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clarifying the underlying principles. The mathematical 
models formalize the relationship between individual com-
ponents, test their interactions in a virtual setting and may 
even simulate influences that are (still) difficult to analyse 
experimentally. In recent years, model simulations have 
been instrumental to elucidate mechanisms and principles 
that were not accessible by traditional approaches. To pro-
mote systems biology research in the field of the liver with 
the aim to gain a better understanding of the basic mecha-
nisms of liver function as well as key principles of liver 

 Developments over the past two decades have improved 
our ability to obtain comprehensive and quantitative data, 
for example, by genome-wide analysis of gene expression, 
proteomics, lipidomics and metabolomics. Moreover, both 
imaging and image analysis have been improved which 
offers new possibilities to quantify the three-dimensional 
organization of cells and tissues. However, research in dis-
ease pathogenesis is often hampered by the difficulty to 
understand the complex, time-resolved interplay among 
numerous components. Here, mathematical modelling helps 
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diseases, the Virtual Liver Network has been formed; this 
interdisciplinary research network currently comprises more 
than 60 partners from different disciplines, such as biol-
ogy, chemistry, biochemistry, pharmacy, toxicology, math-
ematics/bioinformatics, physics and hepatology. A specific 
feature of the Virtual Liver Network is that it models liver 
functions at different scales, from subcellular organization, 
cellular functions, for example, metabolic homeostasis and 
drug metabolism, up to functions that require entire liver 
lobules or even the whole organ. A unique achievement of 
the ‘Virtual Liver’ is that these scales have been successfully 
bridged by integrated models which now allow simulations 
how processes at the subcellular or cellular level influence 
lobular or even whole organ functions and vice versa. The 
possibilities and perspectives of ‘Virtual Liver Approaches’ 
will be illustrated by some selected examples:

•	 The subcellular level: self-organizing principles of orga-
nelles. An important outstanding question is what are the 
molecular principles underlying the biogenesis of cellu-
lar organelles, and hence, the organization of the cyto-
plasm. Many molecules have been identified and dem-
onstrated to function in intracellular trafficking. In the 
particular case of endosomes, the small GTPase Rab5 
was proposed to be a key factor in endocytosis but also 
in the biogenesis of early endosomes. The importance of 
Rab5 in endosome biogenesis was tested using a combi-
nation of mathematical model and experimental valida-
tion in the mouse livers as model system. To study the 
dependency of the endosome number on the levels of 
Rab5, a mathematical model was formulated to predict 
the consequences of the loss of Rab5 for the number of 
early endosomes (Zeigerer et al. 2012). Different scenar-
ios were considered. For example, the endosome could 
change in number but keep a constant level of molecu-
lar machinery (Rab5 and its effectors) per endosome or, 
alternatively, keep a constant number of endosomes but 
decrease the density of molecular machinery. Experi-
mental validation was performed by silencing Rab5 
by RNAi in the mouse liver in vivo. Titration of Rab5 

showed that the endocytic system was resilient against 
depletion of Rab5 and collapsed only when depletion 
exceeded approximately 80 % of control levels. Com-
parison of the experimental data with the model simu-
lations supported the scenario whereby the endosomes 
are depleted, but those remaining maintain a constant 
level of molecular machinery (Zeigerer et al. 2012). The 
mathematical model also explains why the relatively 
wide variations in Rab5 expression have only a minor 
influence on the numbers of endosomes, but the system 
collapses as soon as critical thresholds are exceeded.

•	 The cellular scale: enzyme networks guarantee meta-
bolic stability. The contribution of liver metabolism to 
the homeostasis of the plasma glucose level was inves-
tigated on the basis of a comprehensive kinetic model 
of hepatic glucose metabolism (König et al. 2012; 
König and Holzhütter 2012). The model comprises the 
pathways glycolysis, gluconeogenesis and glycogen 
turnover. The phosphorylation state of key regulatory 
enzymes is controlled by the plasma levels of insu-
lin and glucagon. Model simulations revealed that the 
set point of glucose homeostasis, defined by a lack of 
hepatic net uptake or release of glucose, is shifted from 
5.5 mM (normal) to about 8 mM in case of diabetes 
type 2 (T2DM). Intriguingly, the model also revealed 
that a strict insulin therapy, dropping the glucose level 
in T2DM subjects down to the normal level, critically 
increases the risk of severe hypoglycaemic episodes. 
The model also clearly demonstrates that a more effi-
cient T2DM therapy can be achieved by lowering the 
impact of glucagon.

•	 The lobular level: intercellular communication guaran-
tees maintenance and regeneration of tissue architec-
ture. One of the outstanding features of the liver is its 
enormous regenerative capacity. Upon damage of liver 
tissue, not only the liver mass but also the architecture 
is restored within a relatively short period of time. How-
ever, until recently, little was known about the princi-
ples coordinating this architectural restoration. One 
popular theory was that the release of cytokines from 
damaged tissue attracts the regenerating cells. Another 
theory was that an oxygen gradient established after 
damage guides the regenerating cells. Alternatively, it 
was proposed that the border between healthy, regener-
ating hepatocytes and a neighbouring necrotic region is 
simply pushed in response to pressure arising from cell 
proliferation. However, a mathematical approach based 
on a spatio-temporal model demonstrated that another 
mechanism, named ‘hepatocyte sinusoid alignment’ 
(HSA), plays a key role in orchestrating regeneration 
of the liver microarchitecture (Höhme et al. 2007; Hoe-
hme et al. 2010; Hammad et al. 2014). HSA means that 
regenerating hepatocytes align towards the direction of 
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the closest sinusoidal endothelial cells (LSEC). In other 
words, the liver microvasculature formed by LSECs 
acts as a ‘guide rail’ for regenerating hepatocytes; but 
also in healthy liver, the 3D network of LSECs deter-
mines the spatial organization of parenchymal cells and 
organizes, for example, the hepatocyte sheets. Recently, 
possible molecular mechanisms have been reported that 
could contribute to HSA: LSECs secrete angiocrine fac-
tors, such as Wnt2 and HGF, which induce hepatocyte 
proliferation (Ding et al. 2010, 2014). Also, expression 
of angiopoietin-2 (Ang2) by LSECs plays a critical role 
during regeneration (Hu et al. 2014). Ang2 downregula-
tion in response to liver damage leads to reduced TGF-β 
release from LSECs which enables proliferation (Hu 
et al. 2014). Moreover, spatio-temporal analysis facili-
tates even more far-reaching predictions, for instance, 
that a lesion where only hepatocytes are destroyed can 
easily be regenerated. However, as soon as LSECs are 
destroyed, liver regeneration is predicted to be severely 
compromised. This leads to the pathophysiologically 
critical question whether destruction of LSECs repre-
sents the critical turning point from perfect regenera-
tion to fibrosis. Continued work in this field will show 
whether this model prediction can also be validated.

•	 Integrating the cellular, lobular and whole organ 
scales: Tissue damage may switch the orientation of 
enzymatic reactions. Ammonia is a product of amino 
acid metabolism. Because of its toxicity, ammonia con-
centrations in blood and cells are tightly controlled. 
Intensive research in this field has shown that enzymes 
of the urea cycle detoxify ammonia in the periportal 
compartment of the liver lobule, whereas glutamine 
synthetase removes ammonia leaking to the pericen-
tral region. When these well-documented mechanisms 
were included into a metabolic/spatio-temporal model, 
it became evident that they are not sufficient to quan-
titatively explain ammonia detoxification (Schliess et 
al. 2014). The model predicted too high blood ammo-
nia concentrations. Further experiments showed that 
damaged hepatocytes release glutamate dehydrogenase 
(GDH) into the blood, where it detoxifies ammonia 
by forming glutamate, thereby catalysing a reaction 
with opposite orientation than in periportal hepato-
cytes, where GDH generates ammonia for urea cycle 
enzymes. This so far unknown ‘switched’ reaction of 
GDH in blood explains the aforementioned discrepancy 
between the model and the experimental data. Finally, 
it could be shown that infusion of GDH together with 
the cofactors α-ketoglutarate and NADPH into hyper-
ammonemic mice rapidly and efficiently reduced 
ammonia blood concentrations; whether this result 
from mice can be used to treat patients with severe 
hyperammonemia is subject of further studies.

•	 Integrating pharmacokinetic and spatio-temporal mod-
els: communication of the liver with other organs. The 
liver is also the key detoxification organ for xenobiot-
ics in the human body. A mechanistic understanding 
of liver physiology is hence of immediate relevance 
for drug pharmacokinetics. Within the Virtual Liver 
Network, a cocktail of six marketed drugs is used to 
quantify detoxification activity of the liver in mice and 
humans (Kuepfer et al. 2014). Recently, physiologi-
cally based pharmacokinetic (PBPK) modelling has 
been used to identify cohorts of patients with a specific 
phenotype in a hepatic uptake transporter (Krauss et al. 
2013) or to predict occurrence rates of adverse events 
in high-risk subgroups of patients (Lippert et al. 2012). 
Vertical integration of computational models across dif-
ferent levels of biological organization has been used, 
for example, to simulate the effect of acetaminophen 
at the cellular scale (Krauss et al. 2012; Diaz Ochoa et 
al. 2013) or to describe the impact of steatosis on drug 
pharmacokinetics (Schwen et al. 2014). In future, inte-
grated computational models are generally expected 
to play an increasingly important role for integration 
and analysis of experimental data in drug development 
and toxicology (Magdy et al. 2013; Godoy et al. 2013; 
Zanger and Schwab 2013; Thomas et al. 2013; Mielke 
et al. 2011; Schug et al. 2013; Heise et al. 2012).

When first introduced years ago, systems biology was 
expected to integrate the wealth of data acquired in the 
post-genome era into a mathematical model, or better into 
a series of integrated models linked across scales to gener-
ate a ‘virtual liver’ and eventually even a ‘virtual human’. 
However, the examples illustrated above and further cases 
of successful research in the field of systems biology show 
that mathematical modelling has been used for a different 
purposes: Typically, certain hypotheses of mechanisms are 
expressed as either mathematical equations (or algorith-
mic instructions), and the parameters of these equations 
(or instructions) are determined based on experimental 
data (Drasdo et al. 2014). A frequent result of such a set 
of model simulations and experiments is that hypothesized 
mechanisms have to be rejected, leading to iterative cycles 
of modelling and experiment, which leave only those 
hypotheses mathematically compatible with the experi-
mental findings, fully in the spirit of Karl Popper’s “The 
logic of scientific discovery” (1934). A further advantage 
of mathematical models is that they may guide researchers 
towards the most informative experiments.

Currently, the use of model simulations or ‘virtual 
approaches’ in liver research is growing significantly. Such 
simulations are used in the field of metabolism (Gille et 
al. 2010; Schleicher et al. 2014; Bucher et al. 2011; Cas-
anovas et al. 2014; Pelz et al. 2012; Thiele et al. 2013; 
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Mleczko-Sanecka et al. 2010; Zellmer et al. 2010), apop-
tosis research (Geissler et al. 2013; El Maadidi et al. 2014; 
Walter et al. 2008) and cell signalling (Huard et al. 2012; 
Blüthgen et al. 2009; Ehlting et al. 2011; Dooley et al. 
2008; Stewart et al. 2012; Vlaic et al. 2012). In the future, 
modelling will be particularly helpful to dissect complex 
pathophysiologies, for example, liver steatosis, inflamma-
tion, fibrosis and cirrhosis, to predict drug toxicity, to inte-
grate PBPK and spatial–temporal models and to understand 
key principles of regeneration after hepatectomy, during 
chronic liver diseases and after liver and stem cell trans-
plantation. We expect that the ‘virtual liver’ approach will 
have a strong impact on the further progress in these fields 
of research.
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