CORRIGENDUM

Corrigendum: Enzymatic study on AtCCD4 and AtCCD7 and their potential to form acyclic regulatory metabolites

Mark Bruno^{1,*}, Julian Koschmieder^{1,*}, Florian Wuest¹, Patrick Schaub¹, Mirjam Fehling-Kaschek², Jens Timmer^{2,3}, Peter Beyer¹, and Salim Al-Babili^{1,4,†}

¹ Albert-Ludwigs University of Freiburg, Faculty of Biology, Schaenzlestr. 1, D-79104 Freiburg, Germany

² Albert-Ludwigs University of Freiburg, Department of Physics, Hermann-Herder-Str. 3a, D-79104 Freiburg, Germany

³ Albert-Ludwigs University of Freiburg, BIOSS Center for Biological Signalling Studies, Schaenzlestr. 18, D-79104 Freiburg, Germany

⁴ King Abdullah University of Science and Technology (KAUST), BESE Division, Center for Desert Agriculture, 23955-6900 Thuwal, Saudi Arabia

* These authors contributed equally to this work.

[†]Correspondence: salim.babili@kaust.edu.sa

Editor: Robert Hancock, The James Hutton Institute

Journal of Experimental Botany, Vol. 67, No. 21 pp. 5993-6005, 2016 doi:10.1093/jxb/erw356

The original published version of this article contained inaccurate information within the first paragraph of the **Materials and Methods** section of the article. The paragraph should read as follows:

pThio-AtCCD4: The intron-free AtCCD4 (At4g19170) gene was amplified from genomic DNA using the primers: A3-forward: 5'-AGGAGAGCAATGGACTCTGTT-3' and A3-reverse: RP 5'-TTAAAGCTTATTAAGGTCACT-3', which cover the whole coding sequence (start ATG and bases complementary to the stop codon are underlined). The resulting PCR product was purified using GFXTM PCR DNA and Gel Band Purification Kit (Amersham Biosciences, Piscataway, NJ), and cloned into pCR2.1®-TOPO® vector (Invitrogen, Paisley, UK), according to the instructions of the manufacturer and yielding pA3-TOPO. The AtCCD4 fragment, including coding sequence and 9 bp upstream of the start ATG (s. primer A3-forward), was then isolated from pA3-TOPO, using EcoRI, and ligated into accordingly digested and dephosphorylated pThio-Dan1 (Trautmann et al., 2013), a plasmid made from the commercially available pBAD/THIO-TOPO®TA (Invitrogen, Paisley, UK) by inserting the multiple cloning site of pUC18. Sequencing of the resulting expression vector pThio-Dan1-AtCCD4 unraveled a point mutation downstream of the sole SacI restriction site of AtCCD4 (base 584–589 in the coding sequence). To correct this mutation, we amplified the AtCCD4 3'-region (starting with base 581 in the coding sequence) from genomic DNA using the primers SacI-FP 5'-CCGGAGCTCCGGTTATGCCTAACGTG-3' that contains the authentic AtCCD4 SacI site (underlined) and SacI-RP 5'-AGTGAGCTCTATATTGTTAAAGCTTATTAAGGT-3' with an artificial SacI site (underlined) downstream of the stop codon. The PCR product was purified as described above, treated with SacI and ligated into accordingly digested and dephosphorylated pThio-Dan1-AtCCD4, replacing the corresponding mutation-containing fragment and leading to pThio-AtCCD4. The integrity of pThio-AtCCD4 was confirmed by sequencing. The plasmid contains the whole AtCCD4 coding sequence flanked by 9 and 8 non-coding bases upstream of the start codon and following the stop codon, respectively.

Trautmann D, Beyer P, Al-Babili S. 2013. The ORF slr0091 of *Synechocystis* sp. PCC6803 encodes a high-light induced aldehyde dehydrogenase converting apocarotenals and alkanals. FEBS Journal 280, 3685–3696.

© The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com