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Dynamical modelling of prostaglandin signalling in
platelets reveals individual receptor contributions and
feedback properties†

Marcel Mischnik,zab Katharina Hubertus,zc Jörg Geiger,c Thomas Dandekar*b and
Jens Timmer*ade

Prostaglandins are the key-players in diminishing platelet function. They exert their effects via a variety

of surface receptors that are linked to the cAMP/PKA-signalling cascade. However, less is known about

the quantitative impact of the individual receptors on the underlying pathway. We present here a

comprehensive ordinary differential equation-based model of the platelet cAMP pathway, including the

four prostaglandin receptors IP, DP1, EP3 and EP4, the ADP receptor P2Y12, a detailed PKA-module as

well as downstream-targets. Parameter estimation along with a comprehensive combination of time-

course and dose–response measurements revealed the individual quantitative role of each receptor in

elevating or decreasing pathway activity. A comparison of the two inhibiting receptors EP3 and P2Y12

exhibited a greater signalling strength of the EP3 receptor with implications for antithrombotic

treatment. Furthermore, analysis of different model topologies revealed a direct influence of PKA on

adenylate cyclase, reducing its maximum catalytic speed. Finally, we show here for the first time the

dynamic behaviour of VASP-phosphorylation, which is commonly used as a marker for platelet-inhibition.

We validate our model by comparing it to further experimental data.

Introduction

Platelets play an important role in mammalian wound healing.
Their ability to aggregate and to attach to the exposed extra-
cellular matrix is regulated by a complex network of signal-
transduction pathways, including both activating and inhibiting
subsets. Understanding the complex cross-regulation of these
pathways is fundamental to the development of an efficient and
specific anti-platelet treatment. Since blood should flow with-
out clotting under normal physiological conditions, platelets

are downregulated by default through steady cAMP/PKA-signalling.
cAMP-dependent protein kinase A (PKA) repressively phosphory-
lates a variety of target proteins that are involved in transducing
excitatory signals and performing cytoskeletal rearrangements.1

The activation of the pathway is achieved by different classes of
prostaglandins and their binding to their respective surface
receptors.2 Three prostaglandins are central to this regulation
of platelet function, prostaglandin I2 (PGI2, prostacyclin),
which stimulates the IP receptor, prostaglandin D2 (PGD2),
which binds to the DP1 and DP2 receptors, and prostaglandin
E2 (PGE2) with its receptors EP1, EP2, EP3 and EP4.3–6 Signal-
ling proceeds by means of activation of a stimulatory G-protein
(Gs) and thus formation of cAMP by adenylate cyclase (AC). For
a long time, however, the function and relevance of the PGE2
receptor EP3 remained controversial. But several pharmaco-
logical studies revealed a connection to an inhibitory G-protein
(Gi),7,8 and thus an oppositional role to the other receptors. As
with EP3, the ADP receptor P2Y12 also exerts a negative effect
on the pathway via an inhibitory G-protein. P2Y12 is also
connected to PI3 kinase and plays an important role in platelet
activation. Its function is disabled through the commonly
applied antithrombotic drug clopidogrel.9,10

Despite their physiological and medical relevance, the quan-
titative contribution of these receptors to platelet activation and
inhibition has not been shown conclusively. A previous model
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of the cAMP-pathway in platelets focused on cAMP/cGMP inter-
play and its regulation by phosphodiesterases, but did not
include individual receptor behaviour.11

In the present study we model the platelet cAMP/PKA-
pathway and its response to different receptors in an ordinary
differential equation (ODE)-based approach. Investigation of
signalling pathways by kinetic modeling is commonly applied
and stimulates new biological insights into the modeled
system. Combined with statistical validation based on experi-
mental data, dynamic models can serve as a platform for
testing hypotheses e.g. on pharmacological interventions in
the system. Furthermore, the predictive features of kinetic
models allow leading and directing biochemical experiments
and elicit novel and unexpected biological findings. Using a
data based ODE-model enables us to correctly model the
behavior of measured pathway components over time as well
as to test the effects of drug combinations. Experimental data
used to validate our model and to fit kinetic parameters
comprised both time-resolved and dose–response measure-
ments of cAMP and the vasodilator stimulated phosphoprotein
(VASP) after versatile sorts of stimuli, including activating and
inhibiting agents. The reliability of the fitted parameters is
examined by means of profile likelihood, a method used to
determine confidence intervals and to therefore test parameter
identifiabilities.12 The model delivers kinetic constants for all
involved reactions, points out individual effects of different
prostaglandin receptors and shows the dynamic phosphorylation
of VASP. By means of comparing the model-to-data distance
different model topologies, we furthermore characterized the
mechanism of AC inhibition by PKA. The fitted model is
experimentally validated by additional datasets.

Results and discussion
Model set-up: topology

The input layer of the model consists of the four most impor-
tant prostaglandin-receptors present on platelets, being IP,
DP1, EP3 and EP4, and the ADP receptor P2Y12, with IP, DP1
and EP4 executing an elevating, and EP3 and P2Y12 adminis-
trating a moderating effect on cAMP levels, due to mobilization
of either a stimulating or, in the case of EP3 and P2Y12, an
inhibiting G-protein, as stated in the introduction. Thus, acti-
vation of each receptor produces a signal that is transduced to
adenylate cyclase (AC). To simplify analysis, G-proteins are not
included in the model. Engagement of AC leads to the produc-
tion of cAMP from ATP. The ATP pool is regarded as constantly
being 5 mM. The underlying kinetics is assumed to be Michaelis–
Menten like. Subsequently, cAMP binds to the regulatory sub-
units of cAMP-dependent-protein-kinase A (PKA), which is
composed of two regulatory (PKA-R) and catalytic subunits
(PKA-C) each. Binding of two cAMP molecules to both PKA-Rs
results in the dissociation of all 4 subunits, releasing the
catalytically active PKA-Cs. Attachment of cAMPs to PKA-R is
thereby reversible. After subunit-dissociation, cAMP is liberated
from the free PKA-Rs. Two free PKA-Rs and PKA-Cs can finally

coalesce to form one PKA tetramer. All kinetics within the PKA-
module are implemented as mass–action.13–15

Free PKA-Cs can phosphorylate two downstream targets: the
first being VASP, which is an important regulator of cytoskeletal
rearrangements and one of our system’s observables, the
second phosphodiesterase 3A (PDE3), which degrades cAMP
to AMP. Thus, a negative feedback-loop from cAMP over PKA,
PDE3 and back to cAMP is established. Besides active and
inactive states, PDE3 can also assume an inhibited condition
via binding of cilostamide,16 which represents an external
driving factor in our system. The other phosphodiesterase
implemented in our model is PDE2, a constitutively active
enzyme. PKA-phosphorylations of VASP and PDE3, and cAMP-
degradation by PDE2 and PDE3 are represented as Michaelis–
Menten reactions. In addition to the downstream-targets VASP
and PDE3, PKA can also repressively phosphorylate AC as an
upstream target, establishing a second negative feedback-loop.
The nature of this second feedback-loop will be analysed in a
later section. The overall activity of AC is given by the following
equation:

daAC

dt
¼ iAC � IPact � kIPð Þþ DP1act �kDP1ð Þþ EP4act �kEP4ð Þð Þ

1þ EP3act � kEP3ð Þ þ P2Y12act � kP2Y12ð Þ � aAC � kdeact

aAC represents the catalytically active form, whereas iAC repre-
sents the inert enzyme. Each receptor contributes with the
concentration of its ligand bound conformation and its own
characteristic kinetic constant. Deactivation of adenylate
cyclase is modeled as a mass-action process. Besides the
activation through G-protein coupled receptors, AC can also
be switched on by binding of forskolin, which represents a
high-affinity allosteric activator.17 Here, the enzyme stays in its
active conformation (Fors_AC).

Ligand binding to either receptor provokes a conformational
change, which renders the receptor active. Kd-values in the
literature reveal in all cases an association constant, which is at
least six orders of magnitude higher than the corresponding
dissociation constant.18–21 Those constants were therefore
neglected. Naturally occurring steady-state situations resulting
from repetitive ligand binding and dissociation cycles are repro-
duced within the receptors’ effects on AC and its deactivation rate.
EP3, EP4 and DP1 receptors are modelled as affine for PGE2, and
IP for PGI2. The low affinity of IP for PGE2 was neglected.

Fig. 1 illustrates the topology of the model. Furthermore,
Table S1 (ESI†) summarizes the system’s signal flow. All differ-
ential equations applied are given in the ESI.†

Model set-up: kinetic parameters

Model parameters were estimated using a trust-region optimi-
zation strategy as described in the Methods section. Parameters
whose values are known from literature were fixed prior to
fitting. This applies for all Michaelis–Menten constants and the
Vmax values of PKA, PDE2 and PDE3. The Hill coefficient of
PDE2 corresponding to 1.5 as assumed in Grant22 was included
in an initial model version, but proved to yield a larger model-
to-data distance than the later applied value of 1. Receptors’
affinities to their ligands were fitted likewise. The starting
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concentration of cAMP was determined by cAMP assay (see the
Methods section), those of AC, PKA, PDE2, PDE3 and VASP were
derived from mass spectroscopy data,23 receptor concentra-
tions were determined relatively from RNA quantifications,
where the IP amount was set to 1 mM. All other initial-values
were set to zero. The ESI† gives an overview of applied para-
meters and their origins.

Model set-up: experimental data

Measurements comprise both dose–response and time-series
data after manifold combinations of stimuli. The former aim at
providing information about the receptors’ individual impact
on cAMP signalling and are typified by detection of VASP
phosphorylation (Ser157) relative to the absolute VASP-amount,
after stimulation with 0.01, 1, 5, 10, 20, 50, 500 or 1000 nM of
PGE2, which binds to EP3, EP4 and, with lower affinity, to DP1
(Fig. 2A). In addition, the EP4 selective antagonist L161 (5 mM)
or the DP1 selective antagonist BWA (1 mM) was added
in respective settings (Fig. 2B and C). Measurements were
performed after 20 minutes. A comparison of Fig. 2B and C
points out a biphasic activation. Whereas EP4 causes a strong
increase in VASP-phosphorylation at low PGE2 concentrations,
DP1 appears responsible for sustained activation at higher
concentrations. The impact of the inhibitory EP3 receptor was
examined by means of the selective EP3 agonist sulproston and
the selective EP3 inhibitor L798. In this scenario, the cells
were stimulated with 2 nM of iloprost in the presence or
absence of M L798, followed by sulproston addition (10 nM)

after 5 or 9 minutes. Here, cAMP was measured after 10 minutes
in all cases (Fig. 2D). The impact of P2Y12 was also examined
through phospho-VASP measurement. Stimulations included 1,
5, 10, 20 and 50 mM doses of ADP (Fig. 2E).

To address the dynamics of platelet cAMP signalling evoked
by receptor activation, dose–response measurements are com-
plemented by time-resolved recording of relative phospho-VASP
levels, and absolute cAMP detections. VASP time-series data
comprise stimulations with the direct adenylate cyclase stimu-
lator forskolin at concentrations of 5, 10, 20, 50, 100 and
200 mM, and detection after various time points between 10
and 1800 seconds (Fig. 2F). VASP-phosphorylation reaches a
steady-state at around 0.7 relative to the overall VASP amount
with all applied forskolin concentrations, and maintains that
level constantly. In addition, iloprost stimulations at 2 nM were
conducted with both phospho-VASP and cAMP-detection
(Fig. 2G). To gain information about the influence of the negative
feedback-loop established by PKA and PDE3, the specific PDE3
antagonist cilostamide was added in a similar setting.

All collected data were used to fit the model parameters
simultaneously (multi-experiment fitting), which, after a fit
sequence of 1000 fits, yielded an overall normalized w2/N value
of 1.01 with N = 188 data points. The applied initial conditions
are given in the ESI† and were not changed from fit to fit.
Steady-state measurements were thereby tripled with additional
data points at t = 1500 and 1800 seconds for numerical reasons.
We restricted our study to the measurement of cAMP and
phosphorylated VASP, since the detection of other components

Fig. 1 Pathway topology. A receptor layer is connected to adenylate cyclase (AC) that produces cAMP upon activation. cAMP acts as a second messenger that
activates the PKA-module. Free catalytic subunits phosphorylate VASP, PDE3 and AC. cAMP is degraded via PDE2 and 3. Arrows stand for reactions, circles represent
enzymatic catalysis, blunt segments denote inhibitions and circles in circles indicate dissociations.
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Fig. 2 Experimental data and respective model trajectories. Experimental measurements are given as points together with lines showing the calculated trajectories of the
model. (A) Dose-dependent VASP-phosphorylation after PGE2-stimulation. (B) Dose-dependent VASP-phosphorylation after PGE2-stimulation in the presence of EP4-inhibitor
L161 (5 mM). (C) Dose-dependent VASP-phosphorylation after PGE2-stimulation in the presence of DP1-inhibitor BWA (1 mM). (D) cAMP time-course after iloprost-stimulation
combined with EP3-activation (yellow: 1 nM iloprost + 1 mM L798 + 10 nM sulproston after 540 seconds, black: 1 nM iloprost + 10 nM sulproston after 540 seconds, brown:
1 nM iloprost + 1 mM L798 + 10 nM sulproston after 300 seconds, blue: 1 nM iloprost + 10 nM sulproston after 300 seconds, purple: 1 nM iloprost + 1 mM L798 + 10 nM
sulproston, green: 1 nM iloprost + 10 nM sulproston). (E) Dose-dependent VASP-phosphorylation after ADP-stimulation with iloprost pre-stimulation (1 nM). (F) Time-dependent
VASP-phosphorylation after forskolin-stimulation (5, 10, 20, 50, 100 and 200 mM). (G) Time-dependent cAMP and VASP measurement after stimulation with 2 nM iloprost (blue),
cAMP-measurement after iloprost-stimulation (2 nM) in the presence of 2 mM cilostamide (red). All collected data were used to fit the model parameters simultaneously.
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would have been accompanied by great effort. AC for instance
needs to bind the GTP-bound subunit of a G-protein in order to
change its activation status. The intermediate PKA-module
components on the other hand only have a very short half-life
after the binding of the first cAMP molecule. As we will show
later, all model parameters appear to be identifiable, even
though just two players were directly measured.

Model evaluation: identifiability analysis

In our mathematical model, only two players included are
observed directly. Given a model that sufficiently describes
the measured data, it is important to infer how well model
parameters are determined by the amount and quality of
experimental data. This knowledge is essential for further
investigation of model predictions. For this reason a major
topic in modelling is identifiability analysis.12

A parameter pi is identifiable, if the confidence interval of its
estimate p̂i is finite. Two different sub-types of non-identifiability
can be distinguished: structural non-identifiability is adverted
to the model’s composition regardless of experimental data and
arises from a redundant parameterization in the formal
solution of y(t), due to a deficient allocation of internal model
states x to observables y. The set of ambiguous parameters may
be varied without changing the observables y(t), hence w2(p)
remains constant.

A parameter that is structurally identifiable may still be
practically non-identifiable. In contrast to structural non-
identifiability, this arises frequently if the amount and the
quality of experimental data are insufficient and manifests in
a confidence interval that is infinitely extended in at least one
direction below the applied w2 threshold.12

In our model, the profiles of all fitted parameters crossed
the threshold for point-wise confidence intervals in both
increasing and decreasing directions and thus proved to be
identifiable (Fig. 3). Including the initial conditions into the
fitting procedure would have severely diminished the para-
meters identifiability, even though the residuals built by the
model trajectories and thus the model-to-data distance would
have been smaller. Given the fact that the quantitative varia-
bility of the network components from donor to donor on the
one hand and the measurement noise of the applied experi-
mental methods on the other hand are comparatively high, we
decided to go for a completely identifiable model rather than
having better fits that are afflicted with uncertainties.

Model validation

To validate our model, we used two different datasets that were
kept away from fitting the model. Both validations were
performed using the same initial conditions as for fitting the
model. The first comprised time-resolved measurements of
phosphorylated VASP in the presence of the cAMP-analogue
cBIMPS, which cannot be degraded by phosphodiesterases.
This type of validation was applied to confirm the predicted
dynamics of PKA engagement and VASP phosphorylation. Due
to the slightly different affinity of cBIMPS to PKA, we intro-
duced three new parameters, the association and dissociation

constants of cBIMPS to the regulatory subunits of PKA, as well
as the dissociation constant of the cBIMPS bound holoenzyme,
releasing the two catalytic subunits. These parameters could
not be determined based on the other data, since cBIMPS was
exclusively added for validation. They thus were fitted along the
new dataset, with all other parameters being fixed. As stated
above, the initial conditions remained unchanged. This
revealed a w2/N value of 0.88, with N = 8 data points (Fig. 4A).
The model is thus able to describe the new data accurately.

The second validation comprised dose-dependent measure-
ments of phosphorylated VASP with different concentrations of
PGE2 after a pre-stimulation with iloprost. Similarly to the
dose–response data used for fitting (see section Experimental
data), measurements were performed 10 minutes after PGE2
was added. In this scenario, iloprost causes an elevation of
VASP-phosphorylation, which gets abolished if small PGE2
concentrations are added, due to the inhibitory effect of EP3,
its high affinity for PGE2, and the comparatively low activating
effect of DP1 (Table 1). However, when PGE2 concentrations are
increased to 200 mM and higher, the low-affinity but high
impact EP4 receptor becomes engaged, which outcompetes
the negative action of EP3 and raises the VASP-phosphorylation
again. Fig. 4B shows the experimental data together with the
respective model trajectory. Again, the model is able to describe
the data (w2/N = 1.22), even though the residuals of the model
trajectory are here not entirely normally distributed. We think
that despite this deviation the model is capable of yielding
interesting insights into the observed system, since the overall
dynamics of the measurement data could also in this case be
reproduced.

Model insights: receptor effects on AC

A receptor’s influence on its downstream signalling cascade is
dependent on three characteristic factors: the amount of
receptor molecules in the membrane, the receptor’s affinity to
its binding ligand, and the efficiency by which a conforma-
tional change evoked by ligand-binding is transduced to down-
stream targets. The first two factors are directly observable by
standard biochemical techniques and are known in many
cases. However, the third is dependent on detailed information
about the physical structure of both the receptor molecule and
the subsequent signalling components, including adaptor pro-
teins. An aggravating fact is that, like PGE2 in our platelet
system, many ligands bind to more than one receptor, which
prevents a straight mapping of cellular responses to individual
receptors. We therefore determined the receptors’ distinct
quantitative effects on their downstream target AC by means
of mathematical modelling.

Similar to all other model parameters, these quantities were
fitted with respect to all experimental conditions simulta-
neously. Due to the fact that receptor quantities are only known
relatively to each other, it is not possible to infer absolute
values for individual receptor contributions. However, they can
be accurately given relatively to each other. Table 1 illustrates
the effects of all five receptors on AC, related to an IP_AC value
of 1. The upper values biochemically correspond to enzymatic
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turnover-numbers of single receptor molecules, and have thus
the dimension s�1. They can be interpreted as the rate, by
which a single activated receptor molecule transmits the signal
via its G-protein to AC. It shows that, compared to IP, the effects
of individual DP1 and EP4 receptors are with values of 15.57 s�1

and 160.28 s�1 much greater. Regarding inhibitory functions,
P2Y12 signals with a value of 9.99 s�1 much weaker than EP3
(183.55 s�1). The maximum signal strength transduced by the
entity of a certain receptor species is also dependent on its
concentration. Hence, the relative effect-parameter of each
receptor (kACrel) is multiplied by its concentration in the plasma
membrane in the lower row of Table 1. These values correspond
to enzymatic Vmax values. Despite the high concentration of IP,
the overall effect of this receptor species (1) is still lower than
that of DP1 (1.49) and EP4 (5.45). In the inhibiting group, the
influence of EP3 (11.01) remains higher than that of P2Y12
(0.99), even though the concentration of EP3 is slightly lower.

The determined parameters imply medically interesting
insights: since EP3 transmits its signal more efficiently than
P2Y12, a pharmacological blocking of this receptor could be

more effective in moderating the inhibition of cAMP signalling
than the commonly used P2Y12 antagonist clopidogrel. As a
consequence, the higher pathway activity would then increase
the aggregation threshold for the entire cellular network and
could thus counteract the effects of prothrombotic agents.
However, since clopidogrel also hampers signal progression
to major activating kinases like PI3 and Akt, the most effective
antithrombotic strategy could be a combined approach of
cAMP/PKA activation via EP3 blocking or EP4 activation on
the one hand, and an inhibition of activating pathways on
the other. Potent selective EP3 antagonists are for example
ONO-240 (ref. 24) or the experimentally applied L798 (ref. 21),
as selective EP4 agonists 13,14-dihydro-PGE1 (ref. 25) or
ONO-4819 (ref. 26) could be named.

Model insights: PKA-feedback

In addition to the commonly known negative feedback-loop
established by PDE3, previous modelling approaches11 proposed
a second feedback-loop, in which PKA directly phosphorylates
AC. To characterize the nature of this second loop, we compared

Fig. 3 Parameter profiles after a maximum of 100 re-optimization-steps in both increasing and decreasing direction. Plotted are parameter values against normalized
w2 values. All parameters appear to be identifiable using point-wise confidence-intervals.
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different mathematical implementations (M1–M6) in terms of
their ability to explain the given experimental data. For each
model, a fit-sequence of 1000 fits was applied to gain the lowest
possible chi-square value. The feedback-parameter kfb of each
model was fitted globally along with the other parameters.

In M1, the phosphorylation by PKA acts by non-competitive
inhibition on the catalytic activity of AC (and Fors_AC):

ncat ¼
Vmax �ATP � aAC

km þATPð Þ � 1þ PKA=kfbð Þð Þ

In M2, the feedback-loop is implemented as a factor that
enhances the velocity by which an activated AC hydrolyses its
GTP and is deactivated again. The deactivation rate is hence
given by

ndeact = aAC�(kdeact + (PKA � kfb))

where aAC is the concentration of the activated cyclase, kdeact its
regular deactivation constant and kfb the strength of the

feedback-loop. M3 represents a model, where kfb exerts a
negative effect on the activation rate of AC, analogous to
the inhibiting receptors EP3 and P2Y12, e.g. by reducing the
affinity for Gs-subunits or GTP. Here, the AC activation rate is
defined by

nact ¼
iAC � IPact � kIPð Þ þ DP1act � kDP1ð Þ þ EP4act � kEP4ð Þð Þ
1þ EP3act � kEP3ð Þ þ P2Y12act � kP2Y12ð Þ þ PKA � kfbð Þ

M4 equals M3, but with PKA also acting on the Gs-independent
activation through forskolin. In these two scenarios, the feedback-
loop would hamper the conformational change leading to an
active enzyme rather than to block Gs or GTP binding.

M5 is a combination of M1 and M4. Here, the parameter kfb1

influences the activation rate of AC, and kfb2 its catalytic
activity. Both parameters were fitted with a lower bound of
10�5, in order to provide that both effects are present.

M6, finally, represents the null-hypothesis, being that there
is no direct influence of PKA on AC. Table 2 gives an overview
over the examined feedback-implementations and their respective
chi2 values. M1 showed the smallest model-to-data distance,
which implies that the negative feedback-loop by PKA exerts its
function by reducing the enzyme’s Vmax and thus diminishing
its catalytic activity. All other investigations were thus con-
ducted using this feedback-implementation.

Conclusion

cAMP-signalling is an important issue in platelet function and
dysfunction. We have created an ordinary differential equation-
based model of platelet prostaglandin/cAMP signalling, fitted it
to experimental data and validated the results by additional
datasets. Our data show for the first time the dynamic beha-
viour of VASP-phosphorylation after various stimulation types,
which could be accurately reproduced by modelling. Further-
more, we mathematically determined the individual receptor
contributions to cAMP signalling and examined a possible
second negative feedback-loop established by PKA via adenylate
cyclase phosphorylation, which could not only be confirmed,
but also further characterized. We examined the reliability of
our model by means of profile-likelihood-based identifiability
analysis. Our approach shows the EP3 and EP4 receptors to
be important targets. Efficient pharmacological modulation
of either could have a greater effect on antithrombotic cAMP
signalling than P2Y12 antagonists such as clopidogrel. A
prolonged activation of the cAMP pathway (or a block of its
inhibition) would be a novel means to prevent inappropriate

Fig. 4 Validation. (A) Time-resolved VASP-phosphorylation in the presence of
50 mM cBIMPS. Binding parameters for cBIMPS to PKA were fitted with all
other parameters being fixed. (B) Dose-dependent VASP-phosphorylation after
PGE2-stimulation with pre-stimulation of 2 nM iloprost.

Table 1 Receptor effect parameters related to IP

IP DP1 EP4 EP3 P2Y12

kACrel (relative to IP) 1 15.57 160.28 183.55 9.99
kACrelx0 1 1.49 5.45 11.01 0.99

Table 2 Model-to-data distances of selected feedback implementations

Model Chi2-value

M1 1.01
M2 1.61
M3 1.52
M4 1.36
M5 1.03
M6 2.05
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platelet activation, and may thus complement classical approaches.
The obtained information is a further step to understanding
the complex signalling processes that constitute the basis
for thrombocyte-based wound-healing, and permit improved
pharmacological modulation of platelets with application
potential both in thrombotic diseases and coagulopathies as
well as in acute and chronic inflammatory action of platelets.
Drugs modulating the intracellular cAMP concentration in
platelets have been proven efficient platelet inhibitors with
minor side-effects. Current anti-aggregatory drug development
is mainly aimed at these pathways. However experience
with these novel drugs has indicated a wide variability in their
efficacy, which may result from genetic predisposition,
co-medication or other, yet unknown reasons. By combination
of appropriate drugs these shortcomings may be overcome. To
enable adequate medication detailed knowledge of the under-
lying mechanisms and their particular contribution to signal-
ling is of fundamental importance. Both, drug development
and future therapeutic strategies will benefit from a quantita-
tive model of the signalling pathways.

Methods
Computational methods

In silico modelling. The model consists of a set of ordinary
differential equations, representing concentration changes over
time. Rate constants taken from the literature all arise from
studies on human platelets. The basal model incorporated
mass action, Michaelis–Menten and custom kinetics. It was
optimized by fitting it 1000 times to all available experimental
data simultaneously (multi-experiment-fitting), each time varying
all parameters with a disturbance strength s of 0.3 corre-
sponding to pnew = pold� 10(s�u) with u being normally distributed
with mean 0 and variance 1. Since we applied multi-experiment-
fitting, the same initial conditions were used for all experi-
mental scenarios. The magnitude of the measurement error
was estimated along with the remaining parameters. Therefore,
a parameterized error model of the form

etot = erel y + erelmaxmax( y)

describing the measurement noise was assumed. The type of the
error is Gaussian. The additional parameters erel and erelmax

accounting for relative noise and noise relative to the maximum
were estimated simultaneously with the other model parameters.

Corresponding differential equations were implemented and
further analyzed using the MATLAB toolbox PottersWheel.27

Parameter estimation. Determining model parameters that
optimize the merit function and set the model statistically
compliant with the available data is a fundamental problem.
To fit the model

y = y(ti,
-
p)

to data, we optimize the w2-merit function

w2 ~pð Þ ¼
X yi � y ti;~pð Þ

s2

with yi representing data point i with standard deviation si. The
model value at time point i for a set of parameter values -

p is
given by y(ti,

-p). Assuming normally distributed measurement
errors, this corresponds to a maximum likelihood estimation.
To optimize this function, we used the trust region algorithm in
the logarithmic parameter space,28 a powerful deterministic
least-square optimizer. ODE-integration was thereby performed
by means of SVODES.29

Profile-likelihood estimation. The idea of profile likelihood
estimation is to explore the parameter space for each parameter
in the direction of the least increase in w2. It can be calculated
for each parameter individually by

wPL
2ðpiÞ ¼ min

pjai

w2ðpÞ
� �

meaning re-optimization of w2(p) with respect to all parameters
pjai, for each value of parameter pi. Hence, the profile like-
lihood keeps w2 as small as possible alongside pi. Structural
non-identifiable parameters are characterized by a flat profile
likelihood. The profile likelihood of a practically non-identifiable
parameter has a minimum, but it does not exceed a threshold a
for increasing and/or decreasing values of pi. In contrast, the
profile likelihood of an identifiable parameter exceeds a for both
increasing and decreasing values of pi. The points of passover
represent likelihood-based confidence intervals.12

Experimental methods

Platelet preparation. Platelets were used as washed platelets
(WP) resuspended in phosphate buffered saline (PBS, 137 mM
NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH = 7.4),
depending on the assay applied, and prepared from whole
human blood as described elsewhere30 with modifications to
avoid contamination by other cells. Whole human blood was
obtained from healthy volunteers who had not taken any
medication affecting platelet function within 2 weeks prior to
the experiment after informed consent according to the
declaration of Helsinki and our institutional guidelines and
as approved by the local ethics committee. The blood was
drawn by venipuncture and collected in 1/5 volume of
HEPES–citrate buffer (120 mM NaCl, 20 mM sodium citrate,
4 mM KCl, 1.5 mM citric acid, 30 mM D-glucose, 8 mM HEPES,
pH = 6.5) and centrifuged at 300 � g for 20 minutes at 20 1C to
obtain platelet rich plasma (PRP). For the preparation of
washed platelets the PRP was diluted 1 : 1 with HEPES–citrate
buffer, apyrase (1 U ml�1) added and centrifuged again at
100 � g for 10 min at 20 1C. The pellet was discarded and the
supernatant was centrifuged at 380 � g for 10 minutes. The
resulting pellet was resuspended in HEPES/citrate, left resting
for 5 minutes and centrifuged again at 380 � g for 10 minutes.
The platelet pellet was resuspended in PBS buffer to a cell
density of 3 � 108 platelets per ml and apyrase (0.1 U ml�1)
added. Washed platelets were used in 200 ml portions. The
samples were incubated with the reagents in the water bath at
37 1C as indicated, stopped and treated appropriately for the
respective analyte. The reagents were solved in PBS unless
otherwise stated.
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cDNA preparation. Total RNA was isolated from WP using
the Trizol method according to the manufacturer’s protocol
(Invitrogen, Darmstadt, Germany). WP were centrifuged to
produce a pellet containing 3.5 � 108 platelets, which was
resuspended in 1 ml of Trizol. To visualize the pellet, 2 ml
3 M sodium acetate was added. After the addition of 400 ml
chloroform the suspension was mixed well and incubated for
5 minutes on ice. The suspension was centrifuged (4 1C, 9000 �
g, 10 minutes) and the upper phase was transferred to a tube,
600 ml ice-cold isopropanol added and centrifuged (4 1C, 9000� g,
15 minutes) again. The pellet was resuspended in 1 ml 70%
ethanol and centrifuged (4 1C, 9000 � g, 15 minutes). The
supernatant was discarded and the pellet was dried and resus-
pended in 10 ml de-ionised water. mRNA was transcribed in
cDNA by the reverse transcriptase reaction with SuperScript II
(Invitrogen, Darmstadt, Germany). The platelet cDNA was tested
against leukocyte and genomic contamination with specific
oligonucleotides and only used if tests were negative. Human
normal tissues cDNA (BioChain) was used as positive control.
The oligonucleotides were designed against all known isoforms
of the receptors. Quantitative PCR was done with Platinum Taq
Polymerase. All PCR products were validated by sequencing.
Table 3 shows the determined relative receptor amounts.

cAMP EIA. Cyclic adenosine 50-monophosphate (cAMP)
determination was carried out as described in ref. 30. In brief,
platelets were lysed with the original volume of 70%(v/v) ice
cold ethanol and kept on ice for 30 minutes. The precipitate
was removed by centrifugation for 10 minutes at 10 000 � g and
4 1C and washed again with the same volume of 70%(v/v)
ethanol. The ethanol extracts were combined and dried in the
vacuum. The dried samples were dissolved in 200 ml of the
assay buffer supplied with the assay and acetylated to increase
assay sensitivity as described in ref. 30. The samples were
measured in a Wallac Victor 1420 (Perkin-Elmer) plate reader
at 405 nm. Sample readings below 30% or above 70% %B/B0 are
off the dynamic range of the assay and were repeated with an
appropriate dilution of the sample.

VASP phosphorylation. VASP phosphorylation is a highly
sensitive indicator for platelet cAMP regulation.30 We deter-
mined VASP phosphorylation in a solid-phase assay either by
VASP binding on a zyxin matrix30 or in a sandwich ELISA
(BioCytex, Marseille, France).31 The zyxin matrix pVASP assay
was carried out as described elsewhere.30 Platelet samples
(200 ml each) were lysed by addition of an equal volume of ice
cold lysis buffer (20 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA,
1 mM EGTA, 1% Triton X-100, 0.5% NP-40, 10 mM b-glycerol-
phosphate, 10 mM NaF, pH = 7.4) and thorough mixing on a

vortex mixer. The samples were diluted with PBS buffer by
1 : 10. Each sample was measured in triplicate for the VASP
phospho-Ser157 antibody (5C6) and total VASP antibody
(IE273). As control for background and non-specific binding
5% bovine serum albumin (BSA) solved in lysis buffer was used.
100 ml sample per well of the zyxin coated microtiter plate were
incubated for 1 h at room temperature under shaking and
washed three times with 300 ml per well PBS-T (0.1% Tween20
supplemented PBS), 1 h incubated with the primary antibodies,
washed 3 times with PBS-T, the secondary antibody (horse
radish peroxidase coupled goat anti-mouse IgG) added, incu-
bated and washed as mentioned above. The detection reagent
ABTS was added, incubated for 20 minutes at room tempera-
ture under shaking and the absorbance of the samples was
measured in the microtiter plates with a Wallac Victor 1420
(Perkin-Elmer) plate reader at 405 nm each for 1 second. From
the absorbance of each sample the absorbance of the back-
ground control sample for the respective antibody was sub-
tracted, and the resulting data were multiplied by the dilution
factor. From the values obtained with the phosphospecific and
the total VASP antibodies the phospho-VASP/VASP ratio was
calculated.
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