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Abstract

When non-linear models are fitted to experimental data, parameter estimates can be poorly

constrained albeit being identifiable in principle. This means that along certain paths in

parameter space, the log-likelihood does not exceed a given statistical threshold but

remains bounded. This situation, denoted as practical non-identifiability, can be detected by

Monte Carlo sampling or by systematic scanning using the profile likelihood method. In con-

trast, any method based on a Taylor expansion of the log-likelihood around the optimum,

e.g., parameter uncertainty estimation by the Fisher Information Matrix, reveals no informa-

tion about the boundedness at all. In this work, we present a geometric approach, approxi-

mating the original log-likelihood by geodesic coordinates of the model manifold. The

Christoffel Symbols in the geodesic equation are fixed to those obtained from second order

model sensitivities at the optimum. Based on three exemplary non-linear models we show

that the information about the log-likelihood bounds and flat parameter directions can

already be contained in this local information. Whereas the unbounded case represented by

the Fisher Information Matrix is embedded in the geometric framework as vanishing Chris-

toffel Symbols, non-vanishing constant Christoffel Symbols prove to define prototype non-

linear models featuring boundedness and flat parameter directions of the log-likelihood.

Finally, we investigate if those models could allow to approximate and replace computation-

ally expensive objective functions originating from non-linear models by a surrogate objec-

tive function in parameter estimation problems.

Introduction

Parameter estimation by the maximum-likelihood method has numerous applications in dif-

ferent fields of physics, engineering, and other quantitative sciences. In systems biology, e.g.,

ordinary differential equation (ODE) models are used to describe cell-biological processes [1,

2]. Parameter estimation in these non-linear models can easily become time-consuming. Solv-

ing the ODEs and computing model sensitivities for numerical optimization is computation-

ally demanding. The difficulty is further increased if many experimental conditions contribute

PLOS ONE | https://doi.org/10.1371/journal.pone.0217837 June 3, 2019 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Lill D, Timmer J, Kaschek D (2019) Local

Riemannian geometry of model manifolds and its

implications for practical parameter identifiability.

PLoS ONE 14(6): e0217837. https://doi.org/

10.1371/journal.pone.0217837

Editor: Timon Idema, Delft University of

Technology, NETHERLANDS

Received: September 6, 2018

Accepted: May 20, 2019

Published: June 3, 2019

Copyright: © 2019 Lill et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work was supported by

Bundesministerium für Bildung und Forschung

(Grantee: DL [Daniel Lill], Grant number: BMBF

031L0048, URL: lisym.org). The article processing

charge was funded by the German Research

Foundation (DFG) and the University of Freiburg in

the funding programme Open Access Publishing.

The funders had no role in study design, data

http://orcid.org/0000-0002-1058-4826
https://doi.org/10.1371/journal.pone.0217837
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217837&domain=pdf&date_stamp=2019-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217837&domain=pdf&date_stamp=2019-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217837&domain=pdf&date_stamp=2019-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217837&domain=pdf&date_stamp=2019-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217837&domain=pdf&date_stamp=2019-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217837&domain=pdf&date_stamp=2019-06-03
https://doi.org/10.1371/journal.pone.0217837
https://doi.org/10.1371/journal.pone.0217837
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


to the evaluation of the likelihood function because the model ODE needs to be solved inde-

pendently for each condition.

Upon successful parameter estimation, thorough investigation of the log-likelihood

around the optimum frequently reveals that some parameters, although having a unique

optimum, cannot be constrained to finite confidence intervals. This situation is denoted as

practical non-identifiability [3]. The reason for practical non-identifiability is the non-linear

relationship between model parameters and model predictions. The non-linearity culmi-

nates in the boundedness of model predictions for all possible combinations of parameters

and, consequently, in upper limits of the negative log-likelihood that are not exceeded along

certain paths. Based on the likelihood-ratio test statistics, log-likelihood thresholds relative

to the value at the optimum can be derived [4] that, when being exceeded by the choice of

parameters, allow to reject the model specification. Conversely, if the derived thresholds are

above the upper limit of the negative log-likelihood, the model cannot be rejected over an

infinite range of parameter values.

In this work we discuss that for certain models, practical non-identifiability can already be

detected from local information, i.e., second order model sensitivities at the optimum. The

approach even allows to construct an approximated log-likelihood function uniting both, the

local shape around the optimum and the asymptotic shape in the limit of arbitrarily large/

small parameter values. The construction is based on a differential geometric point of view

on least squares estimation as laid out in [5, 6]. The geometry of least squares estimation has

already previously been discussed, e.g., in [7]. Also the usage of second order model sensitivi-

ties to derive equations for parameter transformations providing the log-likelihood with a

more quadratic shape around the optimum has been suggested in earlier statistical works, see

[8, 9]. However, these previous attempts have been too general to be either solved analytically

or be feasible numerically.

In contrast, by sticking to a local approximation of Christoffel Symbols, i.e., the connec-

tion coefficients of the Levi-Civita connection on the model manifold, [10], we can show that

these are sufficient to construct a globally defined parameter transformation with bounded

co-domain that, in the best case, turns the original log-likelihood into a purely quadratic

function of the new coordinates. The boundary value problem underlying the parameter

transformation can be solved efficiently by numerical methods [11]. The result is that despite

being based on purely local second order sensitivity information, the log-likelihood function

constructed in this way reflects a fundamental property of the original log-likelihood: its

boundedness.

It is thereby possible to capture not only the parameter estimates but also their correlation

structure locally as well as in the limit of practical non-identifiability.

Methods

The statistical point of view

Given a mathematical model to describe a set of M data points, one is interested in the N
parameters such that the model fits the data best. In this work, a data point yD taken at the

value tm (usually time) is assumed to be described by a model y(t, θ) evaluated at the parameter

y ¼ ytrue 2 P � R
N . Additionally, data points are affected by Gaussian noise �� N(0, σ2):

yD;m ¼ yðtm; ytrueÞ þ �m: ð1Þ

In the case of Gaussian noise and known variance σ2, the Maximum Likelihood Estimate for
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the parameters is given by

ŷ ¼ argmin
y

XM

m¼1

�
yD;m � yðtm; yÞ

sm

�2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
w2ðyÞ

:
ð2Þ

χ2 is a non-linear function of the parameters, and therefore can be bounded in certain direc-

tions of the parameter space, in which case we call this model a bounded model. This bound-

edness has implications for parameter estimation and confidence interval determination [3].

The confidence interval Iyi � R of the ith parameter is defined as

Iyi ¼ fyijmin
yj
w2ðyi; fyjgj6¼iÞ � w

2ðŷÞ < T1� ag; ð3Þ

where T1−α is the threshold to be exceeded to guarantee a confidence level of 1 − α. These con-

fidence intervals can be either smaller or larger than those derived from the Fisher Information

Matrix, or equal, in case of a purely quadratic shape of χ2. Eq (3) implies that the boundedness

of χ2 eventually leads to infinite confidence intervals if the confidence level is chosen large

enough.

The geometric point of view

A different perspective on the boundedness of χ2 can be obtained by regarding it as a function

of the normalized residuals rm. All residuals can be combined into a vector r which is an ele-

ment of the M-dimensional data space D. In D, each residual contributes one dimension and

the χ2 function is simply a quadratic function of r:

w2 ¼
X

m

�
yD;m � yðtm; yÞ

sm

�2

¼
X

m

rmðyÞÞ2 ¼ kr yð Þk2
�

ð4Þ

The residual vector is restricted to the N-dimensional model manifold M, which is the set of

all residual vectors that can be reached by the model:

M ¼ frjr ¼ rðyÞ; y 2 Pg: ð5Þ

With the parameters y 2 P, M is readily equipped with a coordinate system. Fig 1A shows an

example of an extrinsically flat, one-dimensional model manifold in a two-dimensional data

space. Fig 1B shows χ2 in the parameter space. This simple manifold illustrates that the bound-

edness of the χ2 function in P is reflected inD via boundaries of the model manifold. Even tun-

ing the parameter θ to infinity results in a residual vector of finite length.

At the optimum r̂ , any tangent vector of the model manifold is perpendicular to the residual

vector itself, as emphasized in Fig 1A, and the squared distance between a point r� on the flat

model manifold and r̂ can be directly related to a change in χ2:

Dw2 ¼ w2ðr�Þ � w2ðr̂Þ ¼ kDrk2
: ð6Þ

We now construct a coordinate system for M to take advantage of this geometric property. In

the Euclidean data space, the length of the vector connecting r̂ and r� coincides with the arc

length s of the geodesic between these points. We parameterize this geodesic r(τ), solution to

the equation €r ¼ 0 by

rðtÞ ¼ r̂ þ
r� � r̂
Dt

t ¼ r̂ þ vr̂t ð7Þ

Differential geometry of model manifolds of non-linear systems
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with Δτ = 1. The squared arc length s2 can therefore be expressed simply in terms of the veloc-

ity vr̂ ¼ Dr=Dt of the geodesic:

s2 ¼ kDrk2
¼

Z 1

0

dij _r
i _rjdt ¼ dijv

i
r̂ v

j
r̂ : ð8Þ

Here, δij is the Euclidean metric of D, and we make use of Einstein’s summation convention.

Working in the coordinate system of model parameters θ the geodesic equation needs to be

solved for the metric of P. Compared to the Euclidean data space, these expressions take the

following form:

dij ⇝ gmn ¼
@rm

@y
m

@rn

@y
n dmn

€r ¼ 0 ⇝ €ym ¼ � Gm

ab
_ya _yb;

ð9Þ

with non-vanishing Christoffel Symbols of the second kind, referred to as “Christoffel Sym-

bols” in this work:

Gm

ab
¼
X

m

gmn
@rm

@y
n

@
2rm

@y
a
@y

b
; ð10Þ

where gμν = (gμν)−1 [6].

As a defining property of geodesics, the absolute value of the velocity stays constant along a

geodesic. Thus, initial velocities of the geodesic at ŷ suffice to express s2 in the coordinate sys-

tem of model parameters

s2 ¼
Z 1

0

gmn _ym _yndt ¼ gmn
�
�
ŷ
vm
ŷ
vn
ŷ

ð11Þ

Fig 1. Model manifold with boundary. (A) The tangent at the optimum is perpendicular to its residual vector ~̂r . Boundaries of the model manifold,

shown in orange, are marked by black segments. In the parameterization by the model parameter θ the boundaries are reached in the limit θ! ±1. (B)

The values of χ2 on the interval [−1,1] are shown as graph, illustrating the boundedness of the function.

https://doi.org/10.1371/journal.pone.0217837.g001
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with vŷ indicating that the initial velocity is now expressed in θ-coordinates. The initial veloci-

ties are in fact Riemann Normal Coordinates (RNC) for M [10]. For bounded model mani-

folds, the RNC are bounded in their domain, since the boundary can be reached by a geodesic

with finite initial velocity.

Combining Eqs (6) and (11), χ2 transforms from a non-linear into a quadratic function:

w2ðyÞ ⇝ w2ðvŷÞ � w2j
ŷ
þ gmn

�
�
ŷ
vm
ŷ
vn
ŷ
: ð12Þ

The boundedness of this expression is now achieved by the finite domain of the coordinates vŷ
rather than through the model’s non-linearity.

We emphasize that Eq (12) is exact if and only if the model manifold is extrinsically flat. For

non-linear models, the extrinsic curvature generally is non-zero and Eq (12) only holds locally,

since in this case the assumption Dr?r̂ in Eq (6) is violated when moving further away from

the optimum and the geodesic is not a straight path in D. In this work, we do not account for

this deviation. It has been noted in [6] that extrinsic curvature of model manifolds can often

be neglected.

Results

The methods described above can be used to approximate χ2 in a new way to allow for regions

in P where χ2 is bounded.

To perform the coordinate change from the original parameters to the RNC, the geodesic

equation has to be solved as a two-point boundary value problem. The first point is the point

around which the RNC are constructed, in our case ŷ. The second one is the point where χ2(θ)

is to be approximated. Since the geodesic equation is a non-linear ordinary differential equa-

tion, in most cases a closed-form solution does not exist and approximations are made to solve

the geodesic equation. A popular approach in literature (e.g. [6]) is to Taylor expand all objects

in the geodesic equation in terms of the curve parameter τ and requiring that, locally, the geo-

desic has the form of a straight line. The coordinates v(θ) obtained this way are polynomials of

θ. As a polynomial, the approximated expression for χ2(θ) cannot be bounded and hence, the

accuracy of the approximation becomes insufficient for asymptotically bounded χ2. On the

other hand, solving the geodesic equation numerically comes with high computational costs

because at each integration step, the model’s derivatives up to second order must be computed

to evaluate the Christoffel Symbols.

Our approach approximates only the Christoffel Symbols by their values at ŷ and inserts

them in the otherwise unmodified geodesic equation:

€ym ¼ � Gm

ab

�
�
�
y¼ŷ

_ya _yb: ð13Þ

This approximated geodesic equation can be numerically solved without repeated model eval-

uation. The parameter transformation between original parameters θ and RNC v is given by

� : y
m
7! vm ¼ _ymð0Þ

s:t: ymð0Þ ¼ ŷm; y
m
ð1Þ ¼ y

m
;

ð14Þ

where θμ(�) denotes the solution of Eq (13).

By construction, the resulting curves approximate the true geodesics in a neighborhood of

ŷ. The approximated RNC v are inserted in Eq (12) with the metric gmnjy¼ŷ to obtain an approx-

imation of χ2: Through the Christoffel Symbols, this approximation depends on second order

Differential geometry of model manifolds of non-linear systems
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model sensitivities at ŷ, but unlike a Taylor expansion of χ2 of order two, it allows for areas in

the parameter space, in which it is bounded. This can be understood from the fact that the

solution of a quadratic ordinary differential equation can diverge in finite time. In other

words, infinite values for the original parameters θ can be obtained from finite values of the

new parameters v. Furthermore, local skewness of χ2 around the optimum can be better cap-

tured than by the Hessian matrix.

Summarising, the approximated objective function can be implemented by the following

steps:

1. Optimize the original log-likelihood χ2(θ) to obtain the optimal parameter vector ŷ.

2. Compute the first order and second order sensitivities of the residuals at the optimum.

Note that derivatives of the residuals are required, as opposed to derivatives of the objective

function @rm
@ym

�
�
y¼ŷ

and @2rm
@ym@yn

�
�
�
y¼ŷ

:

3. With these sensitivities, compute the values of the metric ĝ mn ¼ gmnjŷ and the Christoffel

Symbols Ĝ
m

ab ¼ Gm

ab

�
�
ŷ

according to Eqs (9) and (10).

4. With the Christoffel Symbols Ĝ, solve the geodesic equation as boundary value problem

with the constraints specified by Eq (14). To this end, it usually is helpful to reformulate the

geodesic equation as a first order ODE with auxiliary variables ξ:

_y
m
¼ x

m

_x
m
¼ � Ĝ

m

abx
a
x
b

ð15Þ

5. From the solution, use the initial velocities v ¼ _yt¼0 as new RNC to obtain the approxi-

mated ~w2:

~w2ðvðyÞÞ � w2j
ŷ
þ ĝ mnvmðyÞvnðyÞ ð16Þ

For applications relying on derivative information of the objective function, we provide for-

mulas to obtain the gradient and an approximated Hessian of ~w2 in section D in S1 Text.

Model 1: Exponential growth/decay with fixed initial amount

We discuss various features of the approximation by means of three models with increasing

complexity. The first model is an example for which the approximation is exact. Consider the

model

y ¼ e� k1t; ð17Þ

with k1 2 R. The sign of the parameter k1 determines whether the model describes exponential

decay or exponential growth.

If we measure only one data point yD = 1 at t = 1 with standard deviation σ = 1, the objective

function is given by w2 ¼ ð1 � e� k1Þ
2
, the model manifold is one-dimensional, extrinsically flat

and its Christoffel Symbol is given by G1

11
¼ � 1. Clearly, the model manifold is bounded in

one direction: In a one-dimensional data space, it covers the positive real numbers shifted

negatively by the value of the data point. In this rare case, the geodesic equation can be solved

Differential geometry of model manifolds of non-linear systems
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exactly (detailed steps are presented in section E in S1 Text):

yðtÞ ¼ � logðC1tþ C0Þ ð18Þ

The integration constants are chosen as

C0 ¼ 1; ð19Þ

C1 ¼ � v ð20Þ

This way, the boundary conditions at τ = 0 and τ = 1 are fulfilled and the initial velocity is

given by _yjt¼0 ¼ v. The coordinate change can now be performed by substitution of the solu-

tion at τ = 1 into the original χ2—function:

w2ðvÞ ¼ ðe� k1 � yDÞ
2
¼ e� ð� logð� vþ1ÞÞ � yDð Þ

2
¼ ðvÞ2 ð21Þ

Since the Christoffel Symbols are constant and the model manifold is extrinsically flat, this

amounts to the same expression as if Eq (16) is used directly, with gmnjŷ ¼ 1:

~w2ðvÞ ¼ w2jŷ þ gmn
�
�
ŷ
vm
ŷ
vn
ŷ
¼ 0þ 1 � v2 ð22Þ

As previously derived, the χ2—function is transformed back to a quadratic function by the Rie-

mann Normal Coordinates, but the domain of v is restricted to values smaller than 1.

The source of the boundedness of the χ2—function is clearly the restricted co-domain of

the model itself. We therefore conclude that boundedness of a model along a parameter axis

relates to a restricted co-domain of the model: The amount of the decaying substance can

never drop below zero, regardless of the rate constant. This boundedness is represented appro-

priately by a model with constant Christoffel Symbol.

Model 2: Exponential decay with variable initial amount

We now modify Model 1 at two stages: On the one hand, we introduce a parameter A0 for the

initial amount:

_A ¼ � k1A , AðtÞ ¼ A0e� k1t: ð23Þ

On the other hand, we restrict both the parameter k1 and A0 to values greater or equal to zero.

Fig 2 visualizes an exemplary χ2 landscape for three data points the values of which are pre-

sented in section B in S1 Text. In Fig 2A, the contours of the original objective function are

shown as solid line.

The restricted model behaviour as in Model 1 can again be observed when considering

one-dimensional cross sections of the χ2 landscape for a fixed value of the initial amount A0.

Furthermore, and somewhat trivially, the χ2 values are bounded as soon as the parameters

approach their respective boundaries. However, also the third source of boundedness can be

observed, the coupling of parameters such that a flat canyon is formed which means that a

change of one parameter is compensated by the other parameter.

The dashed contour lines represent the approximated objective function ~w2. In comparison

to the original objective function, the asymptotic behaviour for cross sections at constant A0

does not appear to be bounded, but for cross sections at constant k1. However, the parameter

coupling between A0 and k1 is matched very well, a behavior which an approximation by a

Taylor expansion could never exhibit. It is noticeable that the path of the parameter coupling

is straight as opposed to the curved path of the original objective function. However, we note

that usually the paths of parameter coupling tend to straighten out asymptotically.

Differential geometry of model manifolds of non-linear systems
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The red and yellow lines, referring to χ2 and ~w2, respectively, indicate the paths that for

given value of A0 minimize χ2 with respect to k1, the so-called profile likelihood path for

parameter A0. They each follow the paths of the parameter coupling, which, though different

in parameter space, appear to have very similar objective function values along their path,

which is shown in Fig 2C.

The same paths and contours are shown in Fig 2B in the new coordinates v. By construc-

tion, the dashed contour-lines of the approximated χ2 are exactly elliptic, but with a boundary

as indicated by the fat gray line. Also the original χ2 appears more quadratic in the new

coordinates.

The approximated χ2 purely based on local information around the optimum correctly

describes the non-linear phenomenon of parameter coupling. The identification of parameter

coupling in the limit of infinitely large/small parameters is a key element of model reduction

as demonstrated in [12] and [13].

Model 3: Enzyme kinetics

Next, the approximation is tested on an enzymatic reaction modeled by mass-action kinetics.

In this model, an enzyme E and its substrate S first form a complex C which can either dissoci-

ate back into E and S, or form a product P, in which case P and E are released. The correspond-

ing ODEs are given by

_½S� ¼ � k1½S�½E� þ k2½C�

_½E� ¼ � k1½S�½E� þ ðk2 þ k3Þ½C� ¼ � _½C�

_½P� ¼ k3½C�

ð24Þ

The enzyme model typically exhibits two time-scales: the binding and dissociation of E and

S are usually much faster than the product formation, i.e., k1, k2� k3. This can lead to non-

identifiable parameters k1 and k2. For large values of k1 and k2, the complex quickly reaches a

quasi-equilibrium in which only the ratio of k1 and k2 can be determined.

Because the visualization of higher-dimensional parameter spaces by contour lines is not

feasible, we have evaluated the original and approximated objective function along profile-like-

lihood paths for different parameters. The simulated data is presented in section B in S1 Text.

To identify coupled parameters, we again compare the profile likelihoods for χ2 and ~w2. The

production rate k3 and initial amount of substrate S are identifiable from the data as shown in

Fig 2. Landscape and profile of χ2. (A) The shape of the landscape is visualized by solid and dashed contour lines for

the original and Riemann approximated χ2, respectively. The colored lines represent paths that are optimal with

respect to the parameter k1 for any given value of parameter A0. (B) The non-quadratic χ2 turns into a quadratic

function in Riemannian Normal Coordinates. The paths computed for (A) are shown in the new coordinates as

colored lines. (C) The χ2 values along the exact and the approximated parameter paths agree well indicating that

confidence intervals derived from either objective function coincide. Thresholds for different confidence levels are

depicted in gray.

https://doi.org/10.1371/journal.pone.0217837.g002

Differential geometry of model manifolds of non-linear systems
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Fig 3. For the parameters S, both the original and the approximated profiles are perfectly qua-

dratic and coincide. The original profile of k3 is skewed. This skewness is visible in the approxi-

mation but it is not strong enough to reproduce the exact profile. As expected, the parameters

k1 and k2 are practically non-identifiable. Again, the effect of practical non-identifiability is

well captured by the approximating ~w2, although not as strikingly as for the simpler model.

Discussion

We established a connection between the Christoffel Symbols of a model and its boundedness.

While models with globally vanishing Christoffel Symbols, i.e. linear models, are representa-

tives of unbound models, models with constant Christoffel Symbols are bound in certain

parameter directions and can therefore be considered as simple representatives of bounded

models. We explored a possible application of this class of models as an approximation to

non-linear least-squares, for which information about boundedness can be of importance in

parameter uncertainty assessment. We now discuss various additional remarks concerning the

quality, applicability and use of the approximation.

First, it should be noted that Christoffel Symbols depend on the coordinates from which

they are calculated. The quality of the approximation by constant Christoffel Symbols therefore

depends on the original coordinate system from which the coordinate change to the approxi-

mated Riemann Normal Coordinates is performed. If for example Model 1 was parameterized

by y ¼ 1

y
, θ> 0, the Christoffel Symbols would be given by G1

11
¼ � 2

y
. Thus, for different

Fig 3. The profile likelihood for the parameter k3 and initial amount S indicates finite confidence intervals

according to both, the original (yellow) and Riemann-approximated (red) χ2. The estimated parameter values are

depicted as black dots. Practically non-identifiable parameters k1 and k2 do not even exceed the 68% confidence

thresholds towards large values, correctly recognized by the approximation.

https://doi.org/10.1371/journal.pone.0217837.g003

Differential geometry of model manifolds of non-linear systems
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parameterizations of the same model manifold, the approximation of the Christoffel Symbols

by constants yields different qualities of the respective approximations. For more complex

models, in which the Christoffel Symbols cannot be written in closed form, the introduced

errors may become difficult to quantify or to predict.

Furthermore, the parameterization of the model must not be redundant, such that the

change of one parameter can exactly be compensated by another parameter. This setting is

called “structural non-identifiability” [3] and in this case, the model manifold has a singular

metric, which cannot be inverted. In this case, the structural non-identifiability has to be elimi-

nated first, e.g. by methods described in [14].

Another issue is that the approximation by constant Christoffel Symbols could erroneously

predict model manifold boundaries where there are none. This is exemplarily highlighted by

the fact, that an unbound, one-dimensional polynomial model y = θn, n being an uneven inte-

ger, has Christoffel Symbol G1

11
¼ n� 1

y
, a form which appears in the previous paragraph, associ-

ated with bounded manifolds. Therefore, the approach might be best suited to problems with

a-priori known restricted model behaviors as in the presented examples. In this case, log-likeli-

hood bounds will occur in certain directions of the parameter space. A question open to fur-

ther research is if Christoffel Symbols obtained by second order sensitvities at the optimum

are best suited to reproduce the models bounds for extreme parameter values or if the bounds

could be reproduced better by other Christoffel Symbols. These could be obtained e.g. by sam-

pling χ2 in the parameter space and might improve the distant approximation at the cost of

reducing the quality of the local approximation close to the optimum.

On the statistical side regarding parameter identifiability, we explicitly note that while a

model manifold or its approximation might be bounded in a certain region of parameter

space, this does not necessarily imply that a parameter is practically non-identifiable, if the

boundary is distant enough to the point of best fit such that the Δχ2 threshold corresponding

to a specific confidence level is crossed.

A possible application of the approximation is its use in parameter uncertainty assessment

as done for Model 3. There are scenarios in which the approximation might be computation-

ally cheaper than the original objective function. The original objective function might be

much arbitrarily complex, whereas the structure of the approximated model is fixed to one

evaluation of second order sensitivities of χ2 at ŷ and, subsequently, to a two-point boundary

value problem with N states. In practice, obtaining second order sensitivities can be challeng-

ing. For models formulated as ODEs, the numerically most stable way to obtain parameter

derivatives is to integrate the sensitivity equations alongside the original ODEs [15]. Since the

number of equations for second order sensitivity equations is Oðn3Þ, already the algebraic deri-

vation of these equation quickly becomes infeasible. Therefore, obtaining second order deriva-

tives by finite differences might prove more viable in practice. Furthermore, the integration of

the geodesic equation as a boundary value problem can be challenging and limits the approach

to few parameters.

There are settings, though, in which the surrogate objective function ~w2 could be evaluated

faster than the original χ2. An example is given by an ODE model with many states, but few

parameters. Such systems are frequent in rule-based biochemical models [16]. In this case, a

complicated ODE with very many states but relatively few parameters could be replaced by a

much simpler ODE with far fewer states. In a second scenario where the approximation might

be beneficial, the data to be modeled consists of many experimental conditions, as is the case

for dose-response experiments. This setting involves few unknown parameters as the stimulat-

ing concentrations in dose response experiments are usually fixed, but the ODE has to be eval-

uated many times with slightly different parameter values. In section C in S1 Text, we present
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runtimes and profile likelihood paths for a simulated dose-response experiment of Model 3

with 51 different enzyme concentrations. In this case, computation time could be saved com-

pared to the original objective function.

Conclusion

Parameter estimation in non-linear models is based on the optimization of an objective func-

tion, here denoted as χ2, which is non-quadratic, possibly non-convex, and features certain

directions in which its values are bounded. This means that the position of the optimum in

parameter space or the Hessian matrix around the optimum represent only a fraction of the

information necessary to determine confidence intervals and relationships between model

parameters in the case of practical non-identifiability.

In this work we have presented an approach based on differential geometry that, although

using only second-order derivatives of the model at the optimum, provides an approximate χ2

that preserves the essential property of boundedness. Thereby, it allows to approximate χ2 of

models with practically non-identifiable parameters surprisingly well and correctly predicts

parameter coupling in the limit of infinitely large parameter values.

Despite this intriguing result, the local approximation of Christoffel Symbols bears also

possible shortcomings. In our observation, the quality of the approximation decreases with

increasing model size. Also the numerical solution of second-order sensitivity equations is

limited by the mere number of equations. This raises the question if other, properly selected

points in parameter space could be used to derive constant Christoffel Symbols.

In conclusion, the idea to capture the entire objective function of a non-linear model in a

single matrix is tempting both from a conceptual and computational point of view. In the limit

of many informative data points this idea is already realized by the quadratic form defined by

the Hessian matrix around the optimum. In case of insufficient data we have shown that the

geodesic equation with constant Christoffel Symbols can produce objective functions that

approximate the original χ2 not only locally but also globally. Furthermore, for complex non-

linear models with few parameters but high computational costs, the approximated objective

function could be used to save computation time.
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