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Abstract

Motivation: Dynamic models are used in systems biology to study and understand cellular proc-

esses like gene regulation or signal transduction. Frequently, ordinary differential equation (ODE)

models are used to model the time and dose dependency of the abundances of molecular com-

pounds as well as interactions and translocations. A multitude of computational approaches, e.g.

for parameter estimation or uncertainty analysis have been developed within recent years.

However, many of these approaches lack proper testing in application settings because a compre-

hensive set of benchmark problems is yet missing.

Results: We present a collection of 20 benchmark problems in order to evaluate new and existing

methodologies, where an ODE model with corresponding experimental data is referred to as prob-

lem. In addition to the equations of the dynamical system, the benchmark collection provides

observation functions as well as assumptions about measurement noise distributions and parame-

ters. The presented benchmark models comprise problems of different size, complexity and nu-

merical demands. Important characteristics of the models and methodological requirements are

summarized, estimated parameters are provided, and some example studies were performed for

illustrating the capabilities of the presented benchmark collection.

Availability and implementation: The models are provided in several standardized formats, includ-

ing an easy-to-use human readable form and machine-readable SBML files. The data is provided as

Excel sheets. All files are available at https://github.com/Benchmarking-Initiative/Benchmark-Models,

including step-by-step explanations and MATLAB code to process and simulate the models.

Contact: jan.hasenauer@helmholtz-muenchen.de or ckreutz@fdm.uni-freiburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Dynamic models based on ordinary differential equations (ODEs)

have become a widely used tool in systems biology to quantitatively

describe regulatory processes in living cells. Within this approach,

known biochemical interactions of important compounds can be

translated into rate equations describing the temporal evolution of

the state of biological processes. Experimental data is then used to
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estimate parameters like rate constants or initial concentrations and

to validate or improve the model structure.

The dimensionality and nonlinearity of these models constitute a

challenge for numerical and statistical methods regarding parameter

estimation and identification of the most plausible model structure.

For that reason, a multitude of new modeling techniques have been

developed within recent years. However, they are often not well-

tested in realistic application settings and, therefore, their perform-

ance benefits or limitations are unknown (Degasperi et al., 2017;

Hug et al., 2013; Lillacci and Khammash, 2010; Maier et al., 2016;

Raue et al., 2013; Stapor et al., 2018; Vyshemirsky and Girolami,

2008). Since the performance of computational approaches depends

on model characteristics such as nonlinearity, number of parameters

or amount of experimental data, it is essential to have a reasonably

large set of benchmark problems that covers these characteristics.

Only if the collection of benchmark problems is representative, the

results of performance studies will generalize to new modeling

projects.

One frequent limitation is that realistic measurements are typic-

ally not available for evaluations. Simulated data, as an example, is

often much more informative in terms of number of data points

(Tönsing et al., 2014) and does not have a complex noise structure

(Villaverde et al., 2015) like measurements from living cells.

Moreover, in most cases experimental measurements require aug-

menting the equations of the dynamic model with so-called observa-

tion functions containing scalings- and/or offset parameters,

together with transformations of the data such as a log-

transformation.

Benchmark collections are used in many scientific fields, but there

are currently only a limited number of benchmark problems for mod-

eling intracellular processes and they cover only a small set of applica-

tion setups: (i) Six benchmark models have been published by

Villaverde et al. (2015), however for most of them, only simulated

data are provided. For the models with experimental data, one has

less data points than parameters, and the other provides its equations

only in a compiled version, which limits their use for model evalu-

ation. (ii) Additional benchmark problems were defined within the

DREAM6 (Dialogue on Reverse-Engineering Assessment and

Methods) and DREAM7 challenges. However, both challenges only

had simulated data available because the models do not represent real

biological networks occurring in specific living cells. In addition,

abundances of the molecular compounds were assumed as known ini-

tial values and the dynamic variables were assumed as directly meas-

ured without observation functions which renders these problems as

rather unrealistic. (iii) Public repositories, e.g. the Biomodels database

(Le Novere et al., 2006) provide a large number of realistic/published

models. Unfortunately, for most models the measured data used for

calibration is not or only partly provided. Moreover, if the data is

published, the description of the link between model and data is often

not sufficient, i.e. the noise model and observation functions are not

comprehensively defined as required for a non-ambiguous benchmark

problem. One major reason for this might be that current standards

for defining models like the Systems Biology Markup Language

(SBML) (Hucka et al., 2003) only comprise the biological part of the

model but do not contain equations for observations and noise mod-

els used to estimate parameters. Standards for the encoding of experi-

mental descriptions, such as the Simulation Experiment Description

Markup Language (SED-ML) (Waltemath et al., 2011), are unfortu-

nately not yet used widely and only supported by a fraction of the

available tools.

In this manuscript, 20 models of biochemical reaction networks

which should serve as a comprehensive set of benchmark problems

enabling testing of a multitude of data-based modeling approaches

are presented. The models have different complexity ranging from 9

to 269 parameters. All models comprise measured data (21 to 27

132 data points per model). We also provide measurement errors ei-

ther determined experimentally or from an underlying error model.

2 Methodology

2.1 Pathway models
Biochemical reaction networks can be modeled using reaction rate

equations,

_x ¼ f ðx; u; hÞ: (1)

which describe the dynamics of compound concentrations xðtÞ 2
R

nx as a function of parameters h (Section 2.3) and inputs uðtÞ 2 R
nu

(Section 2.4).

The initial values x(0) of Eq. (1) might be known. However, in

most applications some elements of x(0) are unknown and defined

as parameters, i.e. xð0Þ � xh
0 � fhg, or functions of parameters, i.e.

xð0Þ � x0ðhÞ. Mathematically, we distinguish between three classes:

1. The initial conditions might be known or given, e.g. zero before

treatment.

2. The initial conditions might be analytical functions of the

parameters, e.g. analytical solutions to a steady-state constraint

(Rosenblatt et al., 2016).

3. The initial conditions might be non-analytical expressions of the

parameters, e.g. the result of a pre-simulation xð0Þ � x
SSpre

0 ðhÞ ¼
limt!1 xðtÞ of an experimental condition (Fiedler et al., 2016;

Rosenblatt et al., 2016).

For a detailed discussion we refer to Rosenblatt et al. (2016) and

Fiedler et al. (2016).

2.2 Measurement errors
The state variables of reaction rate equations are linked to measure-

ments via observation functions giðx; hÞ; i ¼ 1; . . . ;Nobs, which de-

scribe the properties of the experimental device/technique used to

acquire measurement data. The observation functions might be non-

linear functions of the state variables, e.g. if the readout saturates,

for considering detection limits, and comprise scalings (Loos et al.,

2018). For all presented benchmark models, independent normally

distributed, additive errors are assumed for the measurements

yi ¼ giðx; hÞ þ ei; ei � Nð0; r2
i Þ: (2)

Note that in the chosen notation, index i enumerates each obser-

vation/data point yi at a specific time point and each corresponding

standard deviation ri of the measurement error individually.

We consider two broad classes of error models:

1. The standard deviation ri of measurement errors might be deter-

mined as part of the experiment and processing of raw data, e.g.

by computing standard errors across replicates. In this case, each

data point yi has a given, fixed value ri specifying the accuracy

of the measurement.

2. Standard deviations might be unknown and therefore described

as error models with error parameters which might be jointly

estimated with other model parameters. The function can de-

pend on parameters, state variables or both.

While class 1 yields a parameters estimation problem with fewer

parameters, class 2 does not require the calculation of ri from a
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potentially small number of replicates and the statistical model

accounts for imperfect knowledge of ri (Raue et al., 2013).

An error model E describes the dependence of the standard devi-

ation of an observation on the error parameters herr and the state

variables x, ri ¼ fncðgiðx; hÞ; herrÞ. The most basic parameter-

dependent error models are unknown standard deviations for the in-

dividual observations, 8i : ri � habserr;i, or sets of observations Is,

s ¼ 1; . . . ; ns, i.e.

Eð1Þ : 8i 2 Is : ri � habserr;s: (3)

Parameter- and state-dependent error models are for instance

Eð2Þ : 8i 2 Is : ri �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

abserr þ h2
relerr � giðx; hÞ2

q
; (4)

and

Eð3Þ : 8i 2 Is : ri � habserr þ hrelerr � giðx; hÞ; (5)

with two parameters for absolute or relative noise levels. Eð2Þ is

obtained if relative and absolute errors are assumed as two inde-

pendent sources of variability. Eð3Þ is a phenomenological model

which often realistically describes absolute and relative components

of observed measurement errors.

2.3 Parameters
Dynamic models in systems biology comprise up to three classes of

parameters:

• Dynamic parameters hdyn that determine the initial states x(0)

and the dynamics of the process, see Eq. (1). These parameters

are rate constants such as association/dissociation rates or

-constants, translocation rates between intra- or extracellular

compartments, or parameters like Michaelis-Menten- and Hill-

coefficients, efficiencies of genetic perturbations or parameters of

input functions. We note that the dynamic parameters hdyn do

not change over time, although the name might suggest

otherwise.
• Observation parameters hobs that describe the relationship be-

tween concentrations of intracellular compounds with outputs,

e.g. intensities in an assay. These parameters are for example

scaling factors or offsets (Weber et al., 2011).
• Error parameters herr that describe the unknown noise levels (see

Section 2.2).

Since dynamic parameters depend on the biological context and

observation- and error parameters are determined by the experimen-

tal setup, there is often only a limited amount of prior knowledge

about parameters available. For the benchmark models, upper- and

lower bounds are defined for all parameters. In most cases, these

bounds cover eight orders of magnitude or even more. In some cases,

additional prior knowledge in terms of prior distributions or penal-

ties is available for specific parameters.

The parameters of the biological process are often transformed

to improve the convergence of optimization (Raue et al., 2013) and

to eliminate structural non-identifiabilities (Maiwald et al., 2016).

A common practice is the transformation of the parameters from lin-

ear to logarithmic scale. However, there are also problem-specific

transformations as described in the supplements of Bachmann et al.

(2011) and Becker et al. (2010).

2.4 Inputs
Inputs u describe the dependence of the biochemical reaction net-

work on external factors as well as perturbations. Examples are

externally controlled concentration of ligands or nutrients, or genet-

ic perturbations like knockouts or overexpression. Time-dependent

inputs u � uðtÞ are often parameterized functions such as polyno-

mials, splines (Schelker et al., 2012) or control vectors (Banga et al.,

2005). Parameter dependence of inputs is in the following indicated

by writing uðt; hÞ.

3 Model and data formats

For a thorough evaluation of computational methods, we provide a

set of 20 published models and their corresponding datasets. The

models have been extracted from the literature and have been devel-

oped by more than 10 different research groups. The information is

stored in an easily accessible and standardized format, including an

Excel file with general specifications of the model and its fit results.

Measurements and model equations are stored as separate Excel

files and for each experiment individually. In the data files, measure-

ments with uncertainties and results from the corresponding model

simulations are stored. The model files contain finalized ODEs

including experiment-specific parameter assignments and observa-

tion functions, and are provided as user-readable Excel file and in

the standardized, machine-readable SBML standard (Hucka et al.,

2003). For a detailed description of the provided files, we refer to

Supplementary Section S1.

4 Results

4.1 Benchmark collection
The main focus of this paper is to introduce a comprehensive collec-

tion of benchmark problems and their formulation in a standardized

format. A comprehensive overview of the benchmark problems is

provided in Table 1.

The benchmark problems cover a wide range of model and data-

set sizes (Fig. 1A). Some of these properties are correlated, e.g. log-

transformed numbers of data points and parameters (q ¼ 0:56,

P-value ¼ 0:01). A local identifiability analysis (see Supplementary

Section S12) using the identifiability test by radial penalization

(ITRP) (Kreutz, 2018) revealed that most benchmark models pos-

sess non-identifiable parameters. Furthermore, we found that initial

conditions are specified in multiple ways, e.g. as equilibrium points

of an unperturbed condition, and that different types of noise mod-

els and input functions are used (Fig. 1B). This results in a large

number of combinations which have to be covered by computation-

al modeling tools.

Although our collection is not unbiased, the spectrum of proper-

ties in the published models reveals requirements to be covered by

modeling and parameter estimation tools. In the following, we will

use the benchmark collection to assess a few common questions and

statements.

4.2 Log-transformation of model parameters
A variety of studies in the systems biology field advocate the use of

log-transformed parameters, n ¼ log 10ðhÞ, for optimization:

‘For parameters that are by definition non-negative a log-scale

should be used in the parameter estimation’. (Raue et al., 2013)

Recent evaluations verified that this can improve computational effi-

ciency (Kreutz, 2016; Villaverde et al., 2019). A comprehensive evalu-

ation on application problems is however missing and the precise reason

for the improvement is still unclear. Here, we used the compiled bench-

mark collection to confirm the finding for multi-start local optimization

Benchmark problems 3075
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Table 1. Table summarizing the 20 benchmark models and their properties

Name Description Biochemical

species

Observables Data

points

Experimental

conditions

Parameters Features

Bachmann The model by Bachmann et al. (2011)

describes JAK2/STAT5 regulation via two

transcriptional negative feedbacks, CIS

and SOCS3 in murin blood forming cells

25 11 542 23 113 C, Eð1Þ, NI, xh
0

Becker The model by Becker et al. (2010) shows

that rapid EpoR turnover and large intra-

cellular receptor pools enables linear lig-

and response.

6 4 85 13 16 Eð1Þ; x0ðhÞ

Beer The model by Beer et al. (2014) uses

Escherichia coli as chassis to demonstrate

heterologous T domain exchange in non-

ribosomal peptide synthetases (NRPSs).

4 2 27 132 19 72 Eð1Þ, ev, NI, uðt; hÞ; xh
0

Boehm The model by Boehm et al. (2014) evaluates

possible homo- and heterodimerization of

the transcription factor isoforms STAT5A

and STAT5B.

8 3 48 1 9 C, Eð1Þ; uðt; hÞ; x0ðhÞ

Brannmark The model by Brännmark et al. (2010)

describes insulin signaling in adipocytes.

9 2 43 8 22 Eð1Þ, ev, NI, u(t), x
SSpre

0 ðhÞ

Bruno The model by Bruno et al. (2016) investi-

gates the activity of Arabidopsis caroten-

oid cleavage dioxygenase 4 (AtCCD4) as

regulator of carotenoid of seeds.

7 6 77 6 13 Ex, xh
0

Chen The model by Chen et al. (2009) describes

signaling in ErbB-activated MAPK and

PI3k/Akt pathways, including seven re-

ceptor dimers and two ErbB ligands.

500 3 105 4 154 Eð1Þ, ev, NI, xfix
0

Crauste The model by Crauste et al. (2017) describes

CD8 T cell differentiation after virus

infection.

5 4 21 1 12 Ex, NI, xfix
0

Fiedler The model by Fiedler et al. (2016) describes

Raf/MEK/ERK signaling in synchronized

HeLa cells upon stimulation with MEK

and ERK inhibitors.

6 2 72 3 19 Eð1Þ, NI, uðt; hÞ; x0ðhÞ

Fujita The model by Fujita et al. (2010) describes

the epidermal growth factor (EGF)-de-

pendent Akt pathway in PC12 cells.

9 3 144 6 19 Ex, ev, NI, uðt; hÞ; xh
0

Hass The model by Hass et al. (2017) establishes

early Reelin-induced signaling and identi-

fies Src family kinases (SFKs) as crucial

part for Dab1 signaling.

9 6 221 17 49 Ex, ev, x0ðhÞ

Isensee The model by Isensee et al. (2018) describes

the Protein Kinase A (PKA)-II cycle in pri-

mary sensory neurons and its response to

multiple stimuli, e.g. forskolin and cAMP

analogues and is based on quantitative

microscopy and Western blotting.

25 3 713 109 46 C, Eð1Þ, ev, NI, uðt; hÞ; x
SSpre

0 ðhÞ

Lucarelli The model by Lucarelli et al. (2018)

describes activation of Smad proteins

upon TGFb stimulation, identifies the

relevant complexes and linked them to

target genes.

33 43 1755 12 84 Eð1Þ, Ex, NI, xh
0

Merkle The model by Merkle et al. (2016) describes

Epo-induced signaling simultaneously for

CFU-E and H838 cells, with a parsimoni-

ous set of differing parameters.

23 22 1141 62 197 C, Eð1Þ, Ex, ev, NI, u(t), x0ðhÞ

Raia The model by Raia et al. (2011) describes

interleukin-13 (IL13)-induced activation

of the JAK/STAT signaling pathway for

B-cells and two lymphoma cell lines.

14 8 205 4 39 C, Eð3Þ, NI, xh
0

Schwen The model by Schwen et al. (2015) describes

binding of insulin to primary mouse hepa-

tocytes based on flow cytometry and

ELISA data.

11 4 292 7 30 Eð1Þ, NI, x0ðhÞ

(continued)
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(Fig. 2A) and to assess whether changes in the objective function land-

scape might be a potential reason. The performance metric is the aver-

age number of converged starts per minute (see Villaverde et al., 2019).

Starts are considered to be converged if the objective function value dif-

fers at most by 10�1 from the best objective function value found across

all runs for the given benchmark problem, whereby we only included

the models for which the best value was found more than once. An as-

sessment of the influence of the convergence threshold is provided in the

Supplementary Figure S30.

Log-transformation leaves the optima unchanged but changes the

shape of the level-sets of the objective function. We found several

examples for which the level-sets are non-convex in the parameter h,

but convex in log-transformed parameters n (see, e.g. Fig. 2B). As

local optimizers are well suited for convex problems, the change in

the level set structure could be a reason for the improvement. To as-

sess whether log-transformation improved the convexity of the object-

ive function, we drew a random parameter vector hð1Þ 2 X and a

second random vector hð2Þ 2 X with jjhð2Þ � hð1Þjj ¼ 1 and a random

Table 1. Continued

Name Description Biochemical

species

Observables Data

points

Experimental

conditions

Parameters Features

Sobotta The model by Sobotta et al. (2017) presents

IL-6-induced JAK1-STAT3 signal trans-

duction and expression of target genes in

hepatocytes.

13 11 2220 110 260 C, Eð1Þ, ev, uðt; hÞ; x
SSpre

0 ðhÞ

Swameye The model by Swameye et al. (2003) demon-

strates that rapid shuttling of STAT5

from the nucleus back to the cytoplasm

following Epo stimulus is recognized as a

remote sensor.

9 3 46 1 13 C, Ex, NI, uðt; hÞ; x0ðhÞ

Weber The model by Weber et al. (2015) describes

the interactions of PKD, PI4KIIIb and

CERT at the trans-Golgi network of

mammalian cells.

7 8 135 3 36 Eð1Þ, ev, NI, u(t), x
SSpre

0 ðhÞ

Zheng The model is adapted from Zheng

et al. (2012) and describes methylation at

histone H3 lysines 27 and 36.

15 15 60 1 46 Eð1Þ, ev, NI, uðt; hÞ; x
SSpre

0 ðhÞ

Note: The models are abbreviated with the last name of the first author. Many models are based on Western blot data. Number of parameters denotes un-

known parameters that are estimated in the model. The number of experimental conditions is specified as the number of different simulation conditions. The fea-

ture abbreviations denote the following: C ¼ several compartments, Eð1Þ ¼ constant error parameters, Eq. (3), Eð2Þ ¼ error model of Eq. (4), Eð3Þ ¼ error model of

Eq. (5), Ex ¼ known measurement errors, ev ¼ events, NI ¼ non-identifiable parameters, u(t) ¼ time dependent input function, uðt; hÞ ¼ input function with un-

known parameter(s). Initial values are specified according to the following order: xfix
0 ¼ known initial values, xh

0 ¼ initial condition given by unknown parameters,

x0ðhÞ ¼ parameter dependent functions and x
SSpre

0 ¼ pre-equilibration for initial steady state conditions. The models are described in more detail in Supplementary

Section S4.

A B

Fig. 1. Property distribution in the presented benchmark collection. (A) Histograms for numerical model properties: number of observables, conditions, data points

and parameters. Properties of individual models are indicated with an overlayed parallel coordinate plot. The parallel coordinates facilitate highlight correlations:

most lines are parallel) positive correlations; most lines cross) negative correlation. (B) Mosaic plot for the categoric model properties: initial conditions (indicated

by columns), error models (indicated by colors) and input functions (indicated by saturation levels). The areas encode the percentage of models with a particular com-

bination of properties. Combinations of model properties which are not observed are crossed out in the legend. Non-analytical parameter-dependent initial conditions

cannot be solved analytically and are obtained by simulating the system to steady state (Color version of this figure is available at Bioinformatics online.)
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location on the connecting line, a � Uð0; 1Þ. For convex problems,

the objective function J satisfies 8 hð1Þ; hð2Þ and a:

Jðahð1Þ þ ð1� aÞhð2ÞÞ � aJðhð1ÞÞ þ ð1� aÞJðhð2ÞÞ: (6)

Accordingly, the fraction of triples ðhð1Þ; hð2Þ; aÞ for which (6)

holds provides a measure of convexity. We evaluated this measure for

different combination of sampling strategies for hð1Þ and hð2Þ (lin or

log scale, indicated in the x-axis of Fig. 2C), and checking the connect-

ing line between the two parameters in lin or log scale (see

Supplementary Section S7). For each combination, we sampled 1000

triples. Our comparison revealed that for most application problems,

log-transformation increases the considered measure of convexity

(Fig. 2C). Indeed, some problems appear to be completely convex

when using log-transformed parameters. This provides a mechanistic

explanation for the observed improvement in optimizer convergence.

4.3 Performance of local optimization methods
The no free lunch theorem for discrete optimization states that

‘[. . .] what an algorithm gains in performance on one class of

problems is necessarily offset by its performance on the remain-

ing problems’. (Wolpert and Macready, 1997)

This implies that effective optimization relies on a fortuitous match-

ing between an optimization method and an optimization problem.

Similarly, it was shown for continuous optimization problems, for

which the no free lunch theorem does not apply, that there are opti-

mal algorithms for certain problem classes (Auger and Teytaud,

2010). Here, we used the benchmark collection to assess the per-

formance of the trust-region-reflective and the interior-point algo-

rithm in the MATLAB function fmincon (The MathWorks, 2016) to

parameter optimization problems encountered in systems biology to

assess which one is generally more suited. These local optimizers are

widely used. Indeed, there are studies using both optimizers to ex-

ploit their individual benefits and performance differences (Stapor

et al., 2018). The choice of the optimizer has direct implication for

multi-start local optimization methods (Raue et al., 2013) and meta-

heuristics (Villaverde et al., 2019), but also for uncertainty analysis

using profile likelihoods (Raue et al., 2009).

For fmincon, mainly the default settings provided by MATLAB

were chosen, which can be obtained by optimoptionsð0fmincon0Þ.
Therein, the algorithm was chosen as trust-region-reflective or

interior-point, respectively. Additional changes to the default set-

tings comprise:

• A user-defined gradient and Hessian for Gauss-Newton

optimization.
• The tolerance on first-order optimality was set to 0.
• Termination tolerance on the parameters was set to 10�6.
• As subproblem-algorithm, cg (conjugate gradient) was always

chosen.
• The maximum number of iterations was set to 10 000.

The trust-region-reflective algorithm is tailored to optimization

problems with linear constraints. The trail step of the optimizer is

obtained by minimizing a quadratic approximation of the objective

function within the trust region (which is chosen adaptively).

Parameter bounds are handled in the step construction by scaling

and reflection. The interior-point algorithm is a general purpose

method (and the MATLAB default) for optimization problems with

linear and nonlinear constraints. It solves a sequence of approximate

optimization problems with barrier functions. In each iteration, a

direct step obtained by solving the so-called Karush-Kuhn-Tucker

condition or conjugate gradient step using a trust region is per-

formed. For details we refer to the MATLAB documentation (The

MathWorks, 2016).

We performed multi-start local optimization with 1000 fits for

all benchmark models. Our results revealed that for the considered

benchmark problems the trust-region-reflective algorithm tends to

outperform the interior-point algorithm (Fig. 3 and Supplementary

A B C

Fig. 2. Linear versus logarithmic scale. (A) Performance of the multi-start local optimization scheme using the MATLAB optimizer lsqnonlin for: (x-axis) sampling

of initial values in log scale and optimization in linear scale; and (y-axis) sampling and optimization in log scale. Performance is measured as average number of

converged starts per minute. (B) Level-sets of the objective function for a synthesis-degradation process described in the Supplementary Section S6. (top) The

level-sets in linear parameter are non-convex, implying that the objective function is non-convex. (bottom) The level sets in log-transformed parameters are con-

vex. (C) Convexity properties of the benchmark problems in linear parameters and log-transformed parameters. It is indicated whether the two parameters are

sampled in linear or log space and whether the connection between the two parameters is checked in linear or log space. Statistically significant differences are

shown (P-value for rank sum test, * < 0.05, ** <0.01)
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Figs S7–S26). Indeed, the trust-region-reflective algorithm achieved

a higher number of converged starts per computation time for 18 of

the 20 benchmark problems and is for 9 benchmark problems the

only algorithm finding the optimal solution. However, the optimal

solutions for 2 benchmark problems were only obtained using the

interior-point algorithm. Accordingly, although the trust-region-

reflective algorithm (which is not the MATLAB default) achieves the

higher reliability and performance, it can be beneficial to test alter-

native local optimizers. Additional information of the multi-start fits

and the computation time for each model, as well as a comparison

of the trust-region-reflective and the interior point method with the

least-squares solver implemented in the MATLAB function lsqnon-

lin can be found in Supplementary Sections S3, S8 and S9.

4.4 Number of steps for local optimizers
Common questions in practical applications are (i) for how many

steps (or iterations) a local optimizer should be run, and (ii) how the

number of steps depends on the number of the parameters. For

many local optimization algorithms, such bounds and results for

scaling properties are available. For interior-point algorithms it has

been shown that for convex problems

‘[. . .] the number of Newton steps hardly grows [. . .] with m [the

number of constraints - author’s note] (or any other parameter, in

fact)’. (Boyd and Vandenberghe, 2004, Section 11.5.6)

Similar findings are reported for other methods (see, e.g. Nesterov,

2013). As the independence of the number of optimization steps

from the number of parameters might be surprising, we set out to as-

sess the properties on the benchmark collection. For each problem,

the trust-region-reflective algorithm implemented in the MATLAB

function lsqnonlin was run, without constraints on the maximum

number of function evaluation.

Our assessment of the average number of optimizer steps (Fig. 4)

revealed that on average 391 6 19 iterations were taken. There is—

as predicted by theory for convex problems—no significant depend-

ence on the number of parameters (q ¼ 0:05, P-value ¼ 0:83).

Accordingly, our analysis on the benchmark collection validated for

the first time that the theoretical results also hold for application

problems in systems biology (which are in general not convex).

In contrast to the number of iterations, the computation time of

local optimization depended on the number of parameters (q ¼ 0:77,

P-value ¼ 8:3 � 10�5). For the trust-region-reflective algorithm using

forward sensitivities for gradient calculation, we observed a roughly

quadratic dependence (E½tcom�/� n2
h). As the objective and its gradient

are evaluated simultaneously using forward sensitivity analysis, the

Fig. 3. Comparison of optimizer performance. Scatter plot of the average

number of converged starts per minute for the interior-point algorithm versus

trust-region-reflective algorithm

A B

Fig. 4. Influence of problem size. (A) Average number of optimizer iterations and (B) average computation time versus the number of parameters. For optimiza-

tion the trust-region-reflective algorithm implemented in the MATLAB function lsqnonlin was used and the averages across 1000 runs with different starting

points were computed. The influence of the number of parameters was analyzed using correlation analysis and linear regression
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increased computation time is not caused by an increase number of

function evaluations (Supplementary Fig. S32). Instead, the computa-

tion time per function evaluation tends to increase as the number of

parameters increases.

4.5 Incidence of sloppiness
The reliability of parameter estimates is limited by the quality and

amount of available experimental data. This dependency translates

to parameter sensitivities and to the Fisher information matrix (see

Supplementary Material). For ODE models, Gutenkunst et al., 2007

suggested that

‘sloppy sensitivity spectra are universal in systems biology

models’.

While the concept of sloppiness was controversially discussed in the

literature (Apgar et al., 2010; Chis et al., 2016; Tönsing et al., 2014;

Transtrum et al., 2015), an assessment of sloppiness for a large col-

lection of models with experimental data appears to be missing.

Here, we used the benchmark collection, calculated the eigenvalue

spectra of the Fisher information matrix at the maximum likelihood

estimate and thereby assessed incidence of sloppiness in our bench-

mark models. Details are provided as Supplementary Material.

Figure 5 shows that 19 out of our 20 models exhibit a sloppy

spectrum, i.e. the eigenvalues spread over more than 6 orders of

magnitude. For most models, the spread was even >15 orders which

partially occurs because of non-identifiability. One model (Bruno

et al., 2016) has a non-sloppy spectrum covering only 2.13 orders of

magnitude which illustrates that the spread of the eigenvalues is a

matter of experimental design.

5 Discussion

Mechanistic dynamical models are used to describe and analyze bio-

chemical reaction networks, to determine unknown parameters, gain

biological insights and perform in-silico experiments. Novel methods

to address these challenging tasks are proposed on a regular basis,

however, a thorough assessment is often problematic. To address this

problem, we compiled a collection of 20 benchmark problems.

Reusability was ensured by providing the models in the machine-

readable SBML format and the experimental data in structured Excel

files. In addition, all aforementioned models are included in the open-

source MATLAB toolbox Data2Dynamics (Raue et al., 2015) and the

analysis scripts are provided as Supplementary Material.

To ensure that the benchmark problems are realistic and practic-

ally relevant, we exclusively included published models and meas-

ured experimental data. This is a key difference to existing

benchmark collections which mostly considered models with simu-

lated data (Ballnus et al., 2017; Villaverde et al., 2015). The bench-

mark models possess a broad spectrum of properties (e.g. different

types of initial conditions, noise models and inputs), as well as chal-

lenges (e.g. structural and practical non-identifiabilities, and object-

ive functions with multiple minima and valleys). The size of the

benchmark problems ranges from roughly 20 data points, 10 param-

eters to be optimized and a single experimental condition to large

models with more than 1000 data points, over 200 parameters and

up to 110 distinct experimental conditions. This facilitates the as-

sessment of the scaling behavior of novel algorithms.

We illustrated the value of the benchmark collection by performing

three different analyses: (i) Our study of parameter transformations

confirmed that optimization benefits from log-transformed parameter

space. Furthermore, it suggested that the reason could be a significant

increase of convexity of most problems, which provides a more benign

setting for local optimizers. The observed change in the convexity

appears to be the first mechanistic explanation for the observed im-

provement in optimizer performance. (ii) Our comparison of trust-

region-reflective and interior-point algorithms revealed that the former

is better suited for most parameter estimation problems encountered in

systems biology. (iii) Our analysis of the scaling behavior confirmed

theoretical results showing that the number of optimizer steps does not

depend on the number of model parameters. The results of analyses

(i)–(iii) could not have been obtained without the benchmark collec-

tion, which provided the means for a fair comparison. Indeed, the reli-

ability of the findings depends directly on the size and the

representativeness of the benchmark collection. Amongst others, previ-

ous studies were not able to provide an assessment of the scaling prop-

erties (Ballnus et al., 2017; Raue et al., 2013; Villaverde et al., 2015).

Beyond the analysis carried out in this manuscript, the bench-

mark collection can be used to address questions such as: How do

other local, global and hybrid optimization methods perform in

practice? How does the number of iterations of global and hybrid

optimization methods depend on the problem dimensions? How

should the number of starting points depend on the dimension of the

parameter space or properties of model and dataset (e.g. identifiabil-

ity or oscillatory dynamics)? How do profile likelihood calculation

and Markov chain Monte Carlo sampling methods perform? We ex-

pect that the assessment of these and other questions will pinpoint

practically relevant limitations of existing methods. This will facili-

tate a targeted improvement of existing and development of new

methods. Apparently, for more detailed questions and a more fine-

grained analysis, more benchmark models will be required.

In conclusion, we think that the compiled benchmark collection

will be an important resource for the systems biology community.

It will facilitate the thorough evaluation of novel computational meth-

ods and support an unbiased assessment. In the future, the benchmark

collection should be integrated with public resources such as the

BioModels database (Le Novere et al., 2006). Furthermore, the collec-

tion should be extended to enable a more fine-grained analysis and to

fill apparent gaps, such as the lack of models and datasets with sus-

tained oscillations. Therefore, we encourage researchers to provide

Fig. 5. Eigenvalue spectra of the Hessians of the log-likelihood. Each spectrum

was normalized by dividing through the maximal eigenvalue. According to the

literature, a model is termed sloppy, if the eigenvalues spread over more than

six orders of magnitude. This range is indicated by gray shading. The spectra of

non-identifiable models are plotted in red. For our depiction at the log-scale,

eigenvalues which are smaller than 10�20 after normalization with respect to

the maximal eigenvalue were set to 10�20 and occur as line at the bottom of

each panel (Color version of this figure is available at Bioinformatics online.)
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further models and datasets, e.g. by uploading them to our GitHub re-

pository to obtain an even more powerful collection of benchmark

models. Information about ways to contribute are provided on the

GitHub page.
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