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ABSTRACT: Hypoxia as well as metabolism are central
hallmarks of cancer, and hypoxia-inducible factors (HIFs) and
metabolic effectors are crucial elements in oxygen-compromised
tumor environments. Knowledge of changes in the expression of
metabolic proteins in response to HIF function could provide
mechanistic insights into adaptation to hypoxic stress, tumori-
genesis, and disease progression. We analyzed time-resolved
alterations in metabolism-associated protein levels in response to
different oxygen potentials across breast cancer cell lines. Effects on the cellular metabolism of both HIF-dependent and
-independent processes were analyzed by reverse-phase protein array profiling and a custom statistical model. We revealed a
strong induction of glucose transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA) as well as reduced glutamate-
ammonia ligase (GLUL) protein levels across all cell lines tested as consistent changes upon hypoxia induction. Low GLUL
protein levels were correlated with aggressive molecular subtypes in breast cancer patient data sets and also with hypoxic tumor
regions in a xenograft mouse tumor model. Moreover, low GLUL expression was associated with poor survival in breast cancer
patients and with high HIF-1α-expressing patient subgroups. Our data reveal time-resolved changes in the regulation of
metabolic proteins under oxygen-deprived conditions and elucidate GLUL as a strong responder to HIFs and the hypoxic
environment.
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■ INTRODUCTION

Cancer was recognized as a disease of altered metabolism
nearly 100 years ago, but metabolic reprogramming has only
recently been documented as an essential hallmark of
neoplasia.1 Furthermore, tumor growth is not only charac-
terized by metabolic adaptation but also by changes in the local
microenvironment as well as heterogeneity of the tissue.
Diverse cellular differentiation states, for example, in response
to oxygen (O2)-deprived conditions, like hypoxia, can give rise
to phenotypically diverse tumors.2,3 Within a tumor, different
levels of perfusion and oxygen are characteristic features of the
tissue, and intratumoral hypoxia is characterized as an
insufficient oxygen supply for metabolic needs and has been
shown to be an independent adverse prognostic factor in many
cancers, including breast cancer.4−6 O2 deprivation triggers
complex adaptive responses at cellular, tissue, and organismal
levels to meet the metabolic and bioenergetic demands.7 The

transcription factor hypoxia-inducible factor 1-α (HIF-1α) is
the key regulator of the hypoxic response and is induced under
hypoxic conditions, thereby leading to adaptation in angio-
genesis, invasion/metastasis, as well as substantial metabolic
changes in numerous cancer entities.8 Furthermore, studies
support the relation of increased expression of HIF-1α with
aggressive tumor growth and poor patient prognosis.9−12

Along these lines, hypoxic breast tumors do not respond well
to established therapeutics, and patients predominantly show
worse clinical outcome.13 Therefore, identifying novel targets
driving these hypoxic tumors is a necessary requirement to
expand the therapeutic window and to overcome therapy
resistance. Moreover, gaining new insights into the adaptation
processes under oxygen-deprived conditions will be relevant to
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support the development of new stratification regimes, for
example, for the optimal selection of breast cancer patients
who might benefit from targeted therapies against metabolic
proteins for the given microenvironment.
In a previous study, we had analyzed the expression of

metabolic proteins in a primary breast cancer cohort and
identified prognostic markers.14 In the present study, we used
the same set of metabolic proteins to elucidate time-resolved
changes in the regulation of these metabolic proteins in
relation to hypoxic conditions. Whereas most research
concerning hypoxia and its interaction with the microenviron-
ment has been focused on signaling components at the genome
and RNA levels, here we applied an in-depth analysis of time-
resolved adaptation of metabolic proteins under various
hypoxic conditions to reveal potential drivers of the cancer
phenotype. Importantly, mutations in metabolic genes can
drive tumorigenesis; more often, however, cancer metabolism
is transformed by an altered abundance of the metabolic
proteins.15

Breast cancer cell lines MCF-7, SKBR3, MDA-MB-231, and
MDA-MB-468 were exposed in a time dependent manner to
different oxygen conditions (normoxia 21% O2, mild hypoxia
1.2% O2, harsh hypoxia 0.2% O2) and CoCl2 to induce
hypoxia-inducible factor (HIF). Then, cell protein lysates were
processed via reverse-phase protein arrays (RPPAs), to
quantify the levels of 42 metabolism-related proteins. A linear
statistical model (LSM) was applied to the data set to
determine altered protein expression levels under the given
conditions. Subsequent hit determination identified the general
and specific protein responses of hypoxic rewiring, providing

insight into changes in metabolic protein networks upon HIF
and hypoxia induction. The workflow is depicted in Figure 1.

■ METHODS

Cell Culture

Breast cancer cell lines MCF-7, SKBR3, MDA-MB-231, and
MDA-MB-468 were obtained from the American Type Culture
Collection ATCC (LGC Standards, Wesel, Germany) and
cultivated in RPMI 1640 supplemented with 10% FBS
(GIBCO, Darmstadt, Germany). Cell line authentication was
performed via multiplex cell line authentication (Multiplexion,
Friedrichshafen, Germany), and cell lines were tested for
potential contaminations with mycoplasma on a regular basis.

Time-Resolved Perturbation Experiments

Cell lines were routinely maintained under normoxic
conditions (5% CO2, 37 °C, 21% oxygen). To induce
oxygen-deprived conditions, cells were incubated at 1.2%
oxygen for mild hypoxia (BINDER, Tuttlingen, Germany) or
in Anaerocult A mini kit hypoxia bags at 0.2% oxygen (Merck,
Darmstadt, Germany) for harsh hypoxic conditions. CoCl2
(Merck) was used at a concentration of 200 μM as a chemical
inducer of HIF1. Cells were kept under hypoxic/CoCl2
conditions for 6, 18, or 24 h, before the preparation of protein
lysates. Controls were kept in normoxia. In addition, a
reoxygenation time point at 26 h (2 h after a 24 h hypoxia/
CoCl2 incubation) was taken prior to harvesting. All
experiments were performed in biological triplicates.

Figure 1. Experimental workflow. Schematic overview of experimental workflow and analysis.
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Cell Lysis and Sample Preparation

Cells were lysed on ice with ice-cold M-PER lysis buffer
(Pierce, Bonn, Germany) containing protease inhibitor
Complete Mini and antiphosphatase PhosSTOP (Roche,
Mannheim, Germany). Cell lysates were incubated on a tube
rotator for 30 min at 4 °C and subsequently centrifuged for 10
min at 16 000g. Total protein concentration was quantified
with a Pierce BCA protein assay kit according to
manufacturer’s instructions (Thermo Scientific, Rockford, IL).

Immunoblotting

Protein lysates were denatured using 4× sample loading buffer
(Roti-Load 1) for 5 min at 95 °C. Samples were loaded on
Mini-PROTEAN TGX precast gels for protein mass
separation. After protein separation via SDS-PAGE, the
proteins were transferred to a polyvinylidene difluoride
membrane (Trans-Blot Turbo LF PVDF membrane) by
electrophoresis. The Trans-Blot Turbo transfer system was
used for the “semi dry” blotting setup in accordance to the
manufacturer’s instructions. Membranes were blocked for 1 h
at room temperature (RT) with blocking buffer (Rockland
Immunochemicals) in TBS (50%, v/v) containing 5 mM NaF
and 1 mM Na3VO4 and subsequently incubated with target-
specific primary antibody overnight at 4 °C on a rocking
platform. The membrane was washed 4 × 5 min in TBST,
followed by a 1 h incubation with Alexa Fluor 680 conjugated
secondary antibody. After washing for 4 × 5 min, the
membrane was scanned at an excitation wavelength of 685
nm and a resolution of 84 μm using the Odyssey Infrared
Imaging System (Figure S1).

Reverse-Phase Protein Array Profiling

Lysates were adjusted to a total protein concentration of 2 μg/
μL, mixed with 4× SDS sample buffer (10% glycerol, 4% SDS,
10 mM DTT, 125 mM Tris−HCl, pH 6.8) and denatured at
95 °C for 5 min. Lysates and dilution series of each cell line,
serving as controls, were spotted as technical triplicates on
nitrocellulose-coated glass slides (Grace-Biolabs, Bend, OR)
using an Aushon 2470 contact spotter (Aushon BioSystems,
Billerica, MA). Post spotting, slides were incubated with
blocking buffer (Rockland Immunochemicals, Gilbertsville,
PA) in TBS (50%, v/v) containing 5 mM NaF and 1 mM
Na3VO4 for 2 h at room temperature, prior to incubation with
target-specific primary antibodies at 4 °C overnight. Primary
antibodies had been selected to recognize 42 proteins involved
in a wide range of metabolic pathways and to achieve a broad
perspective on breast cancer metabolism (Table S1). Antibody
validation was carried out as previously described.16 Primary
antibodies were detected with Alexa Fluor 680-coupled goat
antimouse IgG or antirabbit IgG in 1:8000 dilutions (Life
Technologies, Darmstadt, Germany). In addition, representa-
tive slides were stained for total protein quantification using
Fast Green FCF protein dye as described before.17 TIFF
images of all slides were obtained at an excitation wavelength
of 685 nm and at a resolution of 21 μm using an Odyssey
Scanner (LI-COR, St. Lincoln, NE). Signal intensities of
individual spots were quantified using GenePixPro 7.0
(Molecular Service, Sunnyvale, CA). Data preprocessing,
merging of technical triplicates, background correction, and
quality control were performed using the RPPanalyzer R-
package.18

In Vivo Xenograft Tumors

Animal experiments were performed in accordance with
approved guidelines of the local Governmental Committee
for Animal Experimentation (RP Karlsruhe, Germany, license
G288/14). Mice were maintained at a 12 h light−dark cycle
with unrestricted Kliba 3307 diet and tap water. Under
isoflurane inhalation anesthesia (1 to 1.5% in O2, 0.5 L/min), 3
× 106 MDA-MB-231 or 2.5 × 106 MDA-MB-468 cells
suspended in 30 μL of PBS/growth-factor-reduced Matrigel
(1:1 v/v for MDA-MB-231 and 3:1 v/v for MDA-MB-468)
(BD, Heidelberg, Germany) were injected into the mammary
gland fat pad of 8 to 9 week old female NOD SCID gamma
(NSG) mice (n = 4 for every xenograft model) recruited from
the Center for Preclinical Research (German Cancer Research
Center - DKFZ, Heidelberg, Germany). Tumor volume was
measured with a caliper and calculated according to the
formula: V = (length (mm) × width (mm)2)/2. For stainings,
tumors were fixed in 4% paraformaldehyde in PBS and then
paraffin-embedded.
Immunohistochemistry

Immunohistochemistry (IHC) was performed on 5 μm FFPE
sections. After the blockage of endogenous peroxidases (3%
H202 in PBS or Aqua Bidest for 10 min), antigen demasking
(0.01 M sodium citrate buffer, pH 6.8, for 10 min (carbonic
anhydrase (CA9)) or 20 min (glutamate-ammonia ligase
(GLUL)), and blocking in 1% ELISA BSA in PBS (GLUL) or
5% goat serum in TBST (CA9), specimens were stained using
primary rabbit antibodies directed against GLUL (1:50
dilution of HPA007316, ATLAS Antibodies, Sigma-Aldrich),
CA9 (1:75 dilution of D47G3, Cells Signaling), and secondary
antirabbit IgG HRP (111-035-003, diluted 1:200, Dianova,
Hamburg, Germany). Nuclei were counterstained with
hematoxylin. Sections were analyzed using an Axioskop
Microscope System 2 coupled to an Axiocam and Axiovision,
rel. 4.3 (Zeiss, Oberkochen, Germany).
Data Analysis

Linear Statistical Model. The preprocessed data of the
time courses with triple biological replicates for each time
point were analyzed individually for each target protein and
treatment. To merge the replicates and assess the direction and
strength of regulation over time, a linear statistical model
(LSM) was used for the log2 signal intensities of the target
protein time courses. Cook’s distance was used to detect
outliers in the measured time course.19,20 On the basis of this,
1% of the data points were removed from the analysis. The
basal expression level was determined by the measurements at t
= 0 h under 21% O2 conditions, and was then entered as offset
into the LSM. On the basis of this, expression levels under
hypoxic and mimic conditions were analyzed over time as fold-
change relative to t = 0 h, defining the target protein expression
profile. A one-way analysis of variance (ANOVA) was
performed on each expression profile to discriminate between
a constant time course signal at the basal expression level of the
target protein and significantly regulated expression profiles (p
< 0.05). Using t-statistics, the time-point-specific regulation
estimates of the LSM were tested individually against the
respective basal expression estimate to identify significantly
regulated proteins (p < 0.05). All p values were FDR-adjusted
for multiple tests using the Benjamini−Hochberg procedure.21

Determination of Expression Profiles. To detect
differential expression profiles in 504 time courses, the p
values of the ANOVA and the LSM estimates were used.
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Profiles without any indication of significant regulation in
either of the two tests were considered as constant profiles,
that is, without regulation relative to the basal protein
expression level under 21% O2 conditions. Significant
regulation indicated by an FDR-adjusted p value <0.05 of
the t-statistics for at least one LSM estimate of the perturbed
conditions was linked to up- or down-regulation depending on
the sign of the LSM estimate. Time courses with one, two, or
three significantly up-regulated time points were assigned to
expression profiles “one up”, “two up”, and “all up”,
respectively, and likewise for down-regulated signals. Ex-
pression profiles with alternating sign, for example, a significant
down-regulation followed by a nonsignificant regulation and
further by a significant up-regulation, were specified as “down−
up”, whereas the opposite was termed as “up−down”.
Ranking of Protein Profiles. A Cell Line (CL) score in

the range from 0 to 4 was assigned to all target proteins for
each treatment to quantify the significantly nonconstant
expression profile behavior through all cell lines. We defined
this score such that a CL score of 0 indicates target proteins
that are not significantly regulated in any cell line, whereas a
CL score of 1 indicates significantly regulated time courses in
one cell line, a CL score of 2 in two cell lines, a CL score of 3
in three cell lines and a CL score of 4 in all four cell lines.
As a second indicator for the key regulated proteins over

time, the Effect Ranking (EF) was defined for the strength of
regulation given by individual fold changes. For this, target

profiles were ranked by their maximal regulation strength over
all time points in the expression profile as well as by the
squared sum of residuals (SSRs) from the ANOVA, in both
cases individually for each cell line and treatment combination.
Both series were merged by the Rank Product, resulting in the
EF.22 Furthermore, the “rank per treatment” was determined
by another Rank Product combination of the EFs from all cell
lines individually for each treatment. By analogy, the “overall
rank” was constructed as a comprehensive combination of all
EFs, first from all cell lines and second over all treatments,
using the Rank Product, respectively.

TCGA and METABRIC Data Analysis. Publicly available
RNA-sequencing data and clinical annotations of primary
breast cancer tumors were obtained from The Cancer Genome
Atlas (TCGA).23 Level 3 normalized gene expression data of
that cohort (TCGA_BRCA_exp_HiSeqV2-2015-02-24) were
downloaded from the cBioPortal Web site.24,25 Data on gene
expression and clinical characteristics of primary breast cancer
tumors were publicly available (EGAS00000000083) from the
Molecular Taxonomy of Breast Cancer International Con-
sortium (METABRIC).26 Gene expression data were log2-
transformed and subset to the genes of interest. Patient data
were subjected to Kaplan−Meier analysis of overall survival
(OS) and recurrence-free survival (RFS). Differences in
Kaplan−Meier curves were statistically tested using the log-
rank test. Differences between subgroups depicted in the
boxplots were analyzed with unpaired Student’s t test for two-

Figure 2. Heatmap visualization of protein time course profiles. The heatmap represents the condensed time course data of each protein target on
the basis of the linear statistical model results. Nonsignificantly regulated proteins revealing constant expression at the level of normoxic condition
are labeled in gray. Red and blue tiles indicate significantly up- or down-regulated proteins, respectively. Dark colors indicate higher occurrences of
corresponding regulations in the LSM results. Expression profiles with alternating sign of significant regulations are labeled in orange and green.
CoCl2, cobalt chloride; TCA, tricarboxylic acid cycle.
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group comparison or ANOVA for multiple groups, as indicated
in the Figure legends, respectively. For tumor stage
comparison, patients were grouped based on the TNM staging
guidelines.27 T1 refers to all low-stage breast cancer patients
determined as T1. T2+ refers to all higher stage patients
determined as T2 and higher (T2, T3, and T4).
Data were analyzed using GraphPad Prism 5 (La Jolla, CA)

or the R statistical computing environment (version 3.2.2).28 A
p value <0.05 was considered as statistically significant.

■ RESULTS AND DISCUSSION

RPPA Profiling

In total, four cell lines, each grown under normoxic (21% O2),
mild hypoxic (1.2% O2), oxygen-deprived (0.2% O2), and
CoCl2 conditions, were analyzed in three biological replicates
and at five time points (time point 0 h in normoxic conditions,
time points 6, 18, and 24 h after incubation under hypoxic/
CoCl2 conditions, and time point 26 h after 2 h of
reoxygenation). Cell lysates were spotted in technical
triplicates to produce RPPA arrays, and 42 proteins were
quantified to generate a final data set composed of 7560 data
points. The preprocessed RPPA data are presented in Table
S2.
Heatmap Visualization of the Data Set via a Linear
Statistical Model of Time Courses

A heatmap approach tailored to the design of the data set was
applied to the proteomic time-course data to distinguish
between constant protein expression patterns and significantly
regulated proteins upon hypoxia treatment over time
compared with the respective normoxic condition. Along
these lines, ANOVA and t-statistics on the LSM estimates were
used to categorize individual protein expression time courses
and enable visualization (Figure S2). The 504 protein
expression time courses were then visualized in a heatmap
(Figure 2).
HIF-1α, the main regulator of oxygen homeostasis, is known

to be upregulated under oxygen-deprived conditions in
mammalian cells and to regulate a variety of genes.29,30

Consistent with this function, protein levels of HIF-1α were
significantly upregulated under all hypoxic as well as CoCl2
conditions and in all cell lines tested, validating our
experimental approach. Furthermore, hypoxia-inducible factor
2 alpha (HIF-2α), another subunit of HIF-α, responsible for
driving the chronic hypoxic response (>24 h), showed just a
partial upregulation under the given conditions across all time
points and cell lines tested, validating its different mode of
regulation.31

The vast majority of metabolic enzymes analyzed did not
show consistent patterns in their respective expression levels
upon treatment over time and across cell lines. Rather, the
response patterns during oxygen deprivation pointed toward
cell-line-specific effects as the most prominent feature, likely
reflecting the heterogeneous nature of metabolic activities in
the respective cell lines. Furthermore, proteomic and metabolic
differences within all cell lines might result in a different
adaptation to oxygen deprivation. The presence of heteroge-
neous metabolic profiles rather than a universal metabolic
pattern in cell lines and cancer entities has been reported
before.32 Along these lines, our findings reveal heterogeneity
under oxygen-deprived conditions, as we found individual
proteins to be affected upon hypoxia exposure primarily in
particular cell lines. For example, arginase 2 (ARG2) was

significantly upregulated over time and under all conditions in
the basal-like MDA-MB-468 cell line, whereas pyruvate kinase
M2 (PKM2) was significantly upregulated in the luminal cell
line MCF-7. These findings are in line with prior knowledge of
a direct role for HIFs in mediating PKM2 and ARG2
expression based on tumor cell entity and breast cancer
subtype.33−36

In addition, we employed CoCl2, a mimic of hypoxia that
activates HIF-1α also under normoxic conditions, to differ-
entiate between HIF-1α-dependent and -independent pro-
cesses.37,38 Only a few proteins (e.g., SDHA and FH) were
significantly altered in expression over time by CoCl2
treatment only, as compared with physiological hypoxia,
indicating different HIF-1α- and hypoxia dependent regu-
lations. Some proteins (e.g., IDH1) showed no significant
changes in expression upon hypoxia or hypoxia-mimicking
conditions across all cell lines tested, resulting in constant
protein levels. Glucose transporter 1 (GLUT1), a known
maker of hypoxia and regulated by HIF, was consistently
upregulated, whereas other proteins (e.g., GLUL) were mostly
downregulated in all given treatments and cell lines tested,
representing possible general responders to hypoxic con-
ditions.39,40

GLUT1, LDHA, and GLUL Are Regulated by the HIF-Driven
Hypoxic Response

To verify individual candidates, the CL score was introduced,
revealing significantly regulated proteins (independent of the
direction of regulation) over all investigated cell lines and for
each applied condition (Figure 3).
As highlighted in Figure 3, protein expression changes of

HIF-1α, GLUT1, and GLUL stood out with maximum CL
scores across all conditions tested.
Next, we applied the EF, which quantifies the magnitude of

regulation during treatment compared with the respective basal

Figure 3. Cell Line score results. Illustrated are the results from the
Cell Line (CL) score analysis. A CL score of 0 indicates proteins that
are not significantly regulated in any cell line, whereas a CL score of 1
indicates significantly regulated protein time courses in one cell line, a
CL score of 2 in two cell lines, a CL score of 3 in three cell lines, and a
CL score of 4 in all four cell lines. The full list of proteins and their
respective CL scores for each condition are represented in Table S3.
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protein expression levels under the normoxic conditions, for
both transient and sustained expression profiles. In agreement
with the CL score, HIF-1α, GLUT1, GLUL, as well as lactate
dehydrogenase A (LDHA) presented the highest “overall
ranks” (Table 1).
Furthermore, along with our initial observations, protein

expression of GLUT1 and LDHA was significantly elevated
under hypoxic conditions, and GLUL protein expression levels
were significantly down-regulated. Taken together, out of all
proteins investigated, CL score and EF confirmed GLUT1 and
GLUL as the most affected metabolic proteins in regard to
their significant hypoxic response at the proteomic level and
across all four considered cell lines as well as treatments
applied, emphasizing the importance of these proteins during
hypoxia. Consequently, we hypothesized that these protein

expression patterns might indicate a more general mechanism
that could be relevant in several subtypes of hypoxic breast
cancer. Indeed, HIF-1α stabilization in response to environ-
mental factors like hypoxia contributes in many ways to a pro-
growth, glycolytic metabolic program by synchronizing
proliferation rates with O2 availability.

41 Concomitantly, HIF-
1α is known to be an important contributor to the Warburg
effect by inducing the expression of many genes, including
several encoding glycolytic enzymes, like GLUT1 and
LDHA.42−44 Moreover, the conversion of pyruvate to lactate
and its removal by lactate transporters allows cancer cells to
regenerate NAD+ and to maintain the glycolytic flux in
hypoxia.45 Furthermore, the promotion of lactate production
by HIF-1α is a phenomenon that has been suggested to
promote survival in hypoxic settings.46 Our findings are thus

Table 1. Rank Product Resultsa

rank per treatment

target overall rank 1.2% O2 0.2% O2 CoCl2 affiliation

HIF-1α 1 1 1 1 hypoxia response
GLUT1 2 3 3 5 glycolysis-related
LDHA 3 2 8 4 lactate metabolism
GLUL 4 5 9 2 glutamine metabolism
HIF-2α 5 10 5 3 hypoxia response
LAT1 6 4 4 12 glutamine metabolism
ACC_Ser79 7 8 2 23 fatty acid metabolism
PCK1 8 6 20 6 glycolysis-related
ASCT2 9 9 17 8 glutamine metabolism
CAD 10 19 10 7 pyrimidine metabolism
GLK 11 11 6 28 glycolysis-related
PDHA 12 16 12 18 glycolysis-related
IDH2 13 22 11 17 TCA-cycle-related
GLS 14 26 7 21 glutamine metabolism
GPT2 15 21 16 10 amino acid metabolism
SMS 16 7 23 24 polyamine metabolism
SDHA 17 n.s. 22 9 TCA-cycle-related
PKM2 18 13 18 14 glycolysis-related
CPS1 19 28 14 15 urea-cycle-related
GAPDH 20 12 19 22 glycolysis related
SHMT2 21 17 37 11 serine metabolism
ARG2 22 29 13 27 urea-cycle-related
PCK2 23 27 27 13 glycolysis-related
GOT1 24 14 25 n.s. amino acid metabolism
PSAT1 25 15 24 n.s. serine metabolism
PKM1 26 18 n.s. 20 glycolysis-related
FH 27 n.s. 33 16 TCA-cycle-related
FASN 28 n.s. 15 32 fatty acid metabolism
Glud12 29 20 28 30 urea-cycle-related
NAGS 30 33 21 25 urea-cycle-related
ODC1 31 31 n.s. 19 polyamine metabolism
ASL 32 24 36 29 urea-cycle-related
STARD10 33 25 29 34 lipid metabolism
LDHB 34 23 31 35 lactate metabolism
ASS1 35 35 26 26 urea-cycle-related
GLUT4 36 n.s. 30 33 glycolysis-related
SLC14A1 37 32 34 36 urea-cycle-related
ACC 38 34 35 31 fatty acid metabolism
PSPH 39 30 n.s. n.s. serine metabolism
PHGDH 40 n.s. 32 n.s. serine metabolism
SREBP1 n.s. n.s. n.s. n.s. lipid metabolism
IDH1 n.s. n.s. n.s. n.s. TCA-cycle-related

an.s.: not significant.
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consistent with previous studies reporting a substantial shift
toward anaerobic glycolysis as the major metabolic feature of
HIF-1α stabilization.47

Down-regulation of GLUL under oxygen-deprived con-
ditions would support the switch of breast cancer cells to
glycolysis for energy production; therefore, we further focused
on the novel connection of hypoxia and the glutamine-
producing enzyme GLUL in breast cancer. Interestingly,
glutaminase (GLS) protein expression, responsible for the
reverse reaction of GLUL by generating glutamate out of
glutamine, was not found to be continually significantly
regulated during hypoxic treatment in the cell lines, except in
MCF7. Whereas GLS is widely known as an important
regulator of glutamine metabolism, few studies have focused
on GLUL as a potential determinant of glutamine homeostasis,
especially under hypoxic conditions.48

GLUL Tumor Expression in Vivo

Whereas the critical role of glutamine metabolism has been
well established in cancer, it is less clear how important the
levels of glutamine-producing enzyme GLUL and glutamine
itself are in tumors that often encounter nutrient and oxygen
shortages.49 An important aspect of hypoxia is the diverse
distribution of oxygen-deprived areas within tumors. Fur-
thermore, poor vasculature of tumors remains a challenge
because conventional chemotherapeutic agents as well as
radiation are less effective in oxygen-deprived cells.50,51 Using
MDA-MB-231 and MDA-MB-468 cell lines in xenograft tumor
models of triple-negative breast cancer, we thus investigated
the spatial distribution of expression of GLUL as well as
hypoxic marker carbonic anhydrase within xenograft tumors
(Figure 4).
IHC for GLUL and carbonic anhydrase (CA9) showed

mutual exclusivity of expression, which is fully in line with the
in vitro findings we made in the proteomic experiment. The

Figure 4. GLUL protein expression in MDA-MB-231 xenograft tumors is confined to the oxygenized tumor periphery. Immunohistochemical
staining of GLUL and carbonic anhydrase 9 (CA9) protein expression in sections from two xenograft tumors. Bars: 1000 μm (whole tumor
images), 100 μm (inserts).

Figure 5. GLUL expression profile. Boxplots represent TCGA data of GLUL mRNA expression in comparison with other glutamine-related genes
(A) and in detail across different breast cancer subtypes (B). Pearson correlation of GLS and GLUL mRNA expression is presented in panel C.
Statistical difference in groups was tested with ANOVA. p, p value; r, Pearson correlation coefficient.
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IHC data suggest that whereas GLUL indeed seems to be
negatively regulated by hypoxia, this is likely not a direct effect
of HIF-1α, which has been reported to rather induce gene
expression by binding to regulatory sequences in respective
target genes.42 Whereas carbonic anhydrase mostly stained
cells in the periphery of necrotic areas within the tumors,
GLUL expression was particularly high at the tumor rim as well
as in other regions of the tumors showing low carbonic
anhydrase expression. These patterns of GLUL and carbonic
anhydrase expression were consistently observed in both
xenograft models (Figure 4) and are concordant with reduced
GLUL expression levels that were detected in vitro upon the
induction of hypoxic conditions in our proteomic data set.
These findings corroborate the concept of oxygen levels
depending on the morphology of tumors, with harsh hypoxic
areas presenting toward the necrotic tumor center and
validating downregulation of GLUL seen upon hypoxia also
at the in vivo level.52

Differential Expression of GLUL in Primary Human Breast
Cancers

Having identified GLUL as one of the top-regulated proteins in
our data set, we further tested the correlation of GLUL mRNA
expression in breast cancer (BC) patients and subtypes.
Using data from TCGA, GLUL mRNA expression was

found to be highest among all glutamine-related genes
analyzed (Figure 5A), in line with the role of GLUL in
glutamine anabolism.23 Furthermore, GLUL gene expression
was significantly different between BC subtypes and found to

be elevated particularly in luminal compared with the more
aggressive basal-like and HER2 breast cancer subtypes,
suggesting higher de novo glutamine synthesis via GLUL in
the luminal subtype and supporting studies addressing the fact
that different cancer subtypes display distinct patterns of
glutamine metabolism (Figure 5B).53 Moreover, basal-like
breast tumors have previously been shown to be more hypoxic
than luminal tumors supporting the link between hypoxia and
low GLUL protein expression.54,23,55,56 In addition, studies in
human BC cells demonstrate that estrogen-receptor-positive
BC cell lines are less dependent on extracellular glutamine than
triple-negative breast cancer cell lines.57,58 Along these lines, a
report on primary estrogen-receptor-negative breast tumors
shows a high glutamate/glutamine ratio, indicating increased
glutamine catabolism.59 Furthermore, the distribution of
GLUL in BC subtypes showed a significant inverse association
with GLS expression, an enzyme that catalyzes the reverse
reaction of GLUL (Figure 5C). GLS is reported to be the main
mediator of glutaminolysis in normoxia and is primarily
regulated through MYC activation.60,61 However, GLS was not
represented among the top regulated proteins in our data set,
highlighting GLUL as a prominent responder of the rewiring of
glutamine metabolism in a hypoxic setting.
Fluctuations in hypoxia have been observed in tumors and

have been shown to result in higher levels of stabilized HIF-1α
compared with continuous hypoxia,62 and ammonia may
directly or indirectly lead to HIF-1α stabilization.63 These
findings support the observed low GLUL levels in hypoxia

Figure 6. Kaplan−Meier survival estimates of GLUL mRNA expression and boxplot representation of T stage and HIF1-α association. TCGA data
set was used for Kaplan−Meier plots of GLUL mRNA expression for overall survival (OS) (A) and recurrence-free survival (RFS) (B). Patients
were grouped based on their mRNA expression with GLUL high defined as the 25% of patients showing the highest GLUL mRNA expression and
GLUL low representing the 25% of the patients showing the lowest GLUL expression. Statistical difference in outcome between high and low gene
expression were compared by log-rank test. Boxplots represent GLUL mRNA expression in association to T stage (C) and HIF1-α expression
subgroups (D). CI, confidence interval; HR, hazard ratio; p, p value.
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given that GLUL uses ammonia to produce glutamine out of
glutamate.
GLUL Expression Is Associated with Survival and HIF-1α
Expression in Breast Cancer Patients

Finally, we assessed the potential prognostic value of GLUL
expression on RFS and OS in BC patients as well as its
expression in subgroups of patients with different HIF1-α
levels.
Kaplan−Meier survival estimates revealed a significant

difference between patients with high and low GLUL mRNA
expression in both RFS (p = 0.0173, Figure 6B) and OS (p =
0.0027, Figure 6A). High GLUL mRNA expression was
associated with a more favorable RFS and OS. Along these
lines, lower GLUL mRNA expression was also significantly
correlated with a higher Tumor (T) stage (Figure 6C). In the
context of hypoxia, we examined GLUL mRNA expression in
high versus low HIF-1α-expressing patient groups and found a
significant association of low GLUL expression with high-HIF-
1α-expressing breast cancer patients, further supporting our
initial results showing a negative correlation between HIF-1α
and GLUL levels (Figure 6D).
These observations were additionally confirmed in another

independent breast cancer data set (METABRIC) and thus
support the relevance of GLUL as a potential prognostic factor
in breast cancer as well as a potential responder of the HIF-
driven hypoxic rewiring in breast tumors (Figure S3).26

■ CONCLUSIONS
Cancer therapy based on perturbing metabolic pathways will
require both knowledge of mechanisms that are employed in
the presence of oxygen and insights into the metabolic rewiring
in the absence of oxygen. Apart from revealing metabolic
proteins significantly affected during hypoxic adaptation,
identifying main responders of oxygen deprivation, like
GLUL, leads to a better understanding of the hypoxic
phenotype and may facilitate more precise diagnosis, better
stratification regimes, and improved prognosis predictions of
cancer patients. Our results not only confirm that HIF-1α
protein expression functions canonically as glycolytic regulator
but also suggest a role of hypoxia in glutamine metabolism via
GLUL. Screening tumor extracts for relevant hypoxic
signatures could thus be a first step toward identifying
appropriate stratification regimes of hypoxic tumors. There-
fore, further studies of GLUL and its association with hypoxic
conditions as well as investigating the possible utility of GLUL
as a hypoxia marker in breast cancer patients could be a
promising approach.
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