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Higher-order Lie symmetries in identifiability and predictability analysis of dynamic models
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Parameter estimation in ordinary differential equations (ODEs) has manifold applications not only in physics
but also in the life sciences. When estimating the ODE parameters from experimentally observed data, the modeler
is frequently concerned with the question of parameter identifiability. The source of parameter nonidentifiability
is tightly related to Lie group symmetries. In the present work, we establish a direct search algorithm for the
determination of admitted Lie group symmetries. We clarify the relationship between admitted symmetries and
parameter nonidentifiability. The proposed algorithm is applied to illustrative toy models as well as a data-based
ODE model of the NFκB signaling pathway. We find that besides translations and scaling transformations also
higher-order transformations play a role. Enabled by the knowledge about the explicit underlying symmetry
transformations, we show how models with nonidentifiable parameters can still be employed to make reliable
predictions.
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I. INTRODUCTION

Modeling of dynamic systems by ordinary differential
equations (ODEs) has always been concerned with the problem
of unknown parameters in the model equations. As opposed to
other fields, in the life sciences a priori unknown parameters
like reaction velocities, association rates, dissociation rates,
etc., can often not be measured directly. The system under
investigation is only observable as a whole and cannot be
dissected into isolated reactions. Therefore, the parameters
need to be determined by parameter estimation, which relies
on a certain amount of time-resolved measurements for at least
a subset of system components.

In this procedure, the modeler is frequently confronted
with the problem of nonidentifiable parameters, i.e., given the
observed data there exists a submanifold in parameter space
describing, in terms of an objective value, the data equally or
almost equally well: these cases are denoted as structural or
practical nonidentifiability [1].

In Ref. [2], a data-based approach is utilized to identify sub-
manifolds of equal objective values, thus being able to detect
nonidentifiabilities. A complementary data-based approach
employing the profile likelihood is presented in Ref. [1], giving
a precise definition of structural and practical identifiability
in terms of parameter profiles. On the other hand, a priori
data-independent analytical methods can be applied to directly
test the model equations for structural nonidentifiability. The
authors of [3,4] introduced two methods which can be applied
to study the identifiability of ODE models. However, these
do not yield algorithms to automatically detect structural
nonidentifiabilities. The approach presented in Refs. [5–7]

*daniel.kaschek@physik.uni-freiburg.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 3.0 License. Further distribution of
this work must maintain attribution to the author(s) and the published
article’s title, journal citation, and DOI.

relies on differential algebra methods and can be employed
to study the input-output relation between the parameters and
the predicted observation. If a unique solution exists, the model
is structurally identifiable. This approach is purely algebraic.
However, as the method relies on Buchberger’s algorithm to
solve the equations, its complexity grows rapidly with the size
of the model and quickly becomes infeasible. Additionally,
the model is expected to be in minimal form, which is often
not fulfilled. In such cases, the model has to be manually
transformed before the analysis can be applied.

A drawback of all the above techniques is that they
do not elucidate the fundamental source of the structural
nonidentifiabilities. in Ref. [8] it was shown that the admittance
of Lie transformations is equivalent to the existence of
similarity transformations [4] and thus equivalent to structural
nonidentifiability of the model. To concretize this statement,
let

ẋ(t) = f (x(t),θdyn,u(t)), x(0) = θ ini,

y(t) = g(x(t),θobs)
(1)

be a dynamic system with states x ∈ Rm, dynamic parameters
θdyn ∈ Rp′

, inputs u ∈ Rq , and initial conditions θ ini ∈ Rm.
In general, the observation y ∈ Rn∗

is an arbitrary function
of the states x and observational parameters θobs ∈ Rp′′

.
Then, an admitted Lie symmetry is a continuous group
of transformations � of the states x and parameters � =
(θdyn,θ ini,θobs) ∈ Rp,p = m + p′ + p′′:

� : Rm+p+q × G −→ Rm+p+q

(x,�,u; ε) �−→ (x∗,�∗,u∗),

such that the observation y is unchanged for each element ε in
the Lie group G. I.e., it must hold that

∀ε ∈ G : g(x∗(t),θ∗
obs) = g(x(t),θobs), (2)

where x(t) and x∗(t) implicitly depend on the parameters
(θ ini,θdyn) and (θ∗

ini,θ
∗
dyn). This illustrates the relation between

Lie groups of transformations and structural nonidentifiability:
Although the parameters are changed by the transformation
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�, the observation stays invariant. Equation (2) can also be
expressed using the infinitesimal generators X of �, forming
the Lie algebra g:

∀ X ∈ g : X · g(x,θobs) = 0.

The advantage of the latter formulation is that it yields a
condition for admitted symmetries which can be exploited
to explicitly calculate the transformations.

Generally, the challenge of finding symmetries is ap-
proached by two methods. The first one, introduced by [9],
is based on differential algebra combined with probabilistic
sampling. The sampling is employed to investigate the rank
of the variational system of the ODEs in order to identify
the set of nonidentifiable parameters. This identification
is computationally efficient as it is polynomial in time.
Furthermore, having identified the subset of nonidentifiable
parameters, it is possible to determine the associated Lie
algebra generators from the maximal singular minor of the
Jacobian. A Mathematica implementation of the algorithm
was presented in Ref. [10].

The second approach is a more direct method employing an
explicit polynomial Ansatz for the generator. This leads to a de-
termining system for the coefficients which specify the Ansatz.
The authors of [11,12] applied this approach to compute the
reduced system of ODEs, especially for scaling and Möbius
transformations, and to define coordinates leaving the steady
states of a dynamic system invariant. Translational and scaling
symmetries were also investigated by [13], pointing out the
close relation between nondimensionalization and Lie group
symmetries. Both groups work with Maple implementations.
Translation, scaling, and affine transformations were also
studied by [14] and used to compute a minimal set of
observations which make the model identifiable. In Ref. [8]
the determining system is solved by methods available in
Mathematica with applications to observation functions with
scalings.

The approach presented in this work has the same starting
point as the methods used in Refs. [8,11–14]; however, it
differs in three major aspects. First, instead of using random
specializations, we develop a method to solve the determining
equations by directly transforming the rational expressions to
a linear system. Second, by applying the proposed algorithm
[15] to three examples, we demonstrate the significance of
higher-order generators which to our knowledge were not
discussed before. Third, we show that the knowledge of the
explicit underlying symmetries that we gain by the proposed
algorithm enables us to determine reliable model predictions
although model parameters are nonidentifiable.

The work is structured as follows: Sec. II recapitulates
Lie group theory and illustrates the algorithm as being
implemented in Python with the libraries SymPy [16] for
symbolic mathematics and SciPy and NumPy for numerical
calculations. Section III introduces several examples demon-
strating the relevance of higher-order transformations. In
this context, we also study a data-based ODE model of the
NFκB signaling pathway. Besides determining and discussing
the intrinsic symmetries of the dynamic system, we infer
quantities which can be reliably predicted despite the structural
nonidentifiabilities in the model.

II. METHODS

For a simplified notation, Eq. (1) is rewritten in a form
where the input u(t) and parameters θ are absorbed in the state
vector x(t):

ẋi(t) = fi(x(t)), i = 1, . . . ,m,

xi(t) = �i, i = m + 1, . . . ,m + p, (3)

xi(t) = ui(t), i = m + p + 1, . . . ,m + p + q.

In the following, we call n = m + p + q the total number of
states. Hereby, the ODE model becomes

ẋ(t) = f (x(t)), (4a)

y(t) = g(x(t)). (4b)

If the biological system is in steady state at the start of the
experiment, this has to be accounted for by the additional
condition

f (x0) = 0, (5)

where x0 = x(t = 0), which introduces an additional con-
straint for the parameters.

A. Theory of Lie groups of transformations

We adopt the definition of [17] for a Lie group of
transformations.

Definition 1. Let x = (x1, . . . ,xn) ∈ D ⊂ Rn, S ⊂ R with
0 ∈ S and let φ : S × S → S be a law of composition. A
mapping

x∗ = �(x,ε) ∈ D

with x ∈ D and ε ∈ S is called a Lie group of transformations
if it satisfies the following.

(i) For all ε ∈ S, the mapping �(·,ε) is one to one.
(ii) S together with φ forms a group with identity element

zero.
(iii) For all x ∈ D we have �(x,0) = x.
(iv) If x∗ = �(x,ε) and x∗∗ = �(x∗,δ), then x∗∗ =

�(x,φ(ε,δ)).
(v) S is an interval in R and φ is analytic.
(vi) �(x,ε) is smooth in x and analytic in ε.
A Lie group of transformations is said to be admitted by

ODE model (4) if for every solution x(t) and every ε ∈ S the
transformed function x∗(t) = �(x(t),ε) is also a solution of
the system.

For every Lie group of transformations, the infinitesimal
generator is a differential operator defined as

X =
n∑

i=1

ηi(x)
∂

∂xi

with η(x) = ∂�(x,ε)
∂ε

|ε=0. The functions ηi(x) are called in-
finitesimals of the transformation.

Theorem 1 [17]. By utilizing the infinitesimal generator, the
corresponding transformation can be written as

x∗ = �(x,ε) = exp[ε X] x. (6)
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Hence, the infinitesimal generator is an equivalent representa-
tion of a Lie group of transformations.

Each component of the state vector x(t) in system (4) is
a function of time. Therefore, a transformation of x(t) also
induces a transformation of the time derivatives ẋ(t). In order
to compute the explicit transformation of ẋ(t), the infinitesimal
generator is extended such that the transformation (6) also acts
on the derivatives:

X′ =
n∑

i=1

ηi(x)
∂

∂xi

+
n∑

i=1

η′
i(x)

∂

∂ẋi

. (7)

The transformation of the derivatives is now represented by
the infinitesimals η′

i(x) which are calculated by

η′
i(x) =

n∑
j=1

ẋj

∂ηi

∂xj

(x)

[18]. This prolonged infinitesimal generator enables the
formulation of an explicit criterion for admitted Lie groups
of transformations.

Theorem 2 [17,18]. The system of ordinary differential
equations (4) admits a Lie group of transformations defined
by the infinitesimal generator X = ∑n

i=1 ηi(x) ∂
∂xi

if and only
if

X′ · (ẋk − fk(x)) = 0, k = 1, . . . ,m,

X · (yk′ − gk′(x)) = 0, k′ = 1, . . . ,n∗ (8)

whenever ẋ = f (x) and g(x) = 0.
The steady state equation (5) imposes additional constraints

for the parameter values. Therefore, it could, in principle, also
restrict the admitted symmetries. This has to be accounted for
by the third symmetry condition:

X · fk(x) = 0, k = 1, . . . ,m whenever fk(x) = 0.

However, it can be shown (see Appendix A, Theorem A1)
that this is fulfilled whenever Eq. (8) holds and, consequently,
the steady state equation (5) does not require additional
considerations. If the initial concentrations are given by
general algebraic expressions, these can be treated similarly to
the observation functions. For details see [14].

If Xi and Xj are two infinitesimal generators satisfying
Eq. (8), then also every linear combination μiXi + μjXj

is admitted by the system of ODEs. Therefore, its solution
set defines a linear vector space of admitted generators.
Furthermore, it can be shown [18] that the Lie bracket

[Xi ,Xj ] = Xi · Xj − Xj · Xi

also yields an infinitesimal generator which is admitted. The
vector space of admitted generators together with the Lie
bracket forms a Lie algebra, denoted by g.

B. Calculation of symmetry groups

1. Rational differential equations

In the following, a method for solving the determining
equations (8) is derived. Theorem 2 states that a system of

the form of Eq. (4) admits a Lie group of transformations
x̃ = �(x,ε) if and only if

n∑
j=1

ẋj

∂ηk

∂xj

(x) −
n∑

i=1

ηi(x)
∂fk

∂xi

(x) = 0, k = 1, . . . ,m,

n∑
i=1

ηi(x)
∂gk′

∂xi

(x) = 0, k′ = 1, . . . ,n∗
(9)

holds for all solutions x(t) of the system where ηi(x) are
the infinitesimals of the transformations. Equation (9) defines
a system of coupled partial differential equations for these
infinitesimals. If a solution to this system is found, the admitted
transformations can be computed by Eq. (6). However, Eq. (9)
cannot be solved analytically for general differential equations.
Therefore, in the following, we consider rational differential
equations and observation functions of the form

ẋk = fk(x) = P k(x)

Qk(x)
k = 1, . . . ,m,

yk′ = gk′(x) = Rk′
(x)

Sk′ (x)
k′ = 1, . . . ,n∗,

(10)

where P k(x),Qk(x),Rk′
(x), and Sk′

(x) are multivariate poly-
nomial expressions. Hereby, a large class of ODE models is
covered. In particular, mass action, Michaelis-Menten, and
Hill kinetics are included. The derivatives of the input u(t) are
generally unknown. Therefore, the terms in Eq. (9) containing
u̇ have to vanish and, consequently, it must hold that ∂ηk

∂xj
(x) = 0

for k = 1, . . . ,m and j = m + p + 1, . . . ,n. Taken together,
if Eq. (10) is plugged into Eq. (9), the conditions become

m∑
j=1

P j

Qj

∂ηk

∂xj

−
n∑

i=1

ηi

P k
xi
Qk − P kQk

xi

Qk2 = 0, k = 1, . . . ,m,

(11a)
n∑

i=1

ηi

Rk′
xi
Sk′ − Rk′

Sk′
xi

Sk′ 2 = 0, k′ = 1, . . . ,n∗,

(11b)

where the subscripts xi denote partial derivatives with respect
to that variable. Note that, due to the structure of these
conditions, whenever a set of infinitesimals ηi,i = 1, . . . ,n

is admitted, also the infinitesimals η′
i = θjηi,i = 1, . . . ,n are

admitted. The next step is to choose an Ansatz for the infinites-
imals ηi(x),i = 1, . . . ,n. This corresponds to a restriction to
a subclass of symmetries the admitted transformations are
sought in.

2. Polynomial generators

Many elementary transformations are generated by in-
finitesimals which are simple powers of the variable. Examples
are

x∗
i = xi + ε, X = ∂

∂xi

(translation)

x∗
i = eεxi, X = xi

∂

∂xi

(scaling)
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x∗
i = xi

1 − εxi

, X = x2
i

∂

∂xi

(Mobius)

...

x∗
i = xi[

1 − (p−1)εxp−1
i

] 1
p−1

, X = x
p

i

∂

∂xi

(higher order).

Although the structures of these common transformations are
rather different, their infinitesimals are given by similar ex-
pressions of the form xd

i ,d ∈ N. This motivates the polynomial
Ansatz

ηi(xi) =
dmax∑
d=0

ri,d xd
i , i = 1, . . . ,n. (12)

The goal is then to determine the coefficients ri,d for which
the corresponding transformation is admitted. If plugged into
Eq. (11a), the first sum reduces to a single term because ∂ηk

∂xj
=

0 for j 	= k. Consequently, the conditions can be multiplied

by the denominators Qk2
and Sk′ 2

, respectively, to obtain

P kQk ∂ηk

∂xk

−
n∑

i=1

ηi

[
P k

xi
Qk − P kQk

xi

] = 0, k = 1, . . . ,m,

n∑
i=1

ηi

[
Rk′

xi
Sk′ − Rk′

Sk′
xi

] = 0, k′ = 1, . . . ,n∗.

(13)

With Ansatz (12), these equations define polynomial expres-
sions which can always be rearranged into the form∑

i1,...,in

ci1,...,in (r) x
i1
1 · · · xin

n = 0,

where r is a vector containing all parameters ri,d and the
coefficients ci1,...,in are linear in r. Since the polynomial
vanishes if and only if all its coefficients vanish, condition
(9) is equivalent to the linear system

C · r = 0,

where the entries of the matrix C are computed by the
differential equations and observation functions via Eq. (13).
Consequently, the problem of finding structural nonidentifi-
abilities in an ODE model was turned into the problem of
solving a linear system of size Nr = n(dmax + 1). However,
there can be admitted transformations which are not covered
by Ansatz (12). In order to also detect these symmetries using
the presented approach, a more general Ansatz is required.
The intuitive generalization of the infinitesimals is to allow
multivariate polynomials where the infinitesimal of state xi

can also depend on other variables xj 	=i . Hereby, the most
general polynomial Ansatz is given by

ηi(x) =
|d|=dmax∑

d1,...,dm+p=0

ri,d x
d1
1 · · · xdm+p

m+p

i = 1, . . . ,m (concentrations),

ηi(x) =
|d|=dmax∑

dm+1,...,dm+p=0

ri,d x
dm+1
m+1 · · · xdm+p

m+p

i = m + 1, . . . ,m + p (parameters),

ηi(x) =
|d|=dmax∑

d1,...,dn=0

ri,d x
d1
1 · · · xdn

n

i = m + p + 1, . . . ,n (inputs).

The necessary calculations for solving Eq. (9) are analogous
to the case of univariate polynomial generators. For details,
the reader is referred to Appendix B.

In summary, we have derived an algorithm to automatically
and efficiently search for admitted symmetries in rational ODE
models. Unlike the methods used in Refs. [11–14], no random
specializations of the determining equations (8) and (11) are
utilized but they are converted to a linear system which can be
solved directly. Once the form of the infinitesimal generator
is chosen and the expressions are combined into the form
of Eq. (13), the algorithm performs two major steps. First,
the terms in the polynomials are rearranged and combined
such that the coefficients which are required to vanish can be
extracted. Although these calculations are a priori symbolic,
they can be performed in a linear vector space because each
term in the polynomials is fully defined by its coefficients and
exponents. Because the coefficients are always linear in the
parameters, both can be represented by a real vector. This step
can be performed independently for each differential equation
and observation function and, therefore, allows for parallel
evaluation. In the second step, the system of linear equations as
being defined by the coefficients is solved. This yields the set of
infinitesimals which generate admitted transformations. Note
that these infinitesimals only generate a basis and every linear
combination is also admitted. The solution for the parameters
is then plugged into the infinitesimal Ansatz which, in turn,
fully defines the admitted transformations. The computational
complexity of the two algorithm steps is bounded by O(N2

r )
and O(N3

r ), respectively, where Nr is the total number of
constants in the Ansatz. Further details on the computational
complexity with univariate and multivariate generators are
presented in Appendix C.

III. APPLICATION

In the following, the algorithm introduced above is applied
to example ODE models highlighting different aspects of the
general theory. In particular, the significance of higher-order
generators is demonstrated. For details on how these examples
are analyzed with our Python implementation see [15].

A. Higher-order symmetries in simple examples

As a simple example, consider the chemical reaction

A + A
k−→ ∅

which is modeled by the differential equation

Ȧ(t) = −2 k A2(t). (14)

We assume that A is measurable on a relative scale and the
observation saturates for high values:

Aobs(t) = s1
A(t)

1 + s2A(t)
. (15)
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If the univariate polynomial Ansatz (12) is used to solve the
symmetry condition (13) for this system, two distinct solutions
are found.

1. Solution 1

The first solution is given by the infinitesimals

ηA = A, ηk = −k, ηs1 = −s1, ηs2 = −s2,

which results in the infinitesimal generator

X = A
∂

∂A
− k

∂

∂k
− s1

∂

∂s1
− s2

∂

∂s2
.

It corresponds to a scaling of species A by

A∗ = exp[ε X]A = eεA,

together with a reversed scaling of the parameters

k∗ = e−εk, s∗
1 = e−εs1, s∗

2 = e−εs2.

The scaled species A∗ satisfies the same ODE because all the
scaling factors eε cancel out in the differential equation (14).
Furthermore, in the observation function (15), the scaling is
compensated by the transformation of the parameters s1 and s2

leaving Aobs invariant. The admittance of this transformation
expresses the fact that the unit in which A is measured is not
determined due to the relative measurement.

2. Solution 2

The second solution of the determining equations (13) is
given by the infinitesimals

ηA = A2, ηk = 0, ηs1 = 0, ηs2 = 1,

which generate the Möbius transformation

A∗ = A

1 − εA
, s∗

2 = s2 + ε. (16)

In this case, it is not immediately obvious that the transformed
concentration A∗ solves the same differential equation. How-
ever, if also the time derivative of the transformation

∂A∗

∂t
= Ȧ∗ = Ȧ

(1 − εA)2

is plugged into Eq. (14) it is indeed fulfilled. Note that by
Theorems 1 and 2 this is equivalent to calculating Ȧ∗ =
exp[ε X′]Ȧ, where X′ is the extended infinitesimal generator
(7). On the other hand, the observation Aobs is not altered
because the transformation of A and the second factor in
Eq. (15) have the same structure and if the transformations
(16) are plugged in the transformation parameter ε cancels
out. In fact, the second factor in Eq. (15) itself can be viewed
as an element of the transformation group with transformation
parameter ε = −s2.

This example pinpoints one source of second order sym-
metries. The quadratic rate expression −2kA2 of Eq. (14),
generated by the bimolecular reaction, is preserved by the
Möbius transformation because of its quadratic generator. On
the other hand, the observation function allows the interpre-
tation as a transformation, corresponding to a measurement
technique that is affected by saturation effects.

In general, observation functions can also compensate
transformations which do not have the same structure, as
demonstrated in the following example taken from [9]:

u
x1

k2

k1

x3
k4

x2

k3

k6

k7

x4
k5

Here, the input function u(t) is assumed to be known and x2

and x3 are measurable on a relative scale. This results in the
following linear ODE model:

ẋ1 = u − (k1 + k2)x1, xobs
2 = s2x2,

ẋ2 = k1x1 − (k3 + k6 + k7)x2 + k5x4, xobs
3 = s3x3,

(17)
ẋ3 = k2x1 + k3x2 − k4x3,

ẋ4 = k6x2 − k5x4.

Because u(t) is known, it cannot be transformed and ηu = 0
must hold. The system does not admit symmetries which are
generated by univariate polynomial infinitesimals. However,
the application of one of the more general multivariate
Ansatz functions reveals an admitted transformation which
is determined by the infinitesimal generator

X = k1k2

(
∂

∂k1
− ∂

∂k2

)
− k3(k1 + k2)

(
∂

∂k3
− ∂

∂k7

)

− k2s2
∂

∂s2
+ k1s3

∂

∂s3
+ k2x2

∂

∂x2
(18)

− k1x3
∂

∂x3
+ k2x4

∂

∂x4
.

The necessary computations take about 15 s on a standard
PC, which is due to the high number of constants required in
the multivariate polynomial Ansatz. In order to construct the
explicit transformation x∗

i = exp[ε X]xi for this symmetry, it
has to be slightly modified and integrated, which can be found
in Ref. [9]. However, even without the explicit transformation
it can be seen from the infinitesimals ηx2 = k2x2 and ηx3 =
−k1x3 that the transformations of x2 and x3 are not of the
scaling type but also depend on the parameters k1 and k2.

B. Symmetries of a complex signaling pathway

In a next step, the presented method is applied to an
ODE model of the NFκB signaling pathway. The parameters
occurring in the ODE model, i.e., initial conditions, rate
constants, and observation parameters, are a priori unknown.
Therefore, in a modeling application, they would need to be
determined from experimental data. However, every parameter
involved in a symmetry transformation of the ODE cannot be
uniquely determined from this data because the observation
is left invariant. Note that the scope of this paper is not to
make conclusions about the function of the NFκB pathway.
Here, it is solely used as a complex, interesting example to
demonstrate the relationship between nonidentifiability and
the various underlying symmetry transformations.
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FIG. 1. Reaction scheme of the NFκB signaling pathway. NFκB is bound in a complex with IκBα in the cytoplasm. Complex
phosphorylation by pIKK leads to complex dissociation, IκBα degradation, and NFκB shuttling to the nucleus. The associated reactions
are indicated by arrows labeled by reaction flow expressions.

Figure 1 shows a graphical representation of the analyzed
NFκB model. NFκB is a transcription factor that is prevented
from exerting its activity by its inhibitor IκBα, with which it is
bound in a complex in the cell cytoplasm. Upon stimulation,
the complex is phosphorylated by pIKK and dissociates
into phosphorylated NFκB and IκBα. Whereas IκBα is
degraded, NFκB shuttles into the nucleus, where it induces
gene expression. Besides NFκB target genes associated with
apoptosis, NFκB induces also gene expression of its own
inhibitor, IκBα, leading to the production of IκBα mRNA
and translation into the IκBα protein. These IκBα proteins
shuttle into the nucleus, forming complexes with NFκB which
are transported back into the cytoplasm. Depending on the
duration of the activating pIKK signal, this cycle begins
again, resulting in characteristic NFκB oscillations. In the
model, each of the reactions is associated with a mathematical
expression for the reaction flow, indicated as arrow labels in
Fig. 1. See Ref. [15] for the comprehensive list of differential
equations.

Protein levels of NFκB are measured independently in the
cytoplasm and the nucleus but the measurement technique
does not distinguish between single proteins and protein
complexes. Phosphorylation of NFκB and IκBα is measured
in the cytoplasm only. Again, the measurement technique does
not distinguish complexes from single molecules. This results
in the following observation functions:

NFκBobs
cyt : y1 = s1(x1 + x2 + x3) + I0cyt ,

NFκBobs
nuc : y2 = s2(x10 + x5 + x6) + I0nuc ,

pNFκBobs
cyt : y3 = s3(x2 + x3),

pIκBαobs
cyt : y4 = s4(x2 + x4).

(19)

Here, the species xi are numbered according to Fig. 1. The
observation parameters s1,s2,s3,s4,I0cyt , and I0nuc in Eq. (19)
are unknown.

The analysis with Ansatz (12) and pmax = 2 yields five
admitted transformations while the computation time is on the
order of 1 s. The first four are regular scaling symmetries.

(i) Because there are only relative observations in Eq. (19),
it is possible to scale all the internal variables as long as this is
compensated by an inverse transformation of the observation
parameters:

x∗
i = eεxi, i = 1, . . . ,10, s∗

j = e−εsj , j = 1, . . . ,4.

Here, xi stands for every concentration in the model except
pIKK. In addition, because complex formation in the nucleus
described by the reaction flow

v = k10x9x6

involves a product of species, one scaling factor has to be
compensated by k∗

10 = e−ε k10.
(ii) The second scaling symmetry is introduced by the

factor ρvol. Because the only measurement in the nucleus has
a separate scaling factor, the species in the nucleus can be
scaled independently from those in the cytoplasm, i.e., the
transformation

ρ∗
vol = eε ρvol, k∗

i = e−ε ki, s∗
2 = e−ε s2

with i = 6,10,11 and

x∗
5 = eε x5, x∗

6 = eε x6,

x∗
9 = eε x9, x∗

10 = eε x10

is admitted.
(iii) Another symmetry is

x∗
7 = eε x7, k∗

6 = eε k6, k8 = e−ε k8.

It is admitted because neither is mIκBα observed nor is its
scale coupled to any other concentrations.

(iv) Finally, a fourth admitted scaling transformation is

u∗ = eε u, k∗
0 = e−ε k0, k∗

1 = e−ε k1

because these variables only occur as products with each other.
In addition to the scalings, the model admits the higher-

order transformation

u∗ = u

1 − εu
, k∗

0 = k0 + ε. (20)
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FIG. 2. Different time courses of pIKK. (a) pIKK activation as
expected from the literature. (b) Transformation (20) applied to the
expected activation for different values of ε (renormalized to a peak
height of 1).

This solution pinpoints another source for second order
transformations. The Möbius transformation generated by
φ(x) = x2 and the Michaelis–Menten-like rate expression

v = k1x1
u

1 + k0u

coincide structurally and, thus, are able to compensate each
other. Because the transformation is admitted, a change of
the input by transformation (20) results in the same model
response and does not change the observation. To illustrate
this, Fig. 2(a) shows the time course of pIKK employed as
input function in the ODE model. The activation starts with a
strong peak in the first 30 min, which is followed by a slower
decay starting at about 25% of the peak activation and requiring
approximately 6 h for complete deactivation. In Fig. 2(b),
transformation (20) is applied to the input for different values
of ε. This illustrates that the observation remains invariant
for inputs which are qualitatively very different. For negative
values of ε, the plateau is almost removed and the activation
is dominated by a sharp peak. On the other hand, for positive
values of ε, the input becomes more sustained.

C. Reliable model predictions despite structural
nonidentifiability

As described in Ref. [14], in case of a model with
nonidentifiable variables, Lie group analysis can be utilized
to find additional measurements which would make these
variables identifiable. However, even if the nonidentifiabilities
are not removed by additional experiments, the model can
still be employed to make accurate predictions because
for every structural nonidentifiability the presented method
also yields the underlying transformation. To this end, it is
tested if a candidate prediction ypred(t) = h(x(t)) admits all
transformations which are admitted by the model, i.e., it must
hold that

X · [ypred − h(x)] = 0

for all infinitesimal generators X. If this if fulfilled, the pre-
dicted quantity is not affected by the admitted transformations,
similar to the case of observation functions. Furthermore, if
we allow transformations of ypred by assuming ηypred 	= 0, it
can be detected if a prediction is possible only modulo some
specific transformation.

As an example, consider again the NFκB model of Fig. 1
together with the quantity

N
pred
rel : z1 = ρvol(x1 + x2 + x3)

x5 + x6 + x10
,

which gives the ratio between the absolute numbers of NFκB
molecules in the cytoplasm and nucleus. If this is analyzed with
the presented method, it is revealed that all transformations
are admitted by the expression with η

N
pred
rel

= 0. Therefore,
the quantity can be predicted by the model although all the
occurring variables are structurally nonidentifiable. Another
example is that of the quantities

pIκBαpred : z2 = x2 + x4, mIκBαpred : z3 = x7, (21)

which describe the total concentration of phosphorylated IκBα

molecules and of IκBα mRNA. These predictions are not
possible on an absolute scale. However, by introducing the
additional infinitesimals

ηpIκBαpred = z2, ηmIκBαpred = z3,

the symmetries are preserved. These infinitesimals generate
scaling transformations, which means that it is possible to
predict the relative time courses of the quantities in Eq. (21)
despite the structural nonidentifiabilities in the model.

IV. DISCUSSION

Structural nonidentifiabilities in ODE models are generated
by admitted transformations, meaning that parameters can be
simultaneously transformed in a way that the observed quan-
tities are not altered. Therefore, in order to detect structural
nonidentifiability, the search for admitted transformations in
the model equations is a promising approach. For this purpose,
Lie group theory is a suitable framework as it is capable
of handling a large variety of classes of transformations
in a uniform way. This is achieved by reformulating every
transformation in terms of its infinitesimal generator. Hereby,
the necessary calculations can be performed in a linear space,
the Lie algebra, which enables the formulation of a compact
criterion to guarantee invariance of the observed quantities.
The set of coupled partial differential equations arising from
this criterion cannot be solved in general. However, in many
practical applications, the ODE model consists only of rational
equations. In particular, this holds for chemical reaction
networks based on mass action, Michaelis-Menten, or Hill
kinetics. Furthermore, all of the most frequent transformations
are generated by polynomial infinitesimal generators. Based on
these assumptions, the criterion for admitted transformations
can be reformulated as a set of linear equations. The algorithm
we developed to obtain the admitted infinitesimal generators
exploits these assumptions to automatically and efficiently
search for structural nonidentifiabilities in rational ODE
models. To this end it does not rely on random specializations
as previous methods but directly converts the conditions to
a linear system which can then be solved. As the presented
method is independent of any measured data, it is not capable
of finding practical nonidentifiabilities which arise due to
uncertainties in a given set of measurements. In order to detect
also this type of nonidentifiability, a data-based method like
the one presented in Ref. [1] has to be utilized.
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In the present work, we employed the proposed algorithm
in two ways as being illustrated on an ODE model of the
NFκB signal transduction pathway with ten state variables,
four observables, one input, and 20 parameters. First, given
the observation functions, the algorithm is applied to determine
admitted symmetry transformations. The parameters involved
in these transformations are structurally nonidentifiable. Most
of the found symmetries are of scaling type. Since the
determination of protein levels occurs mostly on a relative
scale, these observables are compatible with the intrinsic
symmetries, yielding nonidentifiable parameters. However,
we demonstrated that also Möbius transformations play an
important role. This is due to its possible interpretation as satu-
rating observation function or Michaelis–Menten-like rate ex-
pression. While saturation of measurement signals frequently
occurs due to technical limitations, Michaelis-Menten rates are
employed for modeling enzymatic reactions. Both scenarios
are frequently found in various applications, underlining the
practical relevance of the second order symmetries.

We also tested the performance of the differential algebra
for identifiability of systems [7] and exact arithmetic rank [10]
methods on our examples. Although they consistently found
the same parameters as being nonidentifiable, they give no hint
to the underlying transformation. However, this information is
crucial for the second application of the proposed method,
where we detect quantities which can be predicted by the
model even if structural nonidentifiabilities are present. Such
a prediction is possible if the corresponding expression is
invariant under all admitted transformations or if it is varied
with some specific, known transformation.

The limitation of the presented method in terms of feasibil-
ity depends on two factors, which are the size of the analyzed
model and the size of the infinitesimal generator. While the
number of necessary constants quickly rises for multivariate
generators, it only grows linearly for the most common
transformations like translations, scalings, and Möbius trans-
formations. Therefore, in the latter case, the algorithm can be
applied to large models with as much as hundreds of variables.
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APPENDIX A: SYMMETRIES AND STEADY
STATE CONDITIONS

Theorem A1 (symmetries of steady state conditions). Let
ηi(x), i = 1, . . . ,n be a set of infinitesimals and let the transfor-
mation x∗

k = exp [ε ηk(x) ∂
∂xk

]xk, k = 1, . . . ,n be admitted by
the differential equations ẋ = f (x(t)). Then the transformation
is admitted by the steady state condition f (x0) = 0.

Proof. Because the transformation is admitted by the
differential equations, Eq. (8) of the main text holds, which
means that

n∑
i=1

ηi

∂fk

∂xi

−
n∑

j=1

∂ηk

∂xj

ẋj = 0 whenever

ẋ = f (x) ∀k. (A1)

Now let x0 ∈ Rn be a fixed point with f (x0) = 0 and hence
ẋ0 = 0. If this is plugged into Eq. (A1), we see that

n∑
i=1

ηi ∂fk

∂xi

∣∣∣∣
x=x0

−
n∑

j=1

∂ηk

∂xj

ẋ0j

=
n∑

i=1

ηi ∂fk

∂xi

∣∣
x=x0

= 0 ∀k.

Therefore, the symmetry condition

n∑
i=1

ηi

∂fk

∂xi

= 0 whenever f (x) = 0 ∀k

is fulfilled and the transformation is admitted by the steady
state condition. �

APPENDIX B: MULTIVARIATE POLYNOMIAL
GENERATORS

In the most general polynomial Ansatz, each infinitesimal
ηi(x) is given by a multivariate polynomial in all variables.
However, as mentioned in Sec. II, the infinitesimals of the
concentrations xi, i = 1, . . . ,m cannot depend on the inputs
u(t). In addition, parameters � are time-independent states.
In order to conserve this independence, the infinitesimals of
the � transformations can only depend on other parameters.
Consequently, the most general polynomial Ansatz is

ηi(x) =
|d|=dmax∑

d1,...,dm+p=0

ri,d x
d1
1 · · · xdm+p

m+p

i = 1, . . . ,m (concentrations),

ηi(x) =
|d|=dmax∑

dm+1,...,dm+p=0

ri,d x
dm+1
m+1 · · · xdm+p

m+p (B1)

i = m + 1, . . . ,m + p (parameters),

ηi(x) =
|d|=dmax∑

d1,...,dn=0

ri,d x
d1
1 · · · xdn

n

i = m + p + 1, . . . ,n, (inputs).

With these infinitesimals, the first sum in the symmetry
condition (11a) does not reduce to a single term. Therefore,
the equation has to be multiplied by Qk

∏n
l=1 Ql to obtain a

polynomial condition:

0 =
m∑

j=1

∂ηk

∂xj

Qk

⎡
⎣∏

l 	=j

Ql

⎤
⎦P j

−
n∑

i=1

ηi

⎡
⎣∏

l 	=k

Ql

⎤
⎦[

P k
xi
Qk − P kQk

xi

]
,

k =1, . . . ,m.

Analogously to the case of univariate polynomial generators,
this can be translated into a linear system for the constants r
by rearranging the terms of the polynomial. The number of
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constants ri,p in the Ansatz is given by

Nr =
dmax∑
d=0

[
m

(
m + p + d − 1

d

)

+ p

(
p + d − 1

d

)
+ q

(
n + d − 1

d

)]
, (B2)

where (··) denotes binomial coefficients. This shows that for

this general Ansatz the size of the linear system C grows
rapidly with the number of variables and eventually becomes
infeasible for large systems.

A set of infinitesimals which is smaller than Eq. (B1) but
still covers a large class of transformations is given by

ηi(x) =
|d|=dmax∑

dk,dm+1,...,dm+p=0

ri,d x
di

i x
dm+1
m+1 · · · xdm+p

m+p

i = 1, . . . ,m (concentrations),

ηi(x) =
|d|=dmax∑

dm+1,...,dm+p=0

ri,d x
dm+1
m+1 · · · xdm+p

m+p (B3)

i = m + 1, . . . ,m + p (parameters),

ηi(x) =
|d|=dmax∑

dk,dm+1,...,dm+p=0

ri,d x
di

i x
dm+1
m+1 · · · xdm+p

m+p

i = m + p + 1, . . . ,n, (inputs),

i.e., each infinitesimal ηi(x) is given by a multivariate poly-
nomial in the corresponding variable xi and all parameters
xm+1, . . . ,xm+p. Similarly to the case of univariate polynomial
generators, condition (9) can be reduced to Eq. (13) because
either ∂ηi

∂xj
= 0 or fj (x) = 0 for j 	= k in the first sum.

Therefore, the condition for admitted transformations can also

be reduced to a linear system by multiplication of Qk2
. In this

case, the number of constants ri,d in the Ansatz is

Nr =
dmax∑
d=0

[
m

(
p + d

d

)
+ p

(
p + d − 1

p

)
+ q

(
p + d

d

)]

(B4)

and therefore only grows with the number of parameters p and
not with the total number of variables n = m + p + q.

APPENDIX C: COMPUTATIONAL COMPLEXITY

The algorithm described in the main text consists of two
major steps. In the first step, the polynomials

P kQk ∂ηk

∂xk

−
n∑

i=1

ηi

[
P k

xi
Qk − P kQk

xi

] = 0, k = 1, . . . ,m,

n∑
i=1

ηi

[
Rk′

xi
Sk′ − Rk′

Sk′
xi

] = 0, k′ = 1, . . . ,n∗

[see Eq. (13)] must be reordered such that the exponents of
the single summands are unique. The infinitesimals ηk and
their derivatives ∂ηk

∂xk
occur only linearly in these equations.

Therefore, the number of summands in these equations grows
with O(Nr ), where Nr is the total number of constants in
the polynomial Ansatz. Because all the terms have to be
compared to each other for the reduction to a linear system,
the complexity of this step is bounded by O(N2

r ). Finally, the
lower upper decomposition which is used to solve the linear
system has a time complexity of O(N3

r ). Consequently, the
complexity of the presented algorithm is polynomial in the
number of constants Nr which in turn is linear in the number
of variables n for the univariate polynomial Ansatz and given
by Eqs. (B2) and (B4) for the multivariate Ansätze.
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