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Abstract
Signaling pathways are characterized by crosstalk, feedback and feedforward mechanisms

giving rise to highly complex and cell-context specific signaling networks. Dissecting the un-

derlying relations is crucial to predict the impact of targeted perturbations. However, a major

challenge in identifying cell-context specific signaling networks is the enormous number of

potentially possible interactions. Here, we report a novel hybrid mathematical modeling

strategy to systematically unravel hepatocyte growth factor (HGF) stimulated phosphoinosi-

tide-3-kinase (PI3K) and mitogen activated protein kinase (MAPK) signaling, which critically

contribute to liver regeneration. By combining time-resolved quantitative experimental data

generated in primary mouse hepatocytes with interaction graph and ordinary differential

equation modeling, we identify and experimentally validate a network structure that repre-

sents the experimental data best and indicates specific crosstalk mechanisms. Whereas

the identified network is robust against single perturbations, combinatorial inhibition strate-

gies are predicted that result in strong reduction of Akt and ERK activation. Thus, by capital-

izing on the advantages of the two modeling approaches, we reduce the high combinatorial

complexity and identify cell-context specific signaling networks.

Author Summary

Cellular responses to extracellular stimuli are driven by activation of intracellular signaling
pathways. The interconnections between signaling pathways contribute to the high com-
plexity of signaling networks, therefore playing an important role in response to treatment
in pathological conditions. Thus, unraveling the network structure in a cell-context
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specific manner is key to predict cellular responses to perturbations. Here, we present a
novel hybrid mathematical modeling strategy taking advantage of qualitative and quanti-
tative modeling approaches. We combine interaction graph and dynamic modeling with
quantitative experimental data to study the hepatocyte growth factor induced signaling
network in primary mouse hepatocytes. Specifically, we analyze the interconnections with-
in and between PI3K and MAPK signaling pathways involved in hepatocytes proliferation.
Based on literature knowledge, more than 100000 potential network structures are possi-
ble. By applying our approach, we reduce this combinatorial complexity and select 16 min-
imal model structures. Subsequently, by performing a systematic model selection we select
the model structure representing the experimental data best. We experimentally validate
the resulting best model structure, and, based on model simulation, we are able to predict
the outcome of combinatorial treatments. Our hybrid approach is applied to unravel cell-
context specific network structures and to predict the outcome of intervention strategies.

Introduction
Cells receive extracellular signals and process them through intracellular signaling pathways to
regulate cellular responses. Traditionally, signaling cascades were interpreted as linear chains
of events. However, signaling pathways involve extensive crosstalk and feedforward as well as
feedback loops resulting in complex, non-linear intracellular signaling networks, whose topolo-
gies are often context-specific and altered in diseases [1].

An important factor that contributes to liver regeneration and has been implicated in the
context of resistance to targeted tumor therapy is hepatocyte growth factor (HGF). HGF is the
key growth and survival factor for hepatocytes [2, 3] and in response to liver damage facilitates
restoration of the tissue mass by promoting proliferation of hepatocytes. Upon binding to its
receptor Met, HGF activates the phosphoinositide-(PI)-3-kinase (PI3K) and the mitogen acti-
vated protein kinase (MAPK) signaling pathways. Conditional knock-in mice that harbor an
inactivating mutation of Met show reduced activation of PI3K signaling and complete abro-
gation of the activation of the MAPK pathway in response to partial hepatectomy [2]. As a con-
sequence, damage repair is impaired in these mice suggesting an important role for the
crosstalk of the signaling pathways. Therefore, to gain insights into the mechanisms controlling
hepatocyte proliferation during liver regeneration, it is important to unravel mechanisms of
feedback and crosstalk regulation that are relevant in hepatocytes.

In general, activation of PI3K leads to the generation of phosphatidylinositol 3,4,5–triphos-
phate (PI3,4,5-P3) that serves as docking site for the serine/threonine protein kinase Akt at the
plasma membrane. Akt is activated by phosphorylation on serine 473 and threonine 308 and
subsequently phosphorylates multiple substrates with important functions in key biological re-
sponses. While PI3K can be activated by direct binding to the receptor, MAPK signaling requires
the activation of SOS and Ras that in turn activates Raf initiating the MAPK signaling cascade.
Activated Raf leads to phosphorylation of a dual specific kinase, the mitogen-activated protein
kinase kinase (MEK1 and 2), that phosphorylates the extracellular-signal regulated kinase
(ERK1 and 2). Dual phosphorylated ERK regulates cytoplasmic and nuclear factors and thereby
modulates numerous biological responses such as proliferation, differentiation and survival.
Both signaling pathways are tightly interlinked and several mechanisms have been proposed for
feedback loops within and crosstalk between PI3K and MAPK signaling (S2–S3 Tables). For ex-
ample, it was shown that within the MAPK signaling pathway a negative feedback loop is trig-
gered by ERK or p90RSK targeting SOS [4], and a positive feedback loop operates from ERK to
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Raf via RKIP, a protein playing a dual role as positive and negative regulator of MAPK signaling
[5]. Furthermore, a positive feedback loop enhancing Gab1 activation via PI3,4,5-P3 generation
was identified within the HGF induced PI3K signaling pathway [6]. Upon IGF induced stimula-
tion, a negative interaction between PI3K andMAPK signaling pathways was reported, as Akt
mediated phosphorylation of Raf on serine 259 leads to inactivation of Raf [7]. The majority of
studies identifying these mechanisms were performed with tumor cell lines that harbor key alter-
ations in signaling pathways controlling, for example, cell proliferation. Therefore, studies with
primary cells are essential to identify physiologically relevant mechanisms. Furthermore, if we
assume the 17 most likely crosstalk and feedback mechanisms between PI3K and MAPK signal-
ing pathways (S3 Table), 131072 (217) possible network structures are conceivable. Thus, due to
the high combinatorial complexity, a systematic method is required to facilitate unbiased identi-
fication of cell-context specific structure of signaling networks.

Knowledge of cell-context specific feedback and crosstalk mechanisms is central to gain in-
sights into mechanisms that cause undesired effects of targeted therapy. Several compounds
targeting individual components in PI3K and MAPK signaling have been developed, and mul-
tiple clinical trials were initiated [8–10]. Inhibitors targeting the PI3K signaling pathway in-
clude the reversible PI3K inhibitor LY29004, the more potent irreversible inhibitor
Wortmannin and the allosteric Akt inhibitor VIII. Derivatives of Wortmannin, such as PX-
866, other PI3K inhibitors such as XL-147 [11] and CAL-101 [12] as well as the allosteric pan-
Akt inhibitor MK-2206 [13, 14] are currently used in clinical trials. To analyze the MAPK sig-
naling pathway, the compounds PD 98059 and U0126 inhibiting MEK have been widely ap-
plied. Several MEK inhibitors entered the clinical trials including, for example, CI-1040 and its
analogue PD 0325901 [15–18]. Despite the specificity of these inhibitors, their efficacy was re-
ported to be very limited. Combinatorial treatment with the MEK inhibitor ARRAY-438162 in
combination with the PI3K inhibitors BYL719 and BKM120 or the Raf inhibitors LGX818 and
RAF265 are ongoing [19, 20]. Furthermore, BX-912 is the PDK1 inhibitor that is primarily
used for the analysis of this signaling pathway, whereas the PDK1 inhibitor AR-12 was tested
in a clinical trial and showed limited absorption as well as pharmacokinetic variability [21]. Al-
though multiple compounds are available, strategies to improve their application and to select
most promising combinations remain to be developed.

To this aim, mathematical models provide unique tools to disentangle complexity and to
predict the impact of perturbations. Mathematical models of the MAPK signaling pathway
have been developed that only consider negative feedback [22], negative and positive feedback
loops [5] or that analyze the signal-to-response relation [23]. Mathematical models describing
both PI3K and MAPK signaling pathways upon single or combinatorial stimuli reveal the pres-
ence of crosstalk mechanisms between MAPK and PI3K pathways [24–26] or differences in
the stimulus specific network topology [27, 28]. As indicated, most of the studies considered
only single feedbacks or a limited number of crosstalk mechanisms. Therefore, to unravel a
more complex network structure, a systematic unbiased approach is required.

Several computational methods have been developed to infer and analyze signaling net-
works. Many of them are based on qualitative modeling formalisms [29–31] that can deal with
large networks, but are limited in their capacity to describe dynamic properties such as signal
duration and amplitude. Interaction graphs as one example for qualitative models have been
shown to be valuable tools for analyzing the structure of signaling pathways as they are implic-
itly contained as the underlying network structure in more complex modeling formalisms [32].
They can be used to make predictions on the possible qualitative behavior of a signaling net-
work, and these predictions can be compared with experimental data. Resulting inconsistencies
between data and network structure provide then a basis to identify missing or inactive interac-
tions in the network structure. One possibility to derive such predictions is to use the concept
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of the dependency matrix [32, 33]. In contrast to related methods, which rely on the concept of
sign consistency and require a steady state assumption [30, 34], exploitation of the dependency
matrix is well-suited for the analysis of transient effects. The general idea is that some charac-
teristics of the possible qualitative system response are determined by the paths and feedback
loops that represent the interaction graph. Interaction graphs are closely linked to logical mod-
els. They can be derived from an interaction graph by adding rules that define how the discrete
state of a node is governed by the states of other nodes [33]. While logical models are well-suit-
ed for studying the input-output behavior of large signaling pathways, an appropriate descrip-
tion of crosstalk mechanisms within the logical formalism is often difficult. This is due to the
fact that, in contrast to the main activation routes of a signaling pathway, crosstalk mechanisms
typically enhance or downgrade certain effects, rather than being necessary for or completely
blocking them. Therefore, interaction graphs that utilize continuous states are preferable to de-
scribe crosstalk mechanisms.

To analyze the impact of crosstalk and feedback regulation, dynamic modeling approaches
using coupled ordinary differential equations (ODEs) are most suited and allow quantitative in-
sights [24, 35–38]. However, consideration and systematic analysis of a large number of potential
mechanisms results in a high combinatorial complexity with many degrees of freedom and is
therefore often not feasible with ODEs. Therefore, it is desirable to exploit the advantages of both
qualitative and quantitative modeling and to develop strategies to combine both approaches.

Here, we present a novel hybrid approach (Fig 1), which combines qualitative and quantita-
tive modeling techniques to unravel the HGF induced activation of MAPK and PI3K signaling in
primary mouse hepatocytes based on time-resolved experimental data. We started with an inter-
action graph master model containing previously reported crosstalk, feedback and feedforward
mechanisms and selected then minimal model structures of the interaction graph master model
that can explain the observed qualitative characteristics of the experimental data. In this way, the
search space of model candidates was vastly reduced. With the subsequent analysis using ODE
models, we identified the model structure representing the experimental system best. We demon-
strate that the inferred HGF model shows robust behavior against single perturbations, but en-
ables predictions of combinatorial inhibition leading to strongly reduced Akt and ERK
activation. This application demonstrates the potential of our network inference approach to
guide the development of context-specific therapeutic intervention strategies.

Results

HGF induced signaling pathways
To unravel the crosstalk between the MAPK and PI3K signaling pathways upon HGF stimula-
tion in hepatocytes, we built an interaction graph model of HGF induced activation of these
pathways based on literature knowledge (Fig 2). We distinguish between interactions that form
the main activation routes (“core model”; black edges in Fig 2) and interactions describing
feedback and crosstalk mechanisms (“candidate mechanisms”; turquoise edges) that have been
reported for special cell types or under certain experimental conditions (S1–S3 Tables). The
full graph including the core model and all candidate mechanisms is considered as a non-cell-
type specific “HGF master model”.

To analyze which of the candidate mechanisms are active in our cellular system, we treated
primary mouse hepatocytes with HGF in combination with specific Met inhibitor (PHA
665752), MEK inhibitor (U0126), PI3K inhibitors (LY294002, Wortmannin and PI-103) and
PDK1 inhibitor (BX-912) alone or in combination. Additionally, we employed siRNA targeting
Akt and ERK1/2. By time-resolved quantitative immunoblotting and by protein array we ana-
lyzed the phosphorylation of Akt, MEK1/2, ERK1/2 and p90RSK (S1 and S2 Fig). p90RSK
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activation occurs in two-steps: RSK_s denotes p90RSK phosphorylated at a single residue,
RSK_d refers to the double phosphorylated, fully active form of p90RSK (S1 and S2 Tables).
We also measured the dynamics of SOS1 activation upon MEK inhibitor treatment (S1A Fig).
The fold change of protein phosphorylation for each treatment condition was calculated in
comparison to the respective control and between treatment conditions (Fig 3A). For SOS1 ac-
tivation, the band shift was quantified as an indicator for its activation status (S1A and S3A
Figs). As expected, upon Met inhibitor treatment a strong decrease in phosphorylation of all
measured proteins was detected. Upon inhibition of MEK, MEK phosphorylation was initially
decreased, followed by an increased and sustained signal, whereas ERK, RSK_s and RSK_d
phosphorylation was strongly reduced. MEK inhibitor also influenced the dynamics of SOS1
activation resulting in a more sustained activation (S1A and S3A Figs). During the entire obser-
vation period the effect of MEK inhibitor treatment on Akt phosphorylation was highly vari-
able between the experiments. The siRNA targeting ERK1/2 showed a comparable effect on
ERK and Akt as the MEK inhibitor. Treatment with PDK1 inhibitor reduced Akt phosphoryla-
tion on serine 473 and threonine 308 (Fig 3A and S3A Fig). Interestingly, a decreased

Fig 1. Workflow of model selection strategy.Quantitative time resolved data is discretized for the selection
of submodels of the interaction graph master model. The interaction graph master model is based on
literature knowledge and consists of the “core model” and reported interactions between the signaling
pathways of interest, the “candidate mechanisms”. Ordinary differential equation (ODE) modeling utilizes the
entire information of the time resolved data. Model selection based on parameter estimation permits the
selection of the best model structure.

doi:10.1371/journal.pcbi.1004192.g001
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phosphorylation of MEK, ERK, RSK_s and RSK_d upon PDK1 inhibitor treatment was ob-
served at early time points and a subsequent increase at later time points. When applying MEK
and PDK1 inhibitors simultaneously, we observed decreased phosphorylation of all measured
proteins, but MEK phosphorylation showed an increased signal at later time points. A compa-
rable phosphorylation response was elicited by combinatorial treatment with MEK and PDK1
inhibitors or with PDK1 inhibitor alone except for Akt phosphorylation, which was additional-
ly decreased upon the combinatorial inhibitor treatment. The comparison between the combi-
natorial treatment with MEK and PDK1 inhibitor and MEK inhibitor treatment alone showed
decreased phosphorylation on Akt, MEK and RSK_d. Treatment with PI3K inhibitor and with
siRNA targeting Akt were not considered in our study due to the high variability observed in
our results (S3B Fig).

Fig 2. Interaction graphmaster model. The interaction graph master model was built from literature information. Detailed model documentation can be
found in S1–S3 Tables. The core model is given in black, candidate mechanisms are depicted in turquoise. Arrows represent activating (positive)
interactions, blunt-ended lines indicate inhibitory (negative) interactions. The measured species are marked with bold borders. The lightning symbol indicates
that the respective species was experimentally targeted with a chemical inhibitor or siRNA.

doi:10.1371/journal.pcbi.1004192.g002
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Selection of minimal model structures
To relate the data to the interaction graph model (Fig 2), we discretized the measured responses
to “increase”, “decrease” and “not measured or not conclusive” (Fig 3B): If a certain effect was
consistently observed for the replicates within the same time points, it was included as an ob-
served effect in the scheme of the discretized data. Otherwise, the effect was considered “not

Fig 3. Experimental results and predictions by interaction graphmodels. A) For each indicated protein, the fold change of the phosphorylation state
measured by quantitative immunoblotting of two different experimental conditions is shown on a logarithmic scale at the indicated time points after HGF
stimulation. Each row refers to one experiment; same experimental conditions are grouped with magenta lines. B) The discretization (left panel) is based on
Fig 3A and additional SOS1 measurements (S1A Fig). A slash shows that no measurements were taken or that the response was not conclusive. In the
middle and right panel, predictions from the core model and, exemplary, from the identified substructure 1 (Fig 4) are shown. Arrow pointing up/down: the
inhibition can only cause an increased/decreased activation of the measured protein. Bullet point: the inhibition does not affect the measured protein.
Combined up/down arrow and bullet point: the model does not restrict the response to the inhibition.

doi:10.1371/journal.pcbi.1004192.g003
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conclusive” and not taken into account. The fourth possible value "no change" was not observed
in our data set. Additionally, we included the timing of the response in the discretized data, clas-
sifying an observed effect as an early or late response. "Early" refers to the initial qualitative re-
sponse of a node within 30 minutes after HGF stimulation. A response was termed “late” if the
qualitative behavior at any successive time point is different from the initial (early) response
(Materials and Methods). Thus, the late response characterizes the first effect that is opposite to
the early response, or indicates that the qualitative response is similar for all time points.

Given an interaction graph model, we can predict the possible qualitative responses of the
considered proteins for the given experimental conditions using the concept of the dependency
matrix [33]. If the model predictions are in accordance with the discretized data, the given
structure is able to reflect the experimental results. Fig 3B shows the possible qualitative re-
sponses predicted from the interaction graph core model. Comparing model predictions with
the discretized data, the majority of observed behaviors were not represented by the core
model. Hence, we conclude that some of the candidate mechanisms must be active in primary
mouse hepatocytes. To identify minimal substructures of the HGF master model consistent
with the data, we added single candidate mechanisms and combinations thereof to the core
model and tested the resulting model structures for their ability to represent the observed ef-
fects. In order to select all minimal submodels of the interaction graph master model that can
explain the observed effects from the experimental data (Fig 3B, left panel) and that contain
the core model, we proceeded as follows: starting from the core model, we added one candidate
mechanism at a time (that is, all edges making up the mechanism, S3 Table) and derived the
model predictions for the resulting interaction graph structure as explained above. If all experi-
mental observations were in accordance with these predictions, the structure was added to the
list of selected minimal model structures. If not, we combined the respective structure with
other candidate mechanisms whose sole addition to the core model was not able to explain the
data. Again, we checked the ability of each resulting model structure to explain the data and ei-
ther considered the structure as selected minimal model or added further candidate mecha-
nisms. We ensured that only minimal model structures were selected, that is, no submodel of a
selected model can explain the data. Furthermore, the procedure assures that all minimal
model structures that are able to explain the data were found.

Thereby, all possible minimal model structures were selected, each being composed of the
core model and a subset of the candidate mechanisms. Thus, among the possible candidate
edges that may be relevant for the other cell types and conditions, we selected candidate mech-
anisms that are specific for the HGF induced MAPK and PI3K signaling pathways in primary
mouse hepatocyte. The candidate edges that have not been selected by our approach might
play a role in other cell types and for other conditions.

In total, we identified 16 minimal model structures that can equally well explain our experi-
mental data (Fig 3B, right panel and S4 Fig). Notably, in some cases, the qualitative response is
not restricted by the model structure: If a path between the inhibited and measured species in-
cludes a negative feedback loop, or if paths of both signs exist between the two nodes, the actual
response depends on the strength of the different mechanism and, thus, cannot be predicted by
a purely qualitative model.

To develop corresponding ODE models with an appropriate number of parameters, we
compressed all selected minimal model structures by removing parallel mechanisms with the
same sign and by compressing linear chains [30]. Each candidate mechanism is represented by
a single edge. Hence, each selected minimal model structure is composed of the compressed
core model and a combination of candidate edges, each corresponding to one candidate mech-
anism. We define as “building block” the characteristic combination of candidate edges of a se-
lected minimal model structure. Fig 4 shows the compressed selected 16 minimal model
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structures, the compressed core model and a model containing all building blocks (“complete
model”). In contrast to the master model, the complete model contains only those candidate
mechanisms that are included in at least one selected minimal model structure. By comparing
the 16 minimal model structures, we observed that all candidate models include (i) the edge
from ERK to PI3K, (ii) a negative feedback from ERK to SOS1, either directly or indirectly via
RSK_d, (iii) a positive route from ERK to MEK through various mechanisms and (iv) a positive
route from PDK1 to MEK. The latter route is included as a direct edge from PDK1 to MEK in
all models but model 8, whereas model 8 contains a longer path via RSK_d, Ras and Akt.

Ordinary differential equation model selection
To test which of the identified structures can quantitatively represent the transient and sus-
tained effects observed in the experimental data, we translated each of the 16 compressed

Fig 4. Selectedminimal model structures, core and complete model. The compressed selected 16 minimal model structures that can explain the
discretized data (Fig 3B) are shown. In addition, the complete model structure (that is the union of models 1–16) and the compressed core model structure
are displayed. Arrows represent activating (positive) interactions; blunt-ended lines indicate inhibitory (negative) interactions. In each model, the core model
is colored black, while the building block (the set of added candidate mechanisms) is shown in turquoise.

doi:10.1371/journal.pcbi.1004192.g004
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selected minimal model structures as well as the core and the complete model into an ODE
model. While interaction graph modeling is based on discretized data, we utilized the full quan-
titative information of the data sets for ODE modeling (S1–S4 Datasets). In addition to the
datasets used for the selection of the 16 model structures, we used datasets of time resolved
measurements of HGF induced activation of the above mentioned proteins without inhibitor
treatment. Furthermore, Met phosphorylation and active Ras measured by quantitative immu-
noblotting and protein array, respectively, were considered. In addition, the degree of phos-
phorylation of ERK and Akt after HGF stimulation was measured by mass spectrometry and
included in the model. Due to its merely qualitative nature, the dataset on SOS1 activation was
not used for ODE modeling. Overall, the ODE models were calibrated on 2200 data points and
25 experimental conditions including four targeted perturbations. A complete list of kinetic re-
actions considered for our modeling approach is shown in S4 Table. For each model structure,
parameter estimation was performed to determine the model performance in relation to the ex-
perimental data. We applied an adaptation of a likelihood ratio test (LRT) with a threshold of
95%, which takes into account the different degrees of freedom for each model structure (Mate-
rials and Methods). This “forward selection” facilitated an LRT-based ranking of model struc-
tures (Fig 5A). As expected, the complete model structure performed best, whereas the core
model structure performed significantly worse than all selected minimal model structures. In-
terestingly, the model ranking showed several selected minimal models with similar likelihood
(16, 4 and 10). Therefore, a clear distinction of a best performing model structure was not pos-
sible. Furthermore, a significant gap was observed in the likelihood values between the com-
plete model and the best performing selected minimal model structure, model 16. Thus, none
of the minimal models is a valid simplification of the complete model. This result suggested
that models containing combinations of building blocks might perform better than minimal
models. To reduce the complexity of combining all model structures, we applied a “backward
selection” based on the removal of single building blocks from the complete model structure
followed by parameter estimation to obtain a new ranking (Fig 5B). Strikingly, the forward and
backward selections revealed very different results. As an example, model 16 is the best per-
forming selected minimal model structure in the forward selection, whereas a reduction of
model 16 in the backward selection does not lead to a significant loss in likelihood. The remov-
al of the selected minimal model structures 4, 6, 8 and 12 showed a significant loss in perfor-
mance according to the likelihood, suggesting the importance of their building blocks. Based
on the backward selection result, we generated combinations of model structures focusing on
these four minimal models and performed parameter estimation for all eleven possible combi-
nations (Fig 5C). As expected, the new ranking showed that these model structures filled the
gap between the complete model and the best performing minimal model 16. Interestingly,
combinatorial model structures 4_8_12 and 4_6_8_12 displayed a similar performance as the
complete model structure, indicating that they are valid simplifications of the complete model.
Between these models, model 4_8_12 performed best as it contained fewer parameters than
model 4_6_8_12. The list of estimated parameter values of model 4_8_12 is given in S5 Table.
A comparable ranking of all models was obtained utilizing the Akaike Information Criterion
(AIC) (S6 Fig). Based on the ranking, we proposed a model structure consisting only of a subset
of feedback and crosstalk mechanisms of the complete model, namely eight mechanisms out of
thirteen. As shown in Fig 6B–6F, model 4_8_12 can reproduce the dynamic behavior of the
measured species under diverse experimental conditions. A comparison of the performance of
the core model, the complete model and the model 4_8_12 is given in S8 Fig. We hypothesized
that the advantage of a reduced model resides in an improved predictive power. To compare
the predictive power of the complete model and the model 4_8_12, we analyzed with the
model the dynamic behaviour of a protein that has not been measured experimentally. We
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selected “active PI3K” that has not been used in the parameter estimation approach. We calcu-
lated the prediction profiles of “active PI3K” as described in [39] for the entire observation
time frame. The prediction profiles were translated into confidence intervals along the trajecto-
ry, giving a measure of the accuracy of the prediction of the PI3K dynamic for both models. As
shown in Fig 5D, model 4_8_12 outperforms the accuracy of the complete model by having an
approximately 10-fold smaller confidence interval. In addition, the model trajectories of active
PI3K differ significantly between the complete model and model 4_8_12. This indicates that
prediction of the complete model is not only uncertain, but also incorrect as the confidence in-
terval of the complete model does not contain the well-defined trajectory of model 4_8_12.

Fig 5. Model selection. A) Rankings represent the forward selection approach using selected minimal model structures; B) backward selection where the
building blocks are removed from the complete model; C) the model combination selection. D) Comparison of the predictive power of the complete model and
4_8_12 model in respect of the kinetic of “active PI3K”. Confidence intervals of the predictions are indicated by shaded areas. E) Ranking of model selection
including minimal model structures, model combinations and randommodels is shown. All rankings of model selection present the negative logarithmic
likelihood penalized by parameter difference as described in Materials and Methods on the y-axis. Model identifiers are shown on the x-axis.

doi:10.1371/journal.pcbi.1004192.g005
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This discrepancy is due to the parameter non-identifiabilites in the over-parameterized com-
plete model. These results show that the selected reduced model 4_8_12 has a better predictive
power than the complete model.

To challenge our approach, we generated 50 model structures consisting of randomly select-
ed combinations of candidate edges. For the random model structures, we performed parame-
ter estimation and derived a ranking as in the forward selection step (Fig 5E). This showed that
the majority of randommodels performed worse than our selected models. Random models
that performed well had a similar structure as the best performing selected models (S6 Table
and Fig 5E). As an example, randommodel structure 5, which possesses three edges that are
contained in model 12 or model 16, performed similarly as the selected minimal model struc-
ture 16. The two additional edges are present in model structure 4 and 8, respectively. There-
fore, random model structure 5 is similar to the best performing model structure 4_8_12.

At first glance, model 4_8_12 includes three feedback loops (Fig 6A). Within the MAPK
pathway, a positive and a negative feedback emerge from the candidate mechanisms ERK to
Raf1 and RSK_d to SOS1, respectively. Within the PI3K pathway, the edge PI3K to Gab1 closes
a positive feedback loop. Furthermore, model 4_8_12 is characterized by the presence of

Fig 6. ODEmodel fit. A) Structure of the best performing model 4_8_12. B-F) Plots showing representative model trajectories (solid lines) of the
phosphorylation kinetic of the indicated proteins measured by quantitative immunoblotting in primary mouse hepatocytes pretreated with the indicated
inhibitors and stimulated with 40 ng/ml of HGF for the indicated time (stars). y-axes show the concentration of the respective measured protein in arbitrary
units on a logarithmic scale. The shadowed area surrounding the model trajectory represents the confidence interval delimited by the dashed line.
Treatments are color-coded as indicated in the figure.

doi:10.1371/journal.pcbi.1004192.g006
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several crosstalk mechanisms between PI3K and MAPK. Notably, these mechanisms give rise
to two positive and two negative feedback loops, each containing species from both the PI3K
and MAPK pathways. As shown in Fig 6B–6F, model 4_8_12 can reproduce the dynamic be-
havior of the measured species under diverse experimental conditions. A comparison of the
performance of the core model, the complete model and the model 4_8_12 is given in S8 Fig.

Negative crosstalk: experimental validation
To experimentally validate model 4_8_12, we focused on the identified interaction from Akt to
Raf1 and predicted the impact of different degrees of Akt inhibition on the inhibitory impact of
Akt on Raf1. The model predictions indicate that 3, 6 and 100 fold Akt inhibition results in a
77%, 83% and 99% reduction of the inhibitory effect of Akt on Raf1 (Fig 7A and 7B). The
model includes active Raf1, which cannot be directly compared to Raf1 phosphorylated at a
specific phosphorylation site as phosphorylation on serine 338 contributes to Raf1 activation,
whereas phosphorylation on serine 259, the target of Akt, represents an inactivation signal
[40]. Therefore, we used the effect of Akt inhibition on serine 259 phosphorylation of Raf1 as a
proxy to experimentally address the inhibitory impact of Akt on Raf1. Experimentally, we stim-
ulated primary mouse hepatocytes with HGF in the absence and presence of the specific Akt
inhibitor VIII and monitored the impact on Raf1 phosphorylation on serine 259. As shown in
Fig 7C and S9–S11 Figs, we achieved an inhibition of Akt phosphorylation between 90% and
100% and concomitantly observed a decrease of Raf1 phosphorylation on serine 259 (Fig 7D
and S9–S11 Figs). Additionally, a moderate increase of MEK phosphorylation is also observed
upon Akt inhibitor treatment (Fig 7D). The results confirmed the presence of this interaction
in our cellular model system upon HGF stimulation. This interaction is also present in models
7 and 8, but these models have not been selected as best performing models. We emphasize
that, since model 4_8_12 is derived from the combination of the single models 4, 8 and 12, it

Fig 7. Negative crosstalk: experimental validation. A-B). Model prediction of active Akt and the loss of active Raf1 upon 3, 6 and 100 fold inhibition of
active Akt. C-D) Experimental validation of the effect of Akt inhibition in primary mouse hepatocytes treated with 40 ng/ml of HGF alone or in combination with
Akt inhibitor VIII. Quantification of the phosphorylation kinetics of Akt and Raf1 determined by quantitative immunoblotting (S9–S11 Fig).

doi:10.1371/journal.pcbi.1004192.g007
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does not contain unique edges. However, the validation of model 4_8_12 as the optimal net-
work structure in primary mouse hepatocytes is given by our model selection process together
with the experimental validation of the interaction between Akt and Raf1.

The candidate mechanisms within model 4_8_12 generate crosstalk as well as feedforward
and feedback loops within the network structure leading to robust network behavior. These
characteristics may limit the efficacy of targeted therapies or create undesired effects. There-
fore, to further validate our model structure, we analyzed how the system responds to different
perturbation conditions.

Inhibitor combination: model predictions and experimental validation
To identify strategies to efficiently inhibit Akt and ERK signaling, we used the inferred 4_8_12
model to determine the effect of reducing the rate of outgoing reactions of each protein by
50%. Additionally, we performed simulations for every possible combination of double inhibi-
tion. As readout of PI3K and MAPK pathway activation, we calculated the area under the
curve of Akt and ERK phosphorylation and the sum thereof to evaluate the effect of the tar-
geted inhibition (Fig 8A). Single inhibition of PI3K or PDK1 drastically reduced pAkt and, sur-
prisingly, exerted the opposite effect on pERK. This result indicated that the network structure
was robust against single inhibitor treatment suggesting that the two signaling pathways com-
pensated each other. We calculated the sum of the integrals of Akt and ERK phosphorylation
to predict the double inhibition resulting in an effective reduction of both readouts (Fig 8A).
Interestingly, while the sum of the integral of pAkt and pERK is sensitive to the combined inhi-
bition of PI3K and MEK resulting in a 71% reduction of the sum, the combined inhibition of
Met and RSK results in an increase of the sum to 118%. In some cases, we observed synergistic
effects as the combination of inhibitors had a stronger effect on the readout than the sum of
impact of the respective individual inhibitions. For example, single inhibition of Met or SOS1
led to the reduction of the sum of the integral of pAkt and pERK by 18%, while their combina-
tion led to 50% reduction. To address the synergistic effect of the inhibitor combination treat-
ment, we calculated the effect of the inhibitor combination compared to the single inhibitor
treatment (Fig 8B). Interestingly, we observed that the Ras inhibitor has a synergistic effect on
pAkt and pERK with several other inhibitors such as Raf1, ERK and Rac inhibitors. We fur-
thermore detected synergy between the PDK1 and Akt inhibitor on pAkt and between the Met
inhibitor and the SOS1 inhibitor on pAkt and pERK. Surprisingly, the combination of PI3K
and PDK1 inhibitors shows the lowest synergistic effect on pAkt and the highest on pERK, re-
sulting in a mild synergy in the sum of pAkt and pERK.

To experimentally validate the model predictions on combinatorial treatments, we first per-
formed single inhibitor treatments targeting PDK1, PI3K, Met and MEK prior to HGF stimula-
tion and estimated the inhibition strength parameters for each individual inhibitor for model
4_8_12 (Fig 8C). We estimated 10% strength for the PI3K inhibitor, 83% for the MEK inhibi-
tor, 90% strength for the Met inhibitor, and 53% for the PDK inhibitor. Based on the estimated
inhibitor parameters, we performed predictions of the dynamic behavior of pAkt and pERK
upon combinatorial inhibitor treatments. In detail, we simulated the activation kinetics of
pAkt and pERK upon combining the PI3K and the MEK inhibitor and upon combining the
Met and the PDK1 inhibitor. We experimentally validated the model predictions by treating
primary mouse hepatocytes with the indicated inhibitor doses and combinations and analyzed
the activation kinetic of pAkt and pERK (Fig 8D and S12 Fig). The experimental results indi-
cate that the combination of low dose of the PI3K and the MEK inhibitor slightly increases
pAkt and reduces pERK and, therefore, are in good agreement with the model predictions. In-
terestingly, the combined application of the Met and the PDK1 inhibitor resulted in a reduction
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Fig 8. Inhibitor combination: model predictions and experimental validation. A) Heatmaps showing model simulations of the impact of 50% inhibitor I
individually or in combination with 50% inhibitor II. As readout, the area under the curve of pAkt, pERK, and the sum of pAkt and pERK upon inhibitor
treatment is compared to the area under the curve of the control condition. The change in the response induced by the inhibitor treatment is indicated as
percentage to the control condition. B) Heatmap of synergistic effect of inhibitor combination treatment shown in panel (A). The synergy represents the
efficiency of the double inhibitor treatment compared to individual inhibitor treatments. C) Inhibitor strength parameter estimation. Model 4_8_12 trajectories
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of pAkt, while it had only a moderate effect on pERK. Additionally, the calculated area under
the curve of pAkt, pERK and their sum for the model trajectories and the experimental data
are in agreement. In conclusion, model simulations and experimental verifications suggested
that the considered signaling network is less sensitive to single interventions, but can be effi-
ciently targeted by combinatorial treatments.

Discussion
The identification and quantitative description of relevant feedback, feedforward and crosstalk
regulation of signaling pathways is an important step towards understanding cellular signaling
networks and a key prerequisite for the development of successful drug targeting strategies
[41–43].

Our network inference approach combines qualitative (interaction graph) and quantitative
(ODE) modeling and, hence, benefits from the strengths of both methods. The key advantage
of our introduced hybrid approach is that interaction graph modeling enables pre-selection of
minimal model structures from a vast search space of potential model candidates, which are
then translated into ODE models for integration of quantitative details. Several other mathe-
matical modeling approaches also deal with a family of candidate models aiming at the identifi-
cation of the correct wiring. These approaches employ, for example, ensemble modeling [37]
or Bayesian inference [44] and can usually only deal with a limited number (tens to hundreds)
of competing ODE models. However, if one considers all possible combinations of reported
crosstalk, feedback and feedforward mechanisms, these possibilities result in an enormous
number of candidate models. As shown herein, by pre-selecting minimal model structures
using interaction graph modeling, one can massively reduce the search space (here from 105 to
16) before continuing with a smaller library of ODE models. Other modeling approaches using
perturbation data to unravel the network structure rely on modular response analysis (MRA),
which requires steady state assumptions and linear equation based modeling. Therefore, these
approaches are more suited to identify feedback and crosstalk mechanisms that determine the
medium to long term behavior [24, 35]. Furthermore, a complete set of perturbation experi-
ments that alter the state of each individual module is required. In contrast, our proposed
modeling strategy also enables the elucidation of mechanisms influencing the immediate sys-
tem response as well as taking into account non-linear effects such as saturation.

Applying our approach to HGF signaling in primary mouse hepatocytes, the ranking of the
resulting minimal ODE model structures by forward selection indicated that (i) model struc-
tures harboring the negative feedback edge from RSK_d to SOS1 in most cases outperformed
their partner model containing the negative feedback edge from ERK to SOS1 and (ii) random
model structures, which do not include any of these negative feedback edges, are strongly out-
performed by the candidate models. The presence of a negative feedback within the MAPK sig-
naling is well known, and ERK is usually considered as central player of this feedback [45].
However, in line with our findings, it was shown that the negative feedback to SOS1 could also
be mediated by p90RSK [4]. Although forward selection did not allow us to identify a single se-
lected minimal model structure as the one explaining the experimental data best, these

(solid lines) of the phosphorylation kinetic of pAkt and pERKmeasured in primary mouse hepatocytes treated with the indicated inhibitor or DMSO prior to
HGF 40 ng/ml treatment (filled circles). The experimental data represent the average of two or more replica. D) Model predictions of pAkt and pERK kinetics
and experimental validation of inhibitors combination treatment. Model predictions are based on the inhibitor strength estimated as in Fig 5C. The
experimental validation is based on primary mouse hepatocytes treated with the indicated inhibitors or DMSO and subsequently stimulated with 40 ng/ml
HGF for the indicated time points. Quantification of the phosphorylation kinetics of Akt and ERK determined by quantitative immunoblotting (S12 Fig).
Quantification of the area under the curve (AUC) of pAkt, pERK and their sum is indicated for the model trajectories and the experimental data. The
experimental data is a representative dataset of an experiment performed in biological duplicates.

doi:10.1371/journal.pcbi.1004192.g008
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structures served as important basis for further analysis. By backward selection, we identified
minimal model structures containing feedback and crosstalk mechanisms relevant for HGF
mediated responses in primary mouse hepatocytes resulting in a reasonable number of combi-
nations of minimal model structures that had to be tested. The best performing combinatorial
model 4_8_12 showed a positive feedback edge of ERK to Raf1. This feedback is known to in-
volve RKIP [5], and it is the result of two negative effects: RKIP negatively regulates MEK acti-
vation by binding to phosphorylated Raf1 and, therefore, inhibiting the signaling cascade
activation. A negative feedback loop on RKIP is triggered by ERK allowing the release of Raf1
from RKIP-Raf1 complex resulting in MEK activation. This represents an additional mecha-
nism to fine-tune signaling responses within the negative feedback from downstream proteins
to SOS1. Furthermore, our approach unraveled a negative interaction from Akt to Raf1, which
we confirmed experimentally in our cellular model system. Raf1 phosphorylation on serine 259
by Akt has also been shown in the HGF stimulated human hepatoma cell line Hep3B [46].
Raf1 phosphorylation on serine 259 contributes to control the mitogenic response induced by
MAPK signaling [47], and it has been observed in the context of genetic disorders [48]. Finally,
a crosstalk mechanism from ERK to PI3K is indicated in the model 4_8_12, which gives rise to
two additional feedback loops controlling both the MAPK and the PI3K branch. The negative
feedback loop involves the negative effect of Akt on Raf1; the positive feedback loop is mediat-
ed by PI3K activated Gab1 that strengths the MAPK activation via Rac and PAK.

Thus, our proposed network structure shows positive and negative feedback loops that are
highly interlinked. Feedback loops are the base of non-trivial dynamic behavior. Positive feed-
back loops have been shown to cause bistable behavior [49] and must be contained in the sys-
tem's structure to enable more than one steady state [50]. Negative feedback loops are known
to stabilize the system's response [51] and are a structural prerequisite for oscillations [52].
Within the last decades, it has become more and more evident that complex and robust dy-
namics of cellular signaling networks arise from the interplay of positive and negative feedback
loops [53]. Examples include that of periodic calcium spikes after growth factor or hormone
stimulation [54] and the MAPK system, where positive and negative feedback loops allow the
system to switch between monostable and bistable regimes and, therefore, to flexibly adapt the
response to different stimuli [55].

Components of the MAPK and PI3K signaling pathways are frequently altered in pathologi-
cal conditions and, thus, there is much interest in developing targeted therapies [56, 57]. A
number of potential interactions between these two pathways have been studied in different
cell types (S3 Table). By employing mathematical modeling, a study of the MAPK and PI3K
pathways crosstalk showed that both compensate for each other [28]. Although these two path-
ways are well studied, a systematic strategy to unravel their crosstalk has been missing.

Our modeling strategy delivers as output a dynamic ODEmodel validated with respect to
both parameters and network structure, as an invaluable tool to not only elucidate cellular signal-
ing pathways, but also to design cell-type or even patient-specific intervention strategies. In our
case study, various interconnections between the PI3K and MAPK pathway in the best perform-
ing model structure indicate redundancy within the HGF stimulated signaling network. Our
model predictions suggest that the effects of intervention in one signaling pathway can be com-
pensated by the impact of the other pathway, as in case of treatment with single PI3K or PDK1
inhibitor. To maximize the response of inhibition, combinatorial treatments are required as sug-
gested previously [24, 36]. However, a positive synergistic effect is predicted only for some com-
binatorial treatments suggesting robustness. Therefore, analyses focusing on the identification of
the most promising synergetic effects are essential to develop novel combinatorial treatments.
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Our proposed strategy to disentangle complex signaling networks provides a generic and system-
atic approach to elucidate cell- and context-specific feedback and crosstalk mechanisms and prom-
ises to significantly improve the development of effective combinatorial intervention strategies.

Materials and Methods

Ethics statement
All animal experiments were approved by the governmental review committee on animal care
of the state Baden Württemberg, Germany (reference number A24/10). Anesthesia was carried
out by intraperitoneal injection of 5 mg ketamine hydrochloride 10% (w/v) (Bayer Health
Care, Leverkusen, Germany) per 100 mg body weight and 1 mg xylazine hydrochloride 2% (w/
v) (Pfizer, Berlin, Germany) per 100 mg body weight.

Isolation of primary mouse hepatocytes
Mice of 8–12 week-old C57BL/6N (Charles River, Sulzfeld, Germany) were used for primary
hepatocyte isolation. Mice, which were housed at the DKFZ animal facility under a constant
light/dark cycle, maintained on a standard mouse diet and allowed ad libitum access to food
and water, were used for primary hepatocyte isolation. Primary mouse hepatocytes were isolat-
ed as described [58]. After isolation, hepatocytes were seeded in full medium (phenol red-free
Williams E medium (Biochrom) supplemented with 10% (v/v) fetal bovine serum (Life Tech-
nologies), 0.1 μM dexamethasone, 10 μg/ml insulin, 2 mM L-glutamine (Life Technologies)
and 1% (v/v) penicillin/streptomycin 100x (Life Technologies)) using collagen I-coated cell
dishes (BD Biosciences). Hepatocytes were cultured at 37°C, 5% CO2 and 95% rH. Following
cell adhesion, hepatocytes were washed with PBS (PAN Biotech) and subsequently cultivated
in serum-free cultivation medium (phenol red-free Williams E medium supplemented with 0.1
microM dexamethasone, 2 mM L-glutamine and 1% (v/v) penicillin/streptomycin 100x) for 14
hours. Subsequently, hepatocytes were washed with PBS (PAN Biotech) and cultivated in
serum-free cultivation medium depleted of dexamethasone for 6 hours prior treatment.

Time course and dose response experiments
For time course and dose response experiments after isolation, hepatocytes were seeded at con-
fluence (2x106 cells/6 cm dish) and cultivated as described before. For mass spectrometry analy-
sis, after isolation, hepatocytes were seeded at confluence (5x106 cells/10cm dish) and treated as
described [59]. After 6 hours in serum-free cultivation medium depleted of dexamethasone, he-
patocytes were stimulated with indicated concentration of recombinant mouse HGF (HGF)
(R&D Systems) at indicated time points (Supporting Information Datasets). For inhibitor exper-
iments, cells were treated for 30 to 45 minutes with 20 microMMEK inhibitor U0126, 5–25
microM PI3K inhibitors LY294002, Wortmannin (all Cell Signaling Technologies), or PI-103
(Calbiochem), 20 microM PDK1 inhibitor BX-912 (AxonMedchem), 20 microM Akt inhibitor
VIII (Millipore), or 5–20 microMMet inhibitor PHA-665752 (TOCRIS Bioscience) prior to
stimulation with 40 ng/ml of HGF for the designated time points. The control condition was car-
ried out by treating the cells with dimethyl sulfoxide (DMSO, Sigma-Aldrich). Model validation
experiments were carried out by stimulating the primary mouse hepatocytes with the following
inhibitor combinations: 1 microMMEK inhibitor U0126 (Cell Signaling Technologies) with 0.1
microM PI3K inhibitor PI-103 (Calbiochem); 5 microMMEK inhibitor U0126 (Cell Signaling
Technologies) with 0.5 microM PI3K inhibitor PI-103 (Calbiochem); 10 microM PDK1 inhibi-
tor BX-912 (AxonMedchem) with 5 microMMet inhibitor PHA-665752 (TOCRIS Bioscience);
10 microM PDK1 inhibitor BX-912 (AxonMedchem) with 1 microMMet inhibitor PHA-
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665752 (TOCRIS Bioscience); 10 microM PDK1 inhibitor BX-912 (AxonMedchem) with 0.1
microMMet inhibitor PHA-665752 (TOCRIS Bioscience). Single inhibitor treatments were also
performed using the inhibitor concentrations listed before. All inhibitors were applied 30 min-
utes prior to stimulation with 40 ng/ml of HGF for the designated time points.

For siRNA treatment after isolation, hepatocytes were seeded at subconfluence (900000
cells/well in 6 wells/plate). After adhesion, cells were washed as described above and serum-
free cultivation medium was added. Subsequently, hepatocytes were transfected with siRNAs
by applying RNAiMAX (Invitrogen) and incubated for 16 hours. ON-TARGETplus SMART
Pool siRNA targeting mouse Akt, ERK1 and ERK2 (Dharmacon, Thermo Scientific) were ap-
plied to a final concentration of 10nM, (ERK1 and ERK2 ON-TARGETplus SMART Pool siR-
NAs were pooled). The control condition was carried out by using ON-TARGETplus Non-
targeting Pool. After 16 hours, cells were washed, and serum-free cultivation medium depleted
of dexamethasone was added 6 hours prior stimulation.

Quantitative immunoblotting
Cells were lysed on ice at the indicated time points using total cell lysis buffer (20 mM Tris
pH7.4, 150 mMNaCl, 1mM EDTA pH8.0 (AppliChem), 1% (v/v) NP40 (Roche Applied Sci-
ences), 1mM ZnCl2, 1mMMgCl2, 1 mMNa3VO4, 10 mM NaF, 10% glycerol, 0.1 mg/ml
AEBSF, 1μg/ml aprotinin). Total cellular lysate was used to assay MEK, ERK, Akt, Raf1, or
they were subjected to immunoprecipitation (IP) using 500 micrograms of total protein and
subsequently assayed on SDS-PAGE. For IP anti-Met, aanti-Raf (both Santa Cruz Biotechnolo-
gy) and anti-SOS (Merk Millipore) antibodies were used. Samples were loaded in a random
order to reduce the correlated error [60]. Primary antibodies anti-p44/42 threonine 202/tyro-
sine 204 phosphorylation (anti-pERK1/2), anti-p44/42 total protein (anti-ERK), anti-MEK ser-
ine 217/221 phosphorylation, anti-MEK total protein, anti-Akt serine 473 phosphorylation,
anti-Akt threonine 308 phosphorylation, anti-Akt total protein, anti-p90RSK serine 227 phos-
phorylation, anti-p90RSK 380 phosphorylation, anti-p90RSK total protein (Cell Signaling
Technology), anti-Raf serine 259 phosphorylation (Cell Signaling Technology), anti-Raf serine
338 phosphorylation (Upstate), anti-Raf total protein (Santa Cruz Biotechnology), anti-SOS
(Merk Millipore), anti-phosphotyrosine 4G10 (Merck Millipore), anti-PDI (Upstate), anti-
actin (Sigma) were used. For the quantification of active Ras, cells were lysed with total cell
lysis buffer (125 mMHEPES (pH 7.5), 750 mM NaCl, 1% NP40, 50 mMMgCl2, 10% glycerol,
0.1 mg/ml AEBSF, 1 microgram/ml aprotinin and protease inhibitor cocktail (Roche)). The
whole lysate was subjected to IP supplemented with MgCl2 (50 mM) and Raf-RBD-GST-beads
or processed on protein array (as described in the protein array section). After the IP, the ly-
sates were assayed on SDS-PAGE and primary antibody anti-panRas (OP21) (Calbiochem)
was used for detection. Secondary horseradish peroxidase-coupled antibodies (anti-rabbit HRP
and anti-mouse HRP) were used (Amersham Biosciences). Target proteins were visualized
using enhanced chemiluminescence (GE Healthcare), and signals were acquired using the
CCD camera-based device LumiImager (Roche Diagnostic) or ImageQuant LAS 4000 biomo-
lecular imager (GE healthcare). Immunoblot data were quantified using LumiAnalysis software
(Roche Diagnostic) or ImageQuant TL version 7.0 software (GE Healthcare).

Mass spectrometry
Primary mouse hepatocytes were isolated and cultivated as described above. For Akt and ERK
phosphorylation analysis, after 6 hours of serum-free cultivation medium depleted of dexametha-
sone, the cells were stimulated with 40 ng/ml or 100 ng/ml of HGF for 10 minutes or left untreat-
ed. Total cellular lysate was denaturated in 10% SDS and subsequently subjected to IP of ERK1
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and Akt (Santa Cruz Biotechnology). For IP, anti-ERK1 (Santa Cruz Biotechnology) and anti-Akt
(Cell Signaling Technology) antibodies were used. Immunoprecipitated proteins were resolved on
SDS-PAGE, and gels were stained with SimplyBlue SafeStain Life Technologies according to man-
ufacturer’s instructions. Quantitative determination of the degree of phosphorylation of Akt and
ERK was performed as previously described [59, 61] and was used for ODEmodel calibration.

Protein array: Akt and ERK quantification
Protein array analysis was performed for the simultaneous detection of Akt and ERK phos-
phorylation. The spotting was performed with a sciFLEX-Arrayer SP5 (Scienion, Berlin) piezo-
electric non-contact spotter on 16-pad nitrocellulose slides (Oncyte, Grace). For Akt detection,
the following non-rabbit-derived capture antibodies were used: sc-55523 (Santa Cruz Biotech-
nology) and CS2967 (Cell Signaling Technology) for total Akt, Up05669 (Upstate) for phos-
phorylated Akt. For ERK detection, the following spotting antibodies were used: BD610030
(BD Bioscience), Up05157 (Upstate), MAB1576, CS9107 (Cell Signaling Technology) for total
ERK and CS9106, CS9109 (Cell Signaling Technology), M9692, for phosphorylated ERK. Bo-
vine serum albumin from Sigma (A9418) was labelled with the DyLight800 fluorophore using
DyLight 800-NHS-Ester (46422) and Fluorescent Dye Removal columns (22858) from Thermo
Scientific were used for the dilution of the capture antibodies for a spot to spot normalization.
Capture antibodies (diluted the following: M9692 (1:8 dilution), BD, CST, Sigma, Upstate
(1:3,6 dilution), Santa Cruz Biotechnology undiluted) were mixed with 2x Whatman arraying
buffer (S00537), containing a 1:100 dilution of DyLight800-labelled BSA to account for spot-
ting differences. Spotted slides were blocked with Odyssey blocking buffer (Licor 927–40000)
for 6 hours shaking at 4°C.

Recombinant proteins were used as calibrators. Commercially available phosphorylated
ERK (PV3313, Life Technologies); unphosphorylated ERK (PV3312, Life Technologies) and
phosphorylated Akt (14–276, Millipore) and unphosphorylated Akt (14–279, Millipore) were
diluted for different dilution series, supplemented with 1% SDS and denatured for 5 minutes at
95°C. Cell lysates generated as for quantitative immunoblotting were diluted 1:16 in Array
Buffer Plus (Array Buffer composed by 1% BSA, 0,5% NP40, 0,02% SDS, 50mM Tris pH7,4,
150mMNaCl, 1mM EDTA, 5mMNaF, 1mM Na3VO4) containing complete protease-inhibi-
tor cocktail (Roche), supplemented with SDS and denatured. Slides were incubated with cali-
brators and cell lysates shaking at 4°C overnight. After washes with the Assay Buffer at room
temperature the slides were incubated with the detection antibodies for 2 hours shaking at 4°C.
Detection antibodies were used for total ERK Up06-182 (Upstate), sc-94 (Santa Cruz Biotech-
nology) diluted 1:800 and total AKT sc-1619 (Santa Cruz Biotechnology) diluted 1:200,
CS9272 (Cell Signaling Technology) diluted 1:400. After washes with Array Buffer and Wash
Buffer (PBS (Pan, ready-made), NP-40 (0.2%), NaF (5 mM), Na-Vanadate (1 mM)) the slides
were incubated with the secondary detection antibody (goat anti-rabbit coupled to Alexa Fluor
680) for 30 minutes shaking at 4°C. Slides were light-protected and washed with Wash Buffer
and ddH2O and subsequently dried. Slides were scanned with LiCor Odyssey scanner at 700
and 800 nm (Resolution 21 μm, High Quality, Intensity: 5/4; Offset: 0, size 7x5 Scanning time
approx. 35min/2slides). The quantification of the signal was performed as described [61].

Protein array: Ras quantification
We generated protein array analysis to quantify active Ras by using a mouse antibody (Pan-Ras,
OP40, Calbiochem) and GST-tagged Ras-binding-domain (RBD) of Raf (GST-Raf-RBD 1–149)
[56] for Ras detection. To generate the pGex plasmid harboring the GST-tagged Raf-RBD we
cloned the Raf-RBD into the pGex vector via BamHI and EcoRI sites. The pGex-GST-Raf-RBD
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was expressed in BL21 bacteria and the fusion protein was purified using Gluthatione Sepharose
beads (GE Healthcare). To spot the eluted fraction, it was diluted with PBS and glycerol. The
spotting was performed as described in the previous paragraph. Cell lysates were diluted 1:10
with Array Buffer PLUS. For calibration positive and negative control samples with gam-
maS-GTP and GDP loading were used. Prior to incubation, the slides were blocked with LiCor
Blocking Buffer for 2–6 h. Samples and calibrator-solutions were incubated on the slides shaking
overnight. All incubations were performed at 4°C. The slides were then washed with array buffer
and incubated with specific rabbit-derived detection Ras antibody sc-14022 and sc-520 (Santa
Cruz Biotechnology). Slides were subsequently treated as described in the previous paragraph.

Interaction graphs
Interaction graphs are an abstract representation of signaling pathways [32]. The nodes in
these graphs represent the signaling molecules, in our application usually the activated forms
of the proteins (S1 Table). Directed positive and negative edges represent activating or inhibit-
ing influences between the proteins.

Selection of minimal model structures from the interaction graph. We identified all
minimal submodels from the interaction graph master model that can explain all qualitative
properties of our experimental data based on the concept of the dependency matrix [33]. In the
dependency matrix, the effect of one species on another is classified as follows: If all paths from
species A to species B are positive, A is an activator of B. If all paths from A to B are negative, A
is an inhibitor of B. If positive and negative paths lead from A to B, A is said to be an ambiva-
lent factor for B, and A is a neutral factor for B if there are no paths from A to B. Activators
and inhibitors are further classified as weak or strong depending on whether any of the paths
runs through a node that is involved in a negative feedback or not [33]. Weak and strong acti-
vators/inhibitors differ in how they restrict the possible qualitative behavior. Decreasing the ac-
tivity of a strong activator of species B leads to a decrease of the activation of B at every time
point. In contrast, decreasing the activity of a weak activator of species B also leads to an initial
decrease of the activity of B, but the negative feedback may cause a subsequent increase. This
concept allows deriving predictions of the possible qualitative behavior in response to inhibi-
tors given a certain model structure. To select the minimal model structures, we used the dis-
cretized fold change (‘increase’, ‘decrease’, ‘no change’, ‘not conclusive’) of the phosphorylation
state of two experimental conditions, C1 and C2. C1 represents the “control condition”, where-
as in condition C2, one or two additional inhibitors compared to C1 are applied (Fig 3B, left
panel). For each comparison, we checked in the dependency matrix of the model how the addi-
tional inhibitors in C2 act on the measured species leading to qualitative predictions for the
early and late differential behavior of this species in condition C2 versus C1. If all additionally
inhibited species in C2 are activators of the measured protein, no matter whether they are weak
or strong, the model predicts "decrease" of the measured species (compared to its level in C1)
as early response. Analogously, if all inhibited species act as inhibitors for a measured species,
the model prediction for the early differential response of this node is "increase". For the late re-
sponse, the model predicts "decrease" as the only possible behavior if all inhibited species are
strong activators, and "increase" if all inhibited species are strong inhibitors. If all inhibited spe-
cies are neutral factors, the model prediction is "no change", both for the early and late re-
sponse. If both positive and negative paths from the inhibited to the measured species exist
(either because one of the inhibited species is an ambivalent factor or because one inhibited
species is an activator, another one an inhibitor for the measured species) any qualitative early
and late response is allowed. Finally, if there is a weak activator or weak inhibitor among the in-
hibited species, the late response is not restricted by the model.
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The effect of some inhibitors can often not be mimicked by perturbing a certain node in the
network. The applied MEK inhibitor, for example, blocks MEK kinase activity, thus inhibiting
the outgoing edges fromMEK. Therefore, we introduce a “dummy” node that is activated by
MEK and itself activates all downstream nodes of MEK (in our particular case only ERK). The
effect of the MEK inhibitor is then reflected by this dummy node.

The described algorithm was implemented as a MATLAB script making use of API func-
tions of the MATLAB-based toolbox CellNetAnalyzer [62], which is freely available for academ-
ic use (http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html). The pseudocodes of the
algorithm are given in S1 Code. The HGF interaction graph model is provided in CellNetAnaly-
zer format at http://www2.mpi-magdeburg.mpg.de/projects/cna/repository.html.

Ordinary differential equation modeling
Translation of selected minimal interaction graph model structures into ODE models.

We can associate an interaction graph with a given system of ODEs: the interaction graph is
defined based on the signs of the entries of the Jacobian of the system, which represents the
signs of the partial derivatives of the state variables [63]. In this way, one can draw some con-
clusions on the possible dynamic behavior of the system based on structural properties of the
interaction graph [64]. Here, we built for each identified interaction graph substructure a cor-
responding ODE model, that is, an ODE model whose underlying interaction graph reflects
the respective minimal model structure (S5 Fig). A related approach enables the automatic con-
version of logical models to ODE systems [65], but cannot be applied here as we utilize interac-
tion graphs in our approach. Here, we built the ODE models from the interaction graphs in the
following way: For the core model, each edge pA->pB from the interaction graph, where pA
denotes the activated form of a species A and pB the activated form of a species B, gives rise to
an ODE reaction describing the formation of pB. With mass action kinetics and assuming pA
catalyzes the formation of pB but is not consumed, we get the reaction B->pB with kinetic rate
law k1�pA�B, where k1 denotes a kinetic parameter for this reaction. In addition, we introduce
the deactivation (for example, dephosphorylation) reaction pB->B with kinetic rate law k2�pB
(S4 Table). An exception from this rule is the treatment of the species RSK. The interaction
graph model describes activation of RSK as a two-step process: RSK->RSK_s->RSK_d. In this
case, we assume that both activated forms (RSK_s and RSK_d) are deactivated to RSK (S4
Table, lines 26–29). For the Met receptor, an additional formation and degradation reaction
was necessary (S4 Table, lines 3 and 4) to reflect the observed receptor dynamics. PDK1 is as-
sumed to be constitutively active [66, 67] and was thus included as a constant parameter in the
ODE model. To incorporate the effect of inhibitor treatments into the model, inhibitor param-
eters for PDK1, PI3K, Met and MEK have been introduced. These parameters allow for a po-
tential reduction of the kinetic parameters within a range of 0% to 100%. Furthermore, these
parameters are coupled to binary switches, allowing them to be activated only in their
respective condition.

For each candidate edge, one additional reaction is added to the ODE model. We distinguish
candidate mechanisms that provide an alternative, independent way of activation of the respec-
tive species and those that influence the core activation mechanism. An example for the first is
the activation of PI3K by Ras, which is described as PI3K -> active PI3K with rate law
k�Ras_active�PI3K (S4 Table, line 41). An example for the latter is the effect of PAK on Raf,
which is assumed to promote Raf activation through Ras, and which is thus included as Raf->
pRaf with rate law k�Ras_active�pPAK�Raf in the ODE model (S4 Table, line 35). Translation
of inhibiting edges of the interaction graph follows the same rules. As an example, deactivation
of Raf by Akt is described as pRaf->Raf with rate law k�pAkt�pRaf (S4 Table, line 37).
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ODE modeling was performed using a novel MATLAB-based software implementation
[68]. Here, we built all model structures in a framework-specific format, which allows import
and export to the common data format SBML [69]. The model 4_8_12 is available as a SBML
in S1 Model.

Parameter estimation. To find the optimal parameter sets that describe the experimental
data for each model structure, we performed parameter estimations. The framework is using a
parallelised implementation of the CVODES ODE solver [70]. The procedure of parameter es-
timation is based on multiple local optimizations of different parameter starting values. For the
optimizations, the LSQNONLIN algorithm (MATLAB, R2011a, The Mathworks Inc. (Natick,
MA)) was used. Parameter values are limited between a range of 0.00001 and 1000, that is,
eight orders of magnitude on a logarithmic scale. We assume that this parameter range is suffi-
cient for our model selection approach. Parameter values close to upper or lower boundaries
result from partial practical non-identifiability of the model structures. This does not influence
the resulting ranking of the model structures. Parameter estimation is based on multiple local
optimizations of different parameter starting values. For the random sampling of the starting
points, a latin hypercube method is utilized [71]. For each set of randomly selected initial pa-
rameter values, a local optimization procedure is performed. Here, parameter estimation of the
software has been modified to cope with the high complexity of the parameter estimation prob-
lem: As an addition, parameter values that were estimated as being close to their respective
upper or lower boundary were automatically fixed for a limited period of optimization cycles.
As boundary-close parameters slow down the optimization procedure, temporal removal of
these degrees of freedom for a short interval during the process led to an increase in fitting per-
formance. To prove the validity of our optimization procedure, a Latin hypercube sampling ap-
proach with 1000 initial parameter sets has been performed (S7 Fig). As shown, the parameter
estimation algorithm is able to converge into a global minimum within the parameter land-
scape in a reproducible manner.

In addition to kinetic parameters, the ODE model is defined by scaling and noise parameters.
These non-kinetic parameters were fitted in parallel to the kinetic parameters as described [68].

During the parameter estimation, no steady state conditions have been utilized. We assume
that non-stimulated measurements of signalling components in our data set is sufficient for
training the system to an initial steady state in an unstimulated setting. Additionally, our ODE
model would be able to capture oscillatory behaviour if present.

Model structures feature a variety of negative and positive feedback mechanisms. This al-
lows, in principle, for the occurrence of oscillatory behaviour of signalling components within
the considered parameter space. However, as we did not observe oscillations in our experimen-
tal data, oscillations are not exhibited by the ODE model.

Rankings (AIC/LRT). Performance of an estimated set of parameter values is character-
ized by its likelihood L. Here, we minimized the negative logarithm of the likelihood function
(-2log(L)) during the optimization process. Therefore, the best performing model structure in
combination with the estimated parameter set is described by the lowest -2log(L). To take into
account different degrees of freedom of the models, two different methods are common
in literature.

First, the Akaike Information Criterion (AIC) is defined as

AIC ¼ 2k� 2logðLÞ

where k denotes the degrees of freedom in the respective model [72].
The second common method is known as the Likelihood-Ratio-Test (LRT), where one

model is defined as the null model and another nested model is compared against the null
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model [73]. Here, the comparison is performed by

icdfDdf ð0:95Þ � 2logðLÞ

where Δdf denotes the difference in degrees of freedom of the null model and the nested
model. Hereby, one tests if a nested model is a valid simplification of the null model. The com-
plete model is defined as the null model. Each of the tested model structures is therefore com-
pared pairwise against the complete model. The result of each pairwise likelihood ratio test is
then used to obtain the ranking of the corresponding model structures. In this work, we present
all rankings with unprocessed -2log(L) values, AIC ranking and LRT for all model structures
against the complete model. While the AIC allows the creation of a complete ranking and
therefore a comparison of different candidate models against each other, the LRT provides us
with more detailed information regarding the pairwise comparison of a nested model against
the null model. In practice, the AIC slightly favours larger models due to the linear penalisation
of the degrees of freedom of a model.

Predictive power. To compare the predictive power of the selected candidate model
4_8_12 and the complete model, we utilize prediction profiles as described [39]. For our analy-
sis, prediction profiles have been calculated along the complete time course of the selected
model 4_8_12 and the complete model for “active PI3K”. Through the calculation of prediction
profiles, a range for the specified trajectories of the protein dynamic is given for each calculated
time point, in which the likelihood value of the model stays within a 95% threshold.

Randommodels. The selected model structures contain either four or five candidate
edges. We decided to consider random models with five candidate edges. Thus, we randomly
selected subsets of size five from all candidate edges present in the complete model. The so-de-
rived randommodels were compared with the minimal model structures: if a randommodel
was identical to or comprised a minimal model structure, this model was rejected. In this way,
we generated 50 random models and compared their performance with the minimal model
structures (S6 Table and Fig 5D).

Simulations. To study the effects of certain protein inhibitions, we performed in silico ex-
periments. Here, we down-regulated all outgoing reactions for each protein, one protein at a
time, by reducing the respective kinetic parameter to 50% of the original value and simulated
the pathway dynamics under this perturbed condition. Furthermore, each possible combination
of two protein inhibitions has been simulated. As readout, the area under curve of pAkt, pERK
and the sum of pAkt and pERK have been evaluated for the measured time of 120 minutes and
compared to the control condition. The corresponding heat maps are shown in Fig 8A).

For the synergy analysis, the efficiency of a double inhibitor treatment and two individual
inhibitor treatments is compared (Fig 8B). Positive values mean that the double inhibition con-
dition is having a stronger effect than the two single inhibitions, that is, there is a synergy effect.
Negative values mean that the single inhibitions are more effective than the combination. A
neutral value of 0 means the two inhibitors work in an additive manner.

Supporting Information
S1 Table. Species in the interaction graph model. The table describes the species present in
the interaction graph model. The species are considered in their active form, for example, Akt
is considered as Akt phosphorylated on serine 473. Species 11: MEK1/2 phosphorylated at ser-
ine 217/221 Species 12: MEK1/2 phosphorylated at serine 298Species 12: MEK1/2 phosphory-
lated at threonine 292 Species 19, 21, 22: considered in their active GTP-bound form. Species
25, 26: RSK_s refers to p90RSK phosphorylated on a single serine residue. RSK_d refers to
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p90RSK phosphorylated on two serine residues and considered as active p90RSK.
(DOCX)

S2 Table. Mechanisms in the interaction graph model (core model). The table describes the
list of reactions of the HGF interaction graph (core model).
(DOCX)

S3 Table. Candidate mechanisms in the interaction graph model. The table describes the list
of reactions defined as candidate mechanisms in the HGF interaction graph master model.
Each number corresponds to a candidate mechanism. The letters indicate the reactions for the
candidate mechanisms composed by more than one reaction. The asterisks indicate the edges
included in more than one candidate mechanism.
(DOCX)

S4 Table. Reactions in the ODE models. The table describes the list of reactions of the ODE
models. The first list describes the reactions of the core model (reaction 1–29); the second list
describes the reactions of the candidate mechanisms (reaction 30–42). In the second column,
each reaction is shown in a schematic representation; in the third column, the respective kinetic
rate law is shown. Values of each kinetic parameter for model 4_8_12 are shown in S5 Table.
Parameters “Met_inh”, “PDK_inh” and “MEK_inh” represent binary values dependent on the
respective experimental condition.
(DOCX)

S5 Table. List of parameter names and values of the model 4_8_12. The table describes the
list of parameter names and values of the ODE model 4_8_12. The model was calibrated on
2200 data points and 25 experimental conditions. The second column shows the log10 value of
each kinetic parameter involved in the model reactions shown in S4 Table. The x indicates that
the parameter is not present in the model 4_8_12.
(DOCX)

S6 Table. List of models and candidate mechanisms. The table describes the list of candidate
mechanisms for each selected minimal model structure (gray), model combinations (gray)
and random models (rand): 1 indicates that the candidate mechanism is present, 0 indicates
that it is not present. The models are sorted according to the Likelihood ratio test value as
shown in Fig 5.
(DOCX)

S1 Text. References for S1–S6 Tables.
(DOCX)

S1 Fig. Quantitative immunoblotting. Quantitative immunoblotting of primary mouse hepa-
tocytes treated with MEK inhibitor (U0126), PDK1 inhibitor (BX-912), their combination or
DMSO (-) and subsequently stimulated with 40 ng/ml HGF for the indicated time points. A)
Immunoprecipitation (IP) of total SOS protein. The band shift indicates the phosphorylated
inactive form of SOS (higher band). B) Total cellular lysate was used to detect phosphorylation
of MEK1/2, ERK1/2 and Akt on serine 473 and total actin used as normalizer. Quantification
of the corresponding immunoblots is shown for pAkt, pMEK, pERK. C) Total cellular lysate
was used to detect p90RSK phosphorylation on serine 227 and 380, total p90RSK and protein
disulfide-isomerase (PDI) used as normalizer. Quantification of the corresponding immuno-
blots is shown for p90RSK Ser380 and p90RSK Ser227. Samples were loaded in a random order
to reduce the correlated error [60]. Experiments shown in panels B and C were performed at

Hybrid Modeling Strategy to Unravel HGF Signaling

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004192 April 23, 2015 25 / 33

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004192.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004192.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004192.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004192.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004192.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004192.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004192.s008


least in triplicates and one representative dataset is shown.
(EPS)

S2 Fig. Quantitative immunoblotting of siRNA treatment. A) Quantitative immunoblotting
of primary mouse hepatocytes treated with siRNA targeting ERK1/2 and Akt and subsequently
stimulated with 40 ng/ml HGF for the indicated time points. Total cellular lysate was used to
detect MEK1/2 phosphorylation, total ERK, total MEK1/2 and total actin used as normalizer.
Samples of hepatocytes treated with siRNA targeting Akt were processed with the samples of
siRNA targeting ERK1/2. Data quantification is shown in S3B Fig. Data of Akt siRNA treat-
ment has not been used for model calibration. Samples were loaded in a random order to re-
duce the correlated error [60]. B) Knockdown efficiency of siRNA targeting ERK1/2. Signal
intensity of total ERK1/2 and actin was measured by LumiAnalysis software (Roche Diagnos-
tic). Total ERK1/2 signal was divided by the respective actin signal and the average of 6 replicas
is shown with the corresponding standard deviation. The knockdown efficiency for ERK1/2
siRNA is indicated as percentage of the control condition.
(EPS)

S3 Fig. Fold change of protein phosphorylation states. For each protein, the fold change of
the phosphorylation state measured by quantitative immunoblotting of two different experi-
mental conditions is shown on a logarithmic scale at the indicated time points after 40 ng/ml
of HGF stimulation. A) Fold change of Akt phosphorylation on threonine 308 and the active,
not phosphorylated, SOS is shown (representative blot shown in S1A Fig) B) Fold change of
the phosphorylation state of the indicated proteins upon PI3K inhibitors treatment. These data
resulted to be not conclusive, and, therefore, it has not been discretized and it was not used for
model calibration. Each row refers to one experiment; same experimental conditions are
grouped with magenta lines.
(EPS)

S4 Fig. Predictions from interaction graph structures. Shown are the predictions from all se-
lected minimal model structures (Fig 4) and their comparison with the discretized data shown
in Fig 3B. “Early” refers to the first response following HGF stimulation. For later time points,
either the first effect that is opposite the initial response is given, or an arrow of same direction
indicates that the qualitative response was equal for all time points. Arrow pointing down/up:
the inhibition can only cause a decreased/increased activation of the measured protein. Bullet
point: the inhibition does not affect the measured protein. Combined up/down arrow and bul-
let point: the model does not restrict the response to the inhibition.
(EPS)

S5 Fig. Underlying interaction graph of the complete ODE model. A) Shown is the interac-
tion graph underlying the complete ODE model, thus representing the sign-structure of its Jaco-
bian matrix. Black arrows indicate positive, red arrows negative influences. Note that PDK1
receives no input and is not consumed in the ODEmodel. For simplification, it was therefore
treated like a parameter, and the edges indicate its influences (partial derivatives) on other com-
ponents. The same interaction graph would follow if we included PDK1 as a (constant) state var-
iable in the model. Furthermore, in addition to the nodes that are contained in the interaction
graph given in Fig 4, which represent the activated forms of the proteins, the underlying interac-
tion graph of the ODEmodel contains for each protein one node representing its inactive form.
With the chosen mass action kinetics (S4 Table), the interaction graph contains for each reaction
where the activated form of protein A, pA, positively influences the activation of protein B (B!
pB), the positive edge pA! pB and the negative edge pA! B, the latter thus giving rise to an
additional indirect negative influence of pA on pB (pA!B! pB). In general, these indirect
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effects can become visible in the transient dynamics. However, as in our ODE model formula-
tion the active and inactive form of a protein are conserved moieties, the interaction graph of the
Jacobian can be reduced to the graph given in panel (B). B) This graph contains the same set of
nodes as the interaction graph given in Fig 4, except for an additional node representing the in-
active form of the Met receptor: the moieties of Met and pMet are not conserved as additional
uptake and degradation is considered (S4 Table). Still, the paths downstream the activated recep-
tor are the same as in the interaction graph in Fig 4. Compared to panel (A), all indirect effects
except one could be eliminated: as activation of RSK is modeled as a two-step process, the inter-
action graph of the ODE model contains with PDK! pRSK_s and pRSK_d! pRSK_d two
negative edges that are not contained in the interaction graph in Fig 4. However, even if these
edges are considered, the selected substructures of the complete interaction graph model are the
minimal structures needed to explain all qualitative effects from the experimental data.
(EPS)

S6 Fig. ODE model selection according to the Akaike Information Criterion (AIC). A)
Rankings represent the forward selection of selected minimal model structures; B) backward
selection, where the building blocks are removed from the complete model; C) the model com-
binations selection. D) Rankings of model selection including minimal model structures,
model combinations and randommodels. Randommodel structures consist of randomly se-
lected combinations of candidate edges (S6 Table). Approximately 50% of the random models
performed worse than the worst performing selected minimal model structure. Well perform-
ing random model structures are closely related to well performing selected minimal model
structures and their combination (S6 Table). The Akaike Information Criterion (AIC) has
been utilized to penalize the likelihood. All rankings of model selection present the negative
logarithmic likelihood penalized by parameter difference on the y-axis. Model identifiers are
shown on the x-axis.
(EPS)

S7 Fig. Multistart optimization with 1000 initial parameter sets for model 4_8_12. A) Mul-
tistart optimization has been performed with 1000 initial parameter sets. Fits have been sorted
according to the resulting likelihood. B) Detailed view of panel (A) where the trend of the likeli-
hood of 780 fits is shown.
(EPS)

S8 Fig. Comparison of the core model, complete model and model 4_8_12. A) Structure of
the core model, the complete model (D), model 4_8_12 (G) and corresponding plots showing
representative model trajectories (solid lines) of the phosphorylation kinetic of MEK (B-E-H)
and Akt (C-F-I) measured by quantitative immunoblotting in primary mouse hepatocytes pre-
treated with the indicated inhibitors and stimulated with 40 ng/ml HGF for the indicated time
(stars). Values of the likelihood ratio test with the threshold of 95% are shown under each cor-
responding model. In the plots, y-axes show the concentration of the respective measured pro-
tein in arbitrary units on a logarithmic scale. The colored area surrounding the model
trajectory represents the confidence interval delimited by the dashed line. Treatments are
color-coded as indicated in the figure. The core model (A) does not capture the difference be-
tween the experimental conditions while the complete model (D) and model 4_8_12 (G) clear-
ly distinguish them. For example, the complete model and model 4_8_12 capture the effect of
MEK inhibitor and PDK1 inhibitor on pMEK1/2 showing a delayed and sustained response.
(EPS)

S9 Fig. Negative crosstalk: Experimental validation (replica 1).Quantitative immunoblot-
ting of primary mouse hepatocytes treated with Akt inhibitor VIII or DMSO and subsequently
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stimulated with 40 ng/ml HGF for the indicated time points. A) Total cellular lysate or immu-
noprecipitation (IP) was used to detect the indicated proteins. Raf1 protein has a distinguished
phosphorylation pattern: Phosphorylation at serine 338 contributes to Raf1 activation, while
phosphorylation at serine 259 is an inactivation signal and targeted by Akt (shown in Fig 7). B)
Immunoblot data were quantified by ImageQuant TL version 7.0 software (GE Healthcare).
(EPS)

S10 Fig. Negative crosstalk: Experimental validation (replica 2).Quantitative immunoblot-
ting of primary mouse hepatocytes treated with Akt inhibitor VIII or DMSO and subsequently
stimulated with 40 ng/ml HGF for the indicated time points. A) Total cellular lysate or immu-
noprecipitation (IP) was used to detect the indicated proteins. Raf1 protein has a distinguished
phosphorylation pattern: Phosphorylation at serine 338 contributes to Raf1 activation, while
phosphorylation at serine 259 is an inactivation signal and targeted by Akt. B) Immunoblot
data were quantified by ImageQuant TL version 7.0 software (GE Healthcare).
(EPS)

S11 Fig. Negative crosstalk: Experimental validation (replica 3).Quantitative immunoblot-
ting of primary mouse hepatocytes treated with Akt inhibitor VIII or DMSO and subsequently
stimulated with 40 ng/ml HGF for the indicated time points. A) Total cellular lysate or immu-
noprecipitation (IP) was used to detect the indicated proteins. Raf1 protein has a distinguished
phosphorylation pattern: Phosphorylation at serine 338 contributes to Raf1 activation, while
phosphorylation at serine 259 is an inactivation signal and targeted by Akt. B) Immunoblot
data were quantified by ImageQuant TL version 7.0 software (GE Healthcare).
(EPS)

S12 Fig. Inhibitor combination: Experimental validation.Quantitative immunoblotting of
primary mouse hepatocytes treated with the inhibitor combinations and 0.1μMMet inhibitor
PHA665752 and 10 microM PDK1 inhibitor (BX-912), 0.1 microM P3K inhibitor (PI-103)
and 0.1 microMMEK inhibitor (U0126) or DMSO (-) and subsequently stimulated with 40
ng/ml HGF for the indicated time points. A) Total cellular lysate was used to detect phosphory-
lation of ERK1/2 and Akt on serine 473 and total actin used as normalizer. The quantification
plots are shown in Fig 8D. B) Replica of the experimental validation. Total cellular lysate was
used to detect phosphorylation of ERK1/2 and Akt on serine 473 and total actin used as nor-
malizer. The plots show the quantification of the corresponding immunoblots.
(EPS)

S1 Code. Pseudocodes. Pseudocodes for the selection of minimal model structures from the
interaction graph master model.
(PDF)

S1 Model. ODE model 4_8_12 formatted in SBML. The 4_8_12 model contains the core
edges and all candidate edges deriving from the combination of models 4_8_12.
(XML)

S1 Dataset. ExperimentalData_Timecourse_inhibitors_siRNA. The datasets contain the ex-
perimental data used for the selection of minimal model structures and model calibration. The
datafile is characterized by a header row as follow: Time: duration of HGF stimulation. Units:
minutes.Gel: unique number to identify the gel for each analyzed protein. HGF_input: concen-
tration of HGF used for stimulation. Units: ng/ml. Met_ihn: Met inhibitor. Mek_inh: MEK in-
hibitor. Pdk_inh: PDK1 inhibitor. ERK siRNA: siRNA targeting ERK1/2. pMet_au: Met
phosphorylation. Units: arbitrary units (au). pAkt_au: Akt phosphorylation on serine 473.
Units: arbitrary units (au). pAktThr_au: Akt phosphorylation on threonine 308. Units:
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arbitrary units (au). pERK_au: sum of ERK1 and ERK2 phosphorylation. Units: arbitrary units
(au). pMEK_au: sum of MEK1 and MEK2 phosphorylation. Units: arbitrary units (au). sin-
gle_pRSK_au: p90RSK phosphorylation corresponding to the p90RSK_s of the model. Units:
arbitrary units (au). double_pRSK_au: p90RSK phosphorylation corresponding to the
p90RSK_d of the model. Units: arbitrary units (au). Actin_au: actin. Units: arbitrary units (au).
PDI_au: Protein disulfide isomerase. Units: arbitrary units (au). Exp_Gel_ori: experiment iden-
tifier is indicated in letters (i.e. “A_tc”); reference number of gel. Gel_ori: internal reference gel
number. Exp: internal reference experiment identifier. NaN: no datapoint has been measured
for the indicated condition. Columns defining perturbation treatment (inhibitor or siRNA): 0
indicates that the corresponding inhibitor or siRNA was not present; 1 indicates that the corre-
sponding inhibitor or siRNA was present.
(XLSX)

S2 Dataset. ExperimentalData_Ras_ProteinArray. The datasets contain the experimental
data used for the selection of minimal model structures and model calibration. The datafile is
characterized by a header row as follow: Time: duration of HGF stimulation. Units: minutes.
Gel: unique number to identify the gel for each analyzed protein. In this special case, “gel” re-
fers to protein array. HGF_input: concentration of HGF used for stimulation. Units: ng/ml
Met_ihn: Met inhibitor Mek_inh: MEK inhibitor Pdk_inh: PDK1 inhibitor ERK siRNA:
siRNA targeting ERK1/2 Rasnew_au: active Ras measured by protein array. Units: arbitrary
units (au) NaN: no datapoint has been measured for the indicated condition. Columns defining
perturbation treatment (inhibitor or siRNA): 0 indicates that the corresponding inhibitor or
siRNA was not present; 1 indicates that the corresponding inhibitor or siRNA was present.
(XLSX)

S3 Dataset. ExperimentalData_Ras_Immunoblot. The datasets contain the experimental data
used for the selection of minimal model structures and model calibration. The datafile is character-
ized by a header row as follow: Time: duration of HGF stimulation. Units: minutes. Gel: unique
number to identify the gel for each analyzed protein HGF_input: concentration of HGF used for
stimulation. Units: ng/ml Met_ihn: Met inhibitor Mek_inh: MEK inhibitor Pdk_inh: PDK1 inhibi-
tor ERK siRNA: siRNA targeting ERK1/2 aRas_au: active Ras measured by immunoblot. Units: ar-
bitrary units (au) Exp_Gel_ori: experiment identifier is indicated in letters (i.e. “A_tc”); reference
number of gel. Gel_ori: internal reference gel number Exp: internal reference experiment identifier.
(XLSX)

S4 Dataset. ExperimentalData_ERK phosphorylation_MassSpec. The datasets contain the
experimental data used for the selection of minimal model structures and model calibration.
The datafile is characterized by a header row as follow: Time: duration of HGF stimulation.
Units: minutes. Gel: unique number to identify the gel for each analyzed protein HGF_input:
concentration of HGF used for stimulation. Units: ng/ml Met_ihn: Met inhibitor Mek_inh:
MEK inhibitor Pdk_inh: PDK1 inhibitor ERK siRNA: siRNA targeting ERK1/2 pERK_au: sum
of ERK1 and ERK2 phosphorylation measured by mass spectrometry. Units: arbitrary units
(au) Exp_Gel_ori: experiment identifier is indicated in letters (i.e. “A_tc”); reference number of
gel. Gel_ori: internal reference gel number Exp: internal reference experiment identifier.
(XLSX)

S5 Dataset. ExperimentalData_Akt phosphorylation_MassSpec. The datasets contain the ex-
perimental data used for the selection of minimal model structures and model calibration. The
datafile is characterized by a header row as follow: Time: duration of HGF stimulation. Units:
minutes. Gel: unique number to identify the gel for each analyzed protein HGF_input: concen-
tration of HGF used for stimulation. Units: ng/ml Met_ihn: Met inhibitor Mek_inh: MEK
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inhibitor Pdk_inh: PDK1 inhibitor ERK siRNA: siRNA targeting ERK1/2 pAkt_rel_obs: Akt
phosphorylation on serine 473 measured by mass spectrometry. Units: arbitrary units (au)
Akt_rel_obs: unphosphorylated Akt measured by mass spectrometry. Units: arbitrary units
(au) Exp_Gel_ori: experiment identifier is indicated in letters (i.e. “A_tc”); reference number of
gel.Gel_ori: internal reference gel number Exp: internal reference experiment identifier.
(XLSX)
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