54yð0Þyð1Þ

4

yð2Þ þ 55yð0Þ
2

yð1Þ
2

yð2Þ
2

� 18yð0Þ
3

yð2Þ
3 � 2yð0Þ

3

yð1Þyð2Þyð3Þ þ yð0Þ
4

yð3Þ
2
�1=2

�
3yð1Þ

4
h

� 2yð0Þyð1Þ
2

yð2Þ

� 3yð0Þ
2

yð2Þ
2 þ 2yð0Þ

2

yð1Þyð3Þ
i�1

;

a ¼ 2yð0Þ
3

9yð1Þ
6

�
� 30yð0Þyð1Þ

4

yð2Þ þ 31yð0Þ
2

yð1Þ
2

yð2Þ
2 � 9yð0Þ

3

yð2Þ
3

3yð0Þ
2

yð1Þ
3

yð3Þ � 5yð0Þ
3

yð1Þyð2Þyð3Þ

þ yð0Þ
4

yð3Þ
2 þ 3yð1Þ

3
�

� 4yð0Þyð1Þyð2Þ þ yð0Þ
2

yð3Þ
�

18yð1Þ
6

�
� 54yð0Þyð1Þ

4

yð2Þ

þ 55yð0Þ
2

yð1Þ
2

yð2Þ
2 � 18yð0Þ

3

yð2Þ
3 � 2yð0Þ

3

yð1Þyð2Þyð3Þ þ yð0Þ
4

yð3Þ
2
�1=2

�

3yð1Þ
4

h
� 2yð0Þyð1Þ

2

yð2Þ � 3yð0Þ
2

yð2Þ
2 þ 2yð0Þ

2

yð1Þyð3Þ
i�1

;

b1 ¼ 2yð0Þ 3yð1Þ
3

h
� 4yð0Þyð1Þyð2Þ þ yð0Þ

2

yð3Þ
i
3yð1Þ

4
h

� 2yð0Þyð1Þ
2

yð2Þ � 3yð0Þ
2

yð2Þ
2 þ 2yð0Þ

2

yð1Þyð3Þ
i�1

:

According to the definition of structural identifiability this means that the transformed model is
locally structurally identifiable with respect to a, b1, s

ð0Þ and xð0Þ.
If we assume the parameter values lm and k2 and the starting value Sð0Þ in the original Monod

model to be known, then using the transformation (A.4) enables us to determine the parameter
values k1 and ks and the starting value X ð0Þ in the original model. Hence we conclude that the
simpler Monod model is locally structurally identifiable with respect to k1, ks and X(0).
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