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Statistical evaluation of forecasts
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Reliable forecasts of extreme but rare events, such as earthquakes, financial crashes, and epileptic seizures,
would render interventions and precautions possible. Therefore, forecasting methods have been developed which
intend to raise an alarm if an extreme event is about to occur. In order to statistically validate the performance
of a prediction system, it must be compared to the performance of a random predictor, which raises alarms
independent of the events. Such a random predictor can be obtained by bootstrapping or analytically. We propose
an analytic statistical framework which, in contrast to conventional methods, allows for validating independently
the sensitivity and specificity of a forecasting method. Moreover, our method accounts for the periods during
which an event has to remain absent or occur after a respective forecast.
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I. INTRODUCTION

Extreme but rare events occur in ecology as in the
absence/presence models of species [1], in weather in the
form of storms [2,3], heavy precipitation [2,3], floods [4],
and extreme temperatures [3], in geology as earthquakes, and
in economics [5] as financial crises, as well as in medicine in
the form of strokes and epileptic seizures [6,7]. The impacts of
such extreme and unpredicted events are severe. A reliable
forecasting system could alleviate those impacts, because
precautions or interventions [6,7] could be taken. A forecasting
system would be considered reliable when predicting both an
upcoming event (sensitivity) and the absence of a future event
(specificity). Depending on the application, the focus might
vary on either the high sensitivity or the high specificity of the
prediction.

In general, a forecasting system is based on several features,
which quantify different properties of observations, such as
frequency content and regularity (for reviews, see [6,8], and
[9]). These features are supposed to quantify a change in the
observed system before an extreme event occurs. In that case
a probabilistic [2,10,11] or a binary [1,3,6,9,12] forecast can
be derived from such features.

For probabilistic forecasts, the probability of the occurrence
of an event is provided [2,10,11]. Such forecasts leave the user
with the decision about the necessity to initiate precautions or
preventions [5,13]. Probabilistic forecasts can be statistically
assessed by the Brier score [14],

B = 1

N

N∑
t=1

(p̂(t) − I (t))2, (1)
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which is the temporal mean of the squared deviations of
the probabilities p̂(t) of an upcoming event at time t to
the indicator function I (t) of actually occurring events. The
indicator function I (t) is 0, except at times of events when
I (t) = 1. Inserting a binary forecast

Î (t) =
{

1 if an alarm is raised at time t,

0 otherwise, (2)

instead of the probabilistic forecast p̂(t) into Eq. (1), yields

B = 1

N

⎛
⎝∑

t̃ ′∈TP

0 +
∑
˜̃t ′∈FP

1 +
∑

t̃ ′′∈TN

0 +
∑

˜̃t ′′∈FN

1

⎞
⎠ (3)

= m+ × 0 + (T − m+) × 1 + m− × 0 + (N − T − m−) ×1

N

(4)

= 1 − m+ + m−
N

, (5)

where m± are the numbers of true positives and true negatives,
T is the total number of predicted events, and N is the number
of prediction-observation pairs available. For this, the sum
in Eq. (1) is split up into four sums, as in Eq. (3). These
sums contain the time points of true positive (TP), false
positive (FP), true negative (TN), and false negative (FN)
predictions Î .

Equation (5) shows that for the Brier score the number of
TPs m+ and true negatives m− are weighted equally, when
applied to binary forecasts. This is particularly inexact when
faced with rare events because a high number of true negatives
then obscures a low number of true positives.

For binary forecasts, contingency tables are typically
considered. They contain information about true and false
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positives, as well as true and false negatives. The statistics
of the contingency table can be assessed by the Fisher-Irwin
test [15]. For the evaluation of a prediction, a time frame
within which the event must or must not occur needs to be
defined. This time frame enhances the probability of true
positive and true negative predictions, which is not accounted
for in the statistics of the Fisher-Irwin or similar tests. As an
alternative to statistically testing the entries in contingency
tables directly, certain measures [12,16,17] and according
statistical tests [18,19] are available that take into account
the time frames in which events must or must not occur.
However, they do not quantify the fraction of true positives,
i.e., the sensitivity, and the fraction of true negatives, i.e., the
specificity, independently [12,16,17]. The statistics [19] of the
seizure prediction characteristics [18], for instance, is based
on a Poissonian random predictor with a binomial success
distribution when assuming a certain false prediction rate, i.e.,
specificity. This dependency of sensitivity and specificity is
also shown for the Brier score in Eq. (5). To summarize, neither
for binary nor for probabilistic forecasts has independent
statistical assessment of sensitivity and specificity in the
framework of predictions been proposed so far. We close this
gap by presenting an adaptive Poissonian random predictor to
obtain binomial success distributions for the sensitivity and
specificity, independently.

The article is organized as follows. In Sec. II
we review the statistical assessment of binary forecasting
methods. In Sec. III we propose and test a statistical method
to independently assess the number of true positives and true
negatives of forecasting methods based on random predictors.
For two different settings we show the adaptablity of our
method in Secs. III A and III B. By simulations we test
the efficiency of the proposed statistics for both settings.
We complete this paper by discussing the method proposed
(Sec. IV).

II. STATISTICAL PROPERTIES OF BINARY
PREDICTION METHODS

A binary forecast, which we denote a prediction, in contrast
to the probabilistic nature of forecasts, can be either positive
or negative. A positive prediction yields an alarm raised
to announce that an event is about to occur. If correctly
predicting, a positive prediction leads to a true positive. True
negatives are negative predictions followed by the absence
of events. Standard ways of quantitatively assessing true and
false positives and true and false negatives are described in
Sec. II A.

In Sec. II B, the idea of statistical evaluation of the
contingency tables is reviewed. The performance of the
prediction system needs to be tested in terms of superiority
to a random predictor. We propose an analytic solution for this
step.

A. Quantification of prediction-observation matches

A useful framework for quantifying the matches of pre-
dictions and observations is based on the introduction of an
occurrence period (OP) and an intervention period (IP) (Fig. 1).
The period during which the anticipated event has to occur

FIG. 1. (Color online) A prediction method that raises an alarm
[thick (red) vertical line] can be validated only if the event has to occur
in a specific time window [solid (blue) box], the OP of length To, after
the alarm was triggered. The period between the alarm and the onset
of the OP is the IP of length Ti , in which intervention systems can be
initiated [dotted (green) box]. (a) A true positive alarm is then defined
as an alarm which is followed by an event in the OP. (b) If an event
remains absentin the OP, the alarm is a false positive.

after an alarm is the OP [6]. This renders a classification
of true positives [Fig. 1(a)] and false positives [Fig. 1(b)]
possible. Typically, an event-free period is desirable after the
alarm before the OP sets on. It allows for an intervention or
precaution to be initiated after the alarm, before the occurrence
of the event [Fig. 1; dotted (green) box]. This period is denoted
the IP [6,8], prediction horizon [20], or lead time [4].

A negative prediction (Fig. 2) is followed by the IP in
the sense that a nonoccurrence of an event should be guaran-
teed during this phase to obtain a true negative prediction
[Fig. 2(a)]. If an event occurred, on the other hand, the
negative prediction would be wrong, leading to a false negative
[Fig. 2(b)].

The respective numbers of true and false positives and true
and false negatives are summarized in contingency tables,
which then can be statistically validated, as described in the
next section.

B. Evaluation of prediction-observation matches

To statistically validate contingency tables derived from the
assessment of positive and negative predictions (Sec. II A),
chi-square tests or the Fisher-Irwin test can be used to test
the independence of predictions and events [15,21]. However,
they do not account for the statistical effect of the OP.
After a positive prediction an event can occur within the
duration of the OP. For a long OP, the probability of a

FIG. 2. (Color online) Negative predictions refer to the IP [dotted
(green) box], since the time points after the IP could belong to
an occurrence period of a positive prediction after the negative
prediction. (a) A true negative prediction refers to a negative
prediction after which no event occurs within the IP. (b) A
false negative prediction refers to one after which an event occurs
at the end of the IP.
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true positive prediction is increased compared to that for a
short one. In order to circumvent this statistical challenge,
measures [1,6,9,12] based on the contingency tables have been
introduced. They quantify the performance of the predictor
by weighting the sensitivity and specificity differently. One
example of such a measure is the fraction correct, which is the
sum of the sensitivity and specificity [9]. For some of those
measures, the distributions of the test statistics are known;
for others they are approximated by Gaussian distributions.
These distributions of test statistics are obtained for the case of
linkage and the case of independence of prediction-observation
pairs. In the case of linkage, the predictions of a prediction
method are correlated with the observations. On the other
hand, predictions and observations are uncorrelated in the
case of independence. Correct predictions might still occur;
for instance, a positive prediction is followed by an event.
However, such correct predictions are due to chance. The
aim of any statistical assessment of prediction methods is to
exclude that the performance is just as good as it is for such
an independent prediction method, for which predictions and
observations coincide by chance. That is, the null hypothesis
of independence of predictions and observations needs to be
rejected. To this end, a threshold which separates the two
distributions corresponding to linkage and independence for
a given error probability can be obtained analytically [9].
Since error probabilities of positives and negatives are linked
by the choice of the threshold, an independent statistical
assessment of sensitivity and specificity is not possible. In
contrast to the methods used so far, we propose an analytic
method of validating predictions with respect to the temporal
extent during which predicted events can occur. Moreover,
the proposed method renders independent statistical control of
true positives and true negatives possible.

III. STATISTICAL ASSESSMENT OF PREDICTIONS WITH
INDEPENDENT CONTROL OF

SENSITIVITY AND SPECIFICITY

In this section, we propose a statistics for evaluation of
the performance of a prediction method based on the number
of true positives and true negatives with respect to actually
observed events. The statistics proposed is based on the
idea of evaluating the performance of a prediction method
by comparing it to the performance of a random predictor.
Here, we assume a homogeneous Poissonian random predictor
that raises alarms at a constant rate but independent of the
actually occurring events. Adaptions to other types of random
predictors are necessary if other null hypotheses are to be
tested. In case, e.g., it is known that the events occur at
a time-dependent rate such that the numbers of events vary
throughout the day, month, or year, the random predictor needs
to fulfill the same time dependence. Then the null hypothesis of
performing quite as well as the prediction method investigated
given that time dependence is tested. Such adaptions, however,
do not change the idea of the subsequent statistics. For binary
random predictions, the numbers of correct predictions, i.e.,
accordances of predictions and observations, are binomially
distributed. Therefore, a threshold of the maximum number
of correct predictions obtainable by chance can be determined
from a binomial distribution. This leads to a binomial statistics,

which can be adapted to different settings of testing the
accordance of predictions and observations.

To assess the performance of the statistics proposed,
prediction-observation pairs are simulated. These prediction-
observation pairs mimic the series of prediction-observation
pairs derived from any prediction method for which the
performance should be evaluated. Since in the simulations
the linkage of predictions and observations is known, the
effectiveness of the statistics is investigated.

In the following, two prediction scenarios are investigated,
illustrating the adaptivity of the binomial distribution ansatz.
In the first scenario, a prediction method with an OP of one
sample point and without an IP is simulated (Sec. III A). In
the second scenario, IPs and OPs are simulated as extended
periods in time (Sec. III B). For each scenario, the two steps
of proposing the statistics and assessing its effectiveness are
conducted.

A. Evaluating prediction-observation pairs without an
IP and with a short OP

A prediction method performs significantly better than
chance if it exceeds the performance of a random predictor
given a certain error probability. The random predictor raises
alarms randomly throughout time, independent of properties
used in the investigated prediction method to predict the
observed events. Given that the alarm rate is the same as
the alarm rate of the prediction method investigated, the
probability of a positive prediction before an event is

p+ = na

N
, (6)

where na is the number of alarms of the prediction method and
N is the number of data points of the prediction-observation
time series. Both properties can be derived from the time series
of predictions and observations.

Since the random predictor can be either right or wrong, the
number of true positive predictions is binomially distributed.
The probability for m+ true positive predictions out of M+
positive predictions is thus

λ+ = B(m+,M+; p+) =
(

m+
M+

)
p

m+
+ (1 − p+)M+−m+ . (7)

From this binomial distribution the quantiles are derived from
the inverse of the cumulative binomial distribution �−1. This
leads to the critical value

mc+ = �−1(1 − α+,M+; p+), (8)

which is the maximum number of true positives, obtainable by
the random predictor with an error probability α+. This error
probability is the significance level.

The critical value mc− of true negatives is obtained
analogously, with the number of negative predictions M− =
N − M+ and a negative-prediction probability,

p− = (1 − pa), (9)

instead of M+ and p+ in Eq. (8), and pa the probability for an
alarm. If desired, a different significance level α− instead of
α+ can be used for control of the number of true negatives.
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In order to assess the statistical properties of the investigated
prediction method the following four-step algorithm has to be
applied.

(1) Determine the significance level α± for true positives
and true negatives, respectively. This is the error probability
of deciding that the prediction method is better at positive and
negative predictions than chance, although it actually is not.

(2) Estimate the probability of a positive and negative
prediction p± based on the number of positive and negative
predictions na and N − na in the prediction time series.

(3) Derive the critical values of true positives mc+ and true
negatives mc− from the binomial distributions, Eq. (8), with
significance levels α±, numbers of positive and negative pre-
diction M±, and positive and negative prediction probabilities
p±, Eqs. (6) and (9).

(4) Compare the critical values mc± obtained in step 3 to
the number of true positives m+ and negatives m− obtained
from the prediction-observation time series as described in
Sec. II A. If the number of true positives and true negatives
exceeds the respective critical values, the prediction system
performs significantly better than chance.

In the following subsections we present a simulation
study. First, the simulation of data is presented. Second, the
simulation study is described and results are presented.

1. Simulation of data

In order to test the statistics proposed in Sec. III A, we
simulated prediction-observation time series as in [10]. To this
end, first a time series of probabilistic forecasts f was drawn
from a β distribution with density

s(f ) = f v−1(1 − f )w−1

F (v,w)
, (10)

where F (v,w) is the β function and v and w parameters
of the distribution. From the parameters the expected value
of probabilistic forecasts can be derived, μf = v

v+w
. The β

distribution is constrained to the range [0,1] and, thus, can
be thresholded to 0’s and 1’s. To obtain binary predictions
a (a = 1, alarm, vs a = 0, no alarm), the forecasts f were
thresholded such that the probability of an alarm was μf . To
this end, the threshold was selected to be the inverse of the
cumulative β distribution with parameters v and w evaluated
at 1 − μf . This ensured the expected value of the forecast to
be the same as for the prediction, such that μf = μa .

In the second step, the probability of an event, i.e., x = 1,
after a prediction a was modeled by

μx|a = ca + d, (11)

a linear linkage c of predictions a to the probability of an
event after a prediction μx|a , with an offset d = μx(1 − c)
(Fig. 3), as in [10]. The offset d was chosen such that the
expected value of an event was equal to the expected value of
predictions, μx = μa . Thus, depending on whether an alarm
was raised [a = 1; Fig. 3, solid (red) line] or not [a = 0; Fig. 3,
dashed (blue) line], the probability of an event μx|a was a
linear function of the linkage strength c. The observation x

was obtained based on the prediction a by drawing a random
number x ′ of a uniform distribution in the interval [0,1] and

FIG. 3. (Color online) The prediction method simulated here is
based on a linear function of the linkage c (x axis) of predictions a

[solid (red) or dashed (blue) line] to the probability of an event x = 1
(y axis). While the probability of an event increases linearly with the
linkage strength for positive predictions [a = 1; solid (red) line], it
decreases for negative ones [a = 0; dashed (blue) line]; see Eq. 11.

comparing it to μx|a , such that

x =
{

1 if x ′ < μx|a (event occurs),

0 otherwise (no event occurs).
(12)

This way, prediction-observation pairs with known linkage
could be generated. At high linkage the probability of an event
after a positive prediction [solid (red) line] was high, while
the probability of an event after a negative prediction [dashed
(blue) line] was low. At low linkage strengths (c ≈ 0) the
probability of events was similar no matter whether a positive
or negative prediction was made. While zero linkage thus
refers to independence of predictions and observations, such
that the null hypothesis is met, increasing linkage refers to
an increasing probability of accordances of predictions and
observations.

2. Simulation study

To assess the performance of the proposed statistics,
we simulated prediction-observation time series consisting
of N = 10 000 prediction-observation pairs as described in
Sec. III A 1. Investigating, particularly, the case of few events,
in which measures like the Brier score fail, we chose the
probability of an event to be μx = μa = 0.05 with v = 1 and
w = 19 (Sec. IIIA1). Linkage strengths were increased from
no linkage, c = 0, to maximum linkage, c = 1. That way, it was
known whether the null hypothesis or the alternative actually
applied to the data. This yielded power analysis possible.
Power refers to the probability of the statistics to reject the
null hypothesis when actually the alternative is true. Applied
to the prediction-observation pairs assessed here, the power
is expected to increase with increasing linkage strength. On
the other hand, coverage was investigated. Coverage refers to
the probability to reject the null hypothesis when it actually is
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FIG. 4. (Color online) Percentage at which the simulated
prediction-observation time series for linkage strengths c were
statistically tested to be significantly better than chance. The solid
(red) line shows the coverage (c = 0) and power (c > 0) of true
positives. The dashed (blue) line shows the coverage and power of
the true negatives. For this, 1000 repetitions of prediction-observation
time series consisting of 10 000 data points were simulated for each
linkage strength. Inset: The first 500 of these 10 000 data points.
Positive predictions, i.e., alarms, are shown by long (red) vertical
lines; positive observations, i.e., events, by short (blue) vertical lines.

true. To ensure that coverage is kept correct, the probability of
erroneously rejecting the null hypothesis should not exceed the
significance level. Coverage and power of the statistics lead to
a reliable and powerful statistics.

For such power and coverage analysis, we simulated
K = 1000 repetitions of prediction-observation time series,
each N = 10 000 data points long, for a set of linkage
strengths c ∈ [0,1]. The first 500 of 10 000 data points of
exemplary prediction-observation time series are shown in
the inset in Fig. 4 for various linkage strengths (y axis).
Positive predictions, i.e., alarms, are shown as long (red)
vertical lines, while positive observations, i.e., events, are
shown by short (blue) lines. While at zero linkage alarms
and events occur independently, the number of overlapping
alarms and events increases with increasing linkage strength.
According to our four-step algorithm we statistically assessed
the performance of the simulated prediction-observation pairs.
The probability of the rejection of the null hypothesis of
independence of prediction-observation pairs was then derived
from the percentage of repetitions for which the null hypothesis
of this independence was rejected.

In Fig. 4 the results of the power analysis for both true
positives [solid (red) line] and true negatives [dashed (blue)
line] are shown for linkage strengths c ∈ [0,1]. For absent
coupling c = 0, the number of true positives and true negatives
remains below the significance level α± = 0.05 (dotted black
line). Therefore, the statistics is considered reliable. Since for
true negatives, the percentage is below the significance level,

the proposed statistics is conservative. With increasing linkage
strength, the power of the statistical test proposed increases
quickly, for both true positives and true negatives. This yields
a powerful statistics.

As the simulations show, the statistics of the number of
true predictions based on a binomal distribution is reliable
and powerful for assessing the performance of a prediction
method.

B. Evaluating prediction-observation pairs with an
extended IP and OP

If the predictions are evaluated using the framework of
temporally extended IPs and OPs, their durations To and Ti

need to be incorporated into the statistics. The critical values
for true positives (+) and true negatives (−) are derived from
the inverse of a binomial cumulative distribution as before,
Eq. (8), with different prediction-observation probabilities p+
and p−. As shown in Fig. 1, for a true positive prediction, no
event must occur in the IP, but at least one event has to occur
in the OP. This yields a probability

p+ = (1 − pa)Ti (1 − (1 − pa)To ) (13)

of a true positive prediction. After a true positive prediction,
the next prediction can be made after the end of the event.

Similarly to the true positive prediction, the probability of
a true negative prediction can be derived. For a true negative
prediction (Fig. 2), the occurrence of no event must be ensured
within the IP. Therefore, given a negative observation, the
probability of Ti negative predictions is p− = (1 − pa)Ti .
However, at the next time point the probability of a true
negative is increased since it is already known from the
previous time point that Ti − 1 of the next predictions are
negative. Thus the probability of a true negative prediction at
the next time point is

p− = (1 − pa). (14)

In the case of few events, this is an approximation of a global
probability of true negative predictions.

The probabilities of true positives p+ and true negatives p−
describe the probability of the random predictor to predict the
observations correctly. From the inverse binomial cumulative
distribution, �−1(1 − α±,M±; p±), the critical values of true
positives and true negatives can be derived as in Sec. III A.
The four-step algorithm presented in Sec. III A, thus can be
applied when substituting M± and p± by the values obtained
when incorporated extended durations of the IP and OP as
presented here.

1. Simulation of data

Similarly to Sec. IIIA1, we simulated prediction-
observation time series based on β-distributed forecasts. In
contrast to the simulations above, the observations were
constructed from the thresholded forecasts such that the
probability of an event was low during the IP and high during
the OP after a positive prediction. Additionally, we introduced
a refractory period (RP), which occurs after each event. This
simulates the period after the event during which no predictions
can be made because, e.g., the system investigated does not
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provide reliable predictions during or in a transition time after
the event since the measurements are still affected.

The parameters of the β distribution were changed to ensure
that the probability of an event during a period as long as the
IP-OP complex was lower than 10%. This yielded parameters
v = 1, w = 199, and μf = 0.005. Since now the OP was
extended, the number of events was decreased under the
null hypothesis of independent predictions and observations.
To ensure μa = μx as before, events were added randomly
at instances of no events, whenever the number of alarms
exceeded the number of events. This kept the null hypothesis
correct, i.e., if no linkage was present. For increasing linkage,
the number of events converges to the number of alarms
due to linkage. In order to leave the exact number of
added events flexible, we drew uniformly distributed random
numbers between 0 and 1 for all time points at which no
event occurred. The random numbers were thresholded at

�
# no events such that the expected number of additional random
events is the difference � in the numbers of alarms and
events. As in Fig. 4, the first 500 of 10 000 data points of
exemplary prediction-observation time series are shown for
various linkage strengths in the inset in Fig. 5. As before,
the correlation of alarms [long (red) vertical lines] and events
[short (blue) vertical lines] increases with increasing linkage.
As expected from the simulation design, the alarms tend
to precede the events, in contrast to the simulation corre-
sponding to the inset in Fig. 4. Furthermore, since the alarm

FIG. 5. (Color online) Percentage at which the simulated
prediction-observation time series for linkage strengths c were
statistically tested to be significantly better than chance. The solid
(red) line shows the coverage (c = 0) and power (c > 0) of true
positives. The dashed (blue) line shows the coverage and power of the
true negatives. For this, 1000 repetitions of the prediction-observation
time series consisting of 10 000 data points were simulated for each
linkage strength with IP = 2, OP = 4, and RP = 2. Inset: The first
500 of these 10 000 data points. Positive predictions, i.e., alarms,
are displayed by long (red) vertical lines; positive observations, i.e.,
events, by short (blue) vertical lines.

rate is reduced in this simulation, fewer alarms and events
occur.

2. Simulation study

As described in Sec. IIIA2 we performed a power analysis
based on 1000 repetitions of prediction-observation time series
including IPs and OPs as described in Sec. IIIB1. We assumed
the IP to be shorter than the OP, choosing Ti = 2 and To = 4
data points. In our simulations, we chose the RP to be as long
as the IP, such that Tr = 2. The resulting power curve for
linkages c ∈ [0,1] is shown in Fig. 5.

Both true positives [solid (red) line] and true negatives
[dashed (blue) line] kept the coverage at c = 0 correct. Again,
the statistics is conservative for true negatives, since the
percentage of rejections is lower than 5%. For increasing
linkage strength, the power increases quickly for both true
positives and true negatives. Thus, the statistics could be
adapted to the case of extended IPs and OPs, remaining
powerful while keeping the coverage correct.

IV. DISCUSSION

We have introduced a statistical method that evaluates
the performance of binary forecasting systems by a ran-
dom predictor. Unlike previous statistical methods, it allows
independent evaluation of true positive and true negative
predictions, even when extended phases such as the OP and
IP are used. We proposed an algorithm for the statistical
assessment of predictions obtained from a prediction method.
This algorithm includes the proposed statistics of a random
predictor. The random predictor is built such that the properties
of prediction equal those of the investigated prediction method
except for the linkage of prediction and observations. For this
random predictor the statistics of obtaining true positive and
true negative predictions by chance is given by a binomial
distribution. From this distribution the quantiles of the random
predictor can be derived and compared to the number of true
positives and true negatives given by the prediction method.
Here, we have described how critical values of true positives
and true negatives can be obtained from the respective inverse
of the cumulative binomial distribution. If the number of
true predictions obtained from the prediction method exceeds
the number of true predictions of the random predictor,
the prediction method is considered significantly better than
chance. Instead of computing critical values, p values can be
obtained from the binomial cumulative distribution. Instead of
computing the inverse of the cumulative binomial distribution
evaluated at 1 minus the significance level α, the cumulative
binomial distribution has to be evaluated at the number of true
predictions made by the prediction method investigated.

In two sections, we have shown that our statistics is adaptive
to frameworks based on occurrence and intervention periods.
Furthermore, we have shown that the statistics proposed is
powerful by testing the performance in controlled settings.
Power is high to identify prediction methods which are linked
to the observations such that predictions are better than chance.
On the other hand, coverage is kept correct in cases in which
the prediction method does not predict observations better than
chance.
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Our framework proposed here also implies the assessment
of strengths of events, e.g., strengths of thunderstorms or
earthquakes. To this end, the event strengths can be categorized
into several groups. For each group the performance of
true positives and true negatives can then be assessed with
the statistics proposed. Alternatively, the binomial statis-
tics can be adapted to multinomial instead of binomial
distributions.

Furthermore, the binomial statistics proposed can be ap-
plied to the statistical assessment of event detection. In that
case, the IP and OP can be replaced by the respective periods
of interest. Adaptions of the statistics are then necessary.

They are implementable analogously to those presented
here.

As the simulations show, the proposed method is a reliable,
powerful, adaptive, and widely applicable statistics for assess-
ing the performance of prediction or detection methods, even
in the case of rare events.
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