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In many fields of research nonlinear dynamical systems are investigated. When more than one process is
measured, besides the distinct properties of the individual processes, their interactions are of interest. Often linear
methods such as coherence are used for the analysis. The estimation of coherence can lead to false conclusions
when applied without fulfilling several key assumptions. We introduce a data driven method to optimize the
choice of the parameters for spectral estimation. Its applicability is demonstrated based on analytical calculations
and exemplified in a simulation study. We complete our investigation with an application to nonlinear tremor
signals in Parkinson’s disease. In particular, we analyze electroencephalogram and electromyogram data.
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I. INTRODUCTION

Investigating networks as an inverse problem, i.e., based
on observations of the systems dynamics, is one of the
key challenges faced in physics. Data-based modeling has
opened new avenues to address this challenge. In particular,
various data analysis techniques have been suggested to infer
interactions between processes that build up the network.
Among the most robust and therefore most frequently applied
techniques are synchronization measures and cross-spectral
analysis. This resulted from the fact that both approaches are
robust with respect to noise, one of the key requirements
in most applications. The cross-spectral analysis approach
additionally provides information on the frequency at which
the interaction is strongest, a feature that is strongly desired
in applications to noisy nonlinear oscillatory systems; these
are, for instance, often observed in the neurosciences [1,2].
Incidentally, in a recent publication, a striking similarity
between one of the most frequently applied measures for phase
synchronization, the mean phase coherence, and cross-spectral
analysis was demonstrated [3]; the mean phase coherence is
a special case of the wider class of cross-spectral analysis
techniques.

Given the long history of applications of cross-spectral
analysis to linear and nonlinear noisy systems [4–7], it seems
surprising that one of the key problems in cross-spectral
analysis has not been addressed before. Namely, cross-spectral
analysis techniques rely on at least one parameter that has
to be chosen beforehand, for the different proposed spectral
estimators [5]. For instance, for two of the most commonly
used methods, which are averaging and smoothing of the
cross periodograms, the crucial parameters are the appropriate
segment length for averaging and the window width for
smoothing. In order to establish an asymptotically consistent
estimator [8], the segment length or window width as well
as the length of the time series have to be infinitely large
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while their ratio tends to zero [9]. While these parameters
are usually determined ad hoc, a poor choice will violate the
implicit assumptions of the statistics.

The choice of the smoothing window determines whether
or not a statistically significant result is obtained. Ana-
lytical significance levels can be derived under some as-
sumptions [7,10,11]. Especially for narrowband signals these
assumptions, which typically assume that an asymptote is
reached, are difficult to achieve [12]. In case the asymptote
is not reached, false positive conclusions may be drawn.
As shown in this paper for two independent processes a
suboptimal choice of the width of the smoothing window
falsely indicates an interaction between the two processes.
Thus, a suboptimal choice of the width of the smoothing
window in this case would result in wrong conclusions
about the interaction structure. As in applications the optimal
width of the smoothing window is, of course, unknown,
such erroneous conclusions are inevitable. The same problem
occurs for other spectral estimators as well. For the approach
based on averaging periodograms, often the choice of the
segment length is based on the desired frequency resolution.
When making this choice, the assumption that the segments
are independent is often disregarded, resulting in exactly the
same problem as discussed above.

In this paper, we overcome these limitations and derive
an optimized width of the smoothing window, based on the
optimized segment length, using the asymptotic equivalence
of the distribution of the estimators. Thereby, we present an ap-
proach to optimize the choice of the window width in spectral
estimation and thus make the application of coherence reliable.
Thereby, we minimize false positive conclusions about the
interactions between processes. We test our analytical results
in simulation studies using linear and nonlinear synchronizing
noisy processes. To demonstrate its applicability, the method
is then applied to nonlinear tremor data affirming that the
coherence of brain and muscle is significant for a trembling
patient suffering from Parkinson’s disease.

This paper is organized as follows. In Sec. II, univariate
spectral estimation is reviewed for the averaging estimator
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and the smoothing estimator, respectively. In Sec. III bivariate
coherence is reviewed. The parameters that need to be
chosen for spectral estimation are the segment length and the
smoothing window width. In Sec. IV the analytical derivation
for the optimized choice of these parameters is summarized.
This is followed by a simulation study based on a linear process
for which the univariate spectrum is estimated (Sec. V). A
bivariate simulation study (Sec. VI) of two synchronizing
Rössler oscillators for which the coupling strength as well as
the width of the smoothing window are systematically varied
follows. Finally, we apply our method to nonlinear tremor data
in Sec. VII.

II. UNIVARIATE SPECTRAL ESTIMATION

To optimize the choice of the key parameters in cross-
spectral analysis when applied to nonlinear noisy systems, we
first briefly introduce key concepts from the theory of spectral
and cross-spectral analysis.

The power spectrum S(ω) of a process x(t) is the Fourier
transform of its autocovariance function Fx(τ ) = 〈x(t)x(t −
τ )〉, where 〈·〉 denotes expected value. A naive estimator for
the power spectrum is the so-called periodogram,

Ŝnaive(ω) = P (ωk) = |f (ωk)|2, (1)

where f (ωk) denotes the Fourier transform of the time series.
Here ωk = 2π k

N �t
are the natural Fourier frequencies with k =

−N
2 , . . . ,0, . . . ,N

2 , where �t is the sampling step and N refers
to the number of data points.

In a well established procedure to deal with leakage, the
time series is tapered [13] by multiplying it with an adequate
window function before taking the Fourier transform. The
variance of the tapered periodogram is then given by [5]

var

[
Ŝ

tap
naive(ω)

S(ω)

]
= 2

ν
, (2)

where ν denotes the equivalent number of degrees of freedom.
Here ν = 2ν tap depends on the taper window [13],

ν tap = q2
2

q4
, (3)

with

q2 = 1

N

N∑
i=1

W 2
tap(i) and q4 = 1

N

N∑
i=1

W 4
tap(i), (4)

where Wtap(i) is the window function. The variance is
independent of the number of data points. Since tapering is
used for bias reduction, the tapered periodogram is an asymp-
totically unbiased but inconsistent estimator. To overcome this,
the periodogram can, for example, be either averaged over
segments or smoothed by convolution with a smoothing kernel
of appropriate width and shape. Both approaches are explained
in the following sections.

A. Averaged periodograms

The first spectral estimator is based on the idea that for
multiple measurements of the same stationary process, the
spectrum can be estimated by averaging of the respective

periodograms. The assumption of a decaying autocovariance
function is implicitly made when averaging periodograms,
since it is assumed that the segments are interpretable as
independent realizations of the process and thus uncorrelated.

For a single measurement the given time series of length
N is cut into M segments of length L = N

M
. For practical

purposes L is rounded down to an integer. The M segments are
then assumed to form individual measurements of the process.
Averaging over the M segments yields an asymptotically
consistent estimator for the spectrum [13],

Ŝap(ωi) = 1

M

M∑
l=1

Pl(ωk), (5)

where the subscript “ap” stands for averaged periodograms.
The variance of this spectral estimator is again given by Eq. (2).
However, here ν depends on the number of segments

νap = 2M, (6)

multiplied by the equivalent number of degrees of freedom of
the taper window [Eq. (3)], i.e., ν = νapν

tap
ap .

Assuming a constant length of segments, the variance
decreases with increasing number of segments, i.e., increasing
the total number of data points N ; thus, this estimator is
consistent. More precisely, it is asymptotically consistent for
all frequencies if N → ∞, M → ∞, and M

N
→ 0 holds [5].

For any fixed number N of measurements, the trade-off
between a high frequency resolution and a small variance has
to be dealt with.

B. Smoothed periodogram

The so-called smoothed periodogram uses the assumption
of a smooth spectrum due to a decaying autocovariance
function of the process directly. The periodogram of the whole
time series is smoothed by convolution with a kernel Kj ,

Ŝsp(ωi) =
h∑

j=−h

KjP (ωi+j ), (7)

where the subscript “sp” stands for smoothed periodogram.
The kernel Kj needs to be normalized to one in order to
preserve the variance of the process. Among several other
possibilities, a triangular kernel,

Kj =
{

1
h

− |j |
h2 for|j | � h,

0 else,
(8)

can be used. Again, the variance of the spectral estimator is
given by Eq. (2). In this case, ν depends on the smoothing
kernel,

νsp = 2∑h
j=−h K2

j

, (9)

multiplied by the equivalent number of degrees of freedom of
the taper window [Eq. (3)], i.e., ν = νspν

tap
sp .

Using a triangular kernel [Eq. (8)] leads to

νsp = 6h3

(2h2 + 1)
(10)
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[see Eqs. (A4) to (A7) in Appendix A]. Thus, increasing the
width of the smoothing window h decreases the variance of
the estimator. At the same time the number of data points has
to increase in order to achieve a high frequency resolution.
Therefore, smoothing the periodogram is an asymptotically
consistent estimator for the spectrum if N → ∞, h → ∞,
and h

N
→ 0 holds [5].

To summarize, both spectral estimators based on the
periodogram require the choice of a parameter such that
the condition of consistency is fulfilled. For the averaged
periodograms [Eq. (5)], the number of segments M or the
segment length L, respectively, have to be chosen. For the
smoothed periodogram [Eq. (7)], the width of the smoothing
window h based on the shape of the smoothing kernel is
mandatory. We optimize the width of the smoothing window
based on the optimal segment length proposed by [9] in
Sec. IV.

III. BIVARIATE SPECTRAL ESTIMATION: COHERENCE

For two stationary processes x(t) and y(t), the cross
spectrum Sxy(ω) is defined as the Fourier transform of the
cross-covariance function Fxy(τ ) = 〈x(t)y(t − τ )〉 [14]. The
cross spectrum is a complex valued quantity from which
different real valued quantities can be derived. Here we
investigate the normalized modulus of the cross spectrum
Sxy(ω), called coherence [14],

Cxy(ω) = |Sxy(ω)|√
Sx(ω)Sy(ω)

∈ [0,1]. (11)

It describes the degree of linear predictability of x(t) from y(t)
and vice versa in the frequency domain.

Estimation of the cross spectrum can be achieved analo-
gously to the power spectrum. Consistent estimators can be
obtained by averaging or smoothing cross periodograms. The
variance of this estimator is given by [13]

var[Ĉxy(ω)] = 1

ν
[1 − |Cxy(ω)|2], (12)

where, as above, ν refers to the equivalent number of degrees of
freedom, which, in turn, depends on the estimation procedure
[Eqs. (3), (6), and (9)], as before.

In order to estimate the variance of the coherence, the
true coherence Cxy(ω) in Eq. (12) has to be substituted by
its estimate. Under the null hypothesis of zero coherence, a
critical value,

s =
√

1 − α
1

ν
2 −1 , (13)

for a given α-significance level is obtained [13].
As both spectral as well as cross-spectral analysis rely

on periodograms, optimization in terms of the choice of the
parameters applied to univariate as well as to bivariate spectral
analysis is crucial.

IV. OPTIMIZING SPECTRAL ESTIMATION

The segment length for averaging can be estimated from the
measured data if the process is exponentially mixing [9,15].

To achieve this, an exponentially decaying function,

f (k) = ϕk ,ϕ < 1, (14)

is fitted to the envelope of the autocorrelation function
F norm

x (τ ) = 1
σ 2 〈x(t)x(t − τ )〉, which is the autocovariance

function normalized by the variance σ 2 of the process. The
optimal segment length is [9]

Lopt = 3

√√√√√4
[

ϕ

1−ϕ
+ ϕ2

(1−ϕ)2

]2

(
1 + 2 ϕ

1−ϕ

)2 N. (15)

This optimal segment length holds for the estimator of the
variance, as the spectrum is the variance per frequency; it
is a suitable choice for (cross-) spectral analysis as well.
Typically in nonlinear dynamics the spectrum is dominated
by the oscillation frequency of the process. The segment
length is then determined by this dominant frequency. As
this frequency contains most of the variance, the segment
length can indeed be considered as “optimal.” If the spectrum
contains several peaks, the peak that dominates the decay time
of the autocovariance function determines the optimal segment
length. In some applications this dominant peak may differ
from the frequency of interest. If the data are filtered according
to the frequencies of interest, optimal segment lengths can
be determined for the filtered signal in order to determine
segment lengths for each peak. This in turn results in optimal
segment lengths for spectral estimation in the presence of
several spectral peaks. In the following we use the term optimal
in the sense discussed above.

Since both the averaged and the smoothed periodogram
are χ2

ν -distributed random variables that are asymptotically
unbiased estimators of the spectrum, they are equivalent. Using
this equivalence, their degrees of freedom are set equal,

ν = νapν
tap
ap = νspν

tap
sp , (16)

where ν
tap
ap and ν

tap
sp differ since the length of the tapered

segments differ. This yields the relation[
1
L

∑L
i=1 W̃ 2

tap(i)
]2

1
L

∑L
i=1 W̃ 4

tap(i)
2M =

[
1
N

∑N
i=1 W 2

tap(i)
]2

1
N

∑N
i=1 W 4

tap(i)

2∑h
j=−h K2

j

,

(17)

and, thus,

M

[
1
L

∑L
i=1 W̃ 2

tap(i)
]2

1
L

∑L
i=1 W̃ 4

tap(i)

1
N

∑N
i=1 W 4

tap(i)[
1
N

∑N
i=1 W 2

tap(i)
]2︸ ︷︷ ︸

M ′=M ′(M,L)

= 1∑h
j=−h K2

j

.

(18)

Inserting the optimal segment length and the respective op-
timal number of segments such that M ′

opt = M ′
opt(Mopt,Lopt),

and solving for the smoothing window width h yields the
optimal window width hopt. For a triangular kernel we obtain

hopt = 3

√√√√(
8

729
M ′2 + 1

6
+

√
8

2187
M ′2 + 1

36

)
M ′
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+ 3

√√√√(
8

729
M ′2 + 1

6
−

√
8

2187
M ′2 + 1

36

)
M ′

+ 2

9
M ′. (19)

The derivation is shown in Appendix A for M ′ = M ′
opt,

depending on the optimal number of segments, i.e., the optimal
segment length,

Mopt = N

Lopt
, (20)

in the averaging approach.
If more than eight independent segments of optimal

length, i.e., Mopt > 8 could be obtained from the data, the
approximation

hopt ≈ 2

3
Mopt (21)

for the optimal width of the smoothing window holds, as shown
in Appendix B.

Interestingly, if the estimated optimal segment length is
longer than the duration of the sampled time series, this is a
strong indication that no meaningful statistics can be found.
This is a major and almost unique advantage of our approach:
If the statistics is not applicable, our approach suggests a
smoothing window of zero width. Almost all other approaches
will provide a result irrespective of the reliability of the results.

V. UNIVARIATE SIMULATION STUDY

To exemplify the above results in a simulation study, we
consider an autoregressive process of order two (AR[2]),

x(t) = a1x(t − 1) + a2x(t − 2) + ε(t), (22)

with a1 = 1.6, a2 = −0.98, and where ε(t) is Gaussian white
noise. We vary the number of data points N after removal
of transients between 5000 and 50 000 in steps of 5000;
additionally we used N = 1000. For 100 realizations of the
AR[2] process [Eq. (22)], with different N the optimal width of
the smoothing window is computed according to Eq. (19). The
optimal segment length Lopt according to Eq. (20) is estimated
by fitting an exponentially decaying function [Eq. (14)] to the
envelope of the estimated autocorrelation function of the time
series.

For the AR[2] given by Eq. (22), the decay constant,

ϕ = √−a2, (23)

of the envelope of the autocorrelation function can be derived
analytically [16]. Therefore, the optimal segment length Lopt

given in Eq. (15) and, from this, the optimal width of the
smoothing window hopt [Eq. (19)] can be obtained analytically.

In Figs. 1 and 2, the mean estimated optimal width of the
smoothing window (black crosses) of the simulation study with
varying data length N is compared to the analytical one [red
(gray) line]. The standard deviations of the mean optimal width
of the smoothing windows for the 100 realizations of length
N are indicated by the black error bars. The results for the
width of the smoothing window in frequency bins are shown
in Fig. 1. From these bins, the width of the smoothing window
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FIG. 1. (Color online) Optimal width of the smoothing window
hopt for AR[2] realizations given in Eq. (22) dependent on the length
of the realization. The black crosses and error bars denote the mean
and its standard deviation of hopt for 100 realizations computed from
the estimated segment lengths. The optimal width of the smoothing
window derived from the analytic optimal segment length is shown
in red (gray).

in Hz is calculated and depicted in Fig. 2. The simulated mean
values agree with the analytical values.

VI. BIVARIATE SIMULATION STUDY

In order to investigate the impact of the choice of the width
of the smoothing window on cross-spectral estimation using
the smoothing approach, we simulate a system of two identical
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FIG. 2. (Color online) Optimal width of the smoothing window
hopt in Hz for AR[2] realizations given in Eq. (22) dependent on the
length of the realization. The black crosses and error bars denote
the mean and its standard deviation of hopt for 100 realizations
computed from the estimated segment lengths. The optimal width
of the smoothing window derived from the analytic optimal segment
length are shown in red (gray). For N = 1000 the standard deviation
corresponds to one frequency bin or 10−3 Hz.
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FIG. 3. (Color online) Coherence spectra of two independent
Rössler oscillators [Eq. (24)]. (Left) Width of the smoothing window
chosen optimally (here 5 frequency bins). (Right) Smoothing window
five times as wide as optimal (here 25 frequency bins). Critical values
for a 5% significance level are depicted in red (gray). The oscillation
frequency of 0.17 Hz is highlighted by the horizontal green dashed
lines.

stochastic Rössler oscillators,

ẋi(t) = −ωyi(t) − xi(t) + γ [xj (t) − xi(t)] + εi(t),

ẏi(t) = ωxi(t) + ayi(t), (24)

żi(t) = b + [xi(t) − c]zi(t),

with i,j = 1,2, i 
= j , ω = 1, a = 0.2, b = 0.2, c = 6.3, and
Gaussian distributed white noise εi of unit variance. We use
N = 50 000 data points after removal of transients. The rate
of mixing of this system is rather low [12] and thus the decay
of the autocovariance function is slow.

Figure 3 shows the coherence of the uncoupled (γ = 0)
Rössler system [Eq. (24)], as derived from optimal smoothing
(left) and five times too wide smoothing (right). The oscil-
lator’s main frequency is highlighted (green dashed vertical
line). In this example, a spurious interaction is detected if the
smoothing window is chosen too wide.

In a simulation study we vary the bidirectional coupling
strength γ between 0 and 0.5 in steps of 0.025 for 100
realizations of Eq. (24) each. For each realization we estimate
the coherence [Eq. (11)] using different windows. Significance
is tested at the main frequency of the oscillators according
to Eq. (13) for optimal smoothing as well as for five times
too wide smoothing and for half of the optimal width of the
smoothing window. The performance of the three smoothing
scenarios for varying coupling strength γ is shown in Fig. 4
(top). For each coupling strength the rate of significant
coherence is shown.

Additionally to the coherence we estimated mean phase
coherence (MPC) [3,17] for each realization. The mean MPC
for 100 realizations, depending on the coupling strength,
is shown in Fig. 4 (bottom). The increase of MPC shows
that for increased coupling the two Rössler oscillators are
synchronized.

A detailed investigation of the coherence estimates for
the synchronizing oscillators shows that if the width of the
smoothing window is chosen too small (green dashed line in
Fig. 4), the estimation procedure loses power. An interaction
is, thus, detected less reliably than for optimal smoothing.
In contrast, if the width of the smoothing window is chosen
too wide (blue dashed dotted line in Fig. 4), the size of the
significance test exceeds the significance level, i.e., for a given
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FIG. 4. (Color online) (Top) Rate of significant coherence be-
tween two Rössler oscillators with increasing bidirectional coupling.
We estimated coherence with optimal width of the smoothing window
[red (gray) line], five times wider window width (blue dash-dotted
line), and a window width half as wide as optimally (green dashed
line), respectively. Significance was evaluated at the oscillation
frequency of 0.17 Hz with a 5% significance level. (Bottom) Averaged
MPC for the respective 100 realizations for each coupling strength.

5% significance level; more than 5% false positive conclusions
are drawn if there is no interaction, i.e., γ = 0. Choosing the
optimal width of the smoothing window results in the best
power while preserving the size of the test.

The same analysis was carried out for the Rössler system in
the funnel regime. We used Eq. (24) with ω = 1, a = 0.3, b =
0.4, and c = 7.5. We again varied the bidirectional coupling
strength γ between 0 and 0.5 in steps of 0.025. Results are
shown in Fig. 5. The Rössler system in the funnel regime
is a broadband chaotic system. For broadband signals the
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FIG. 5. (Color online) (Top) Rate of significant coherence be-
tween two Rössler oscillators in the funnel regime with increasing
bidirectional coupling. We estimated coherence with optimal width
of the smoothing window [red (gray) line], five times wider window
width (blue dash-dotted line), and a window width half as wide
as optimally (green dashed line), respectively. Significance was
evaluated at the oscillation frequency of 0.14 Hz with a 5%
significance level. (Bottom) Averaged MPC for the respective 100
realizations for each coupling strength.
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autocovariance function is decaying faster than for narrowband
signals. This is due to their respective mixing properties. It
is thus expected that for broadband signals the periodogram
can be smoothed with a wider smoothing window width.
Therefore, it is less likely to accidentally choose the smoothing
window width too wide. Nevertheless, the choice can be
optimized with respect to the power and size of significance
testing using our approach.

VII. APPLICATION TO TREMOR TIME SERIES

One of the core symptoms of Parkinson’s disease is tremor,
which is an involuntary rhythmical movement predominantly
of the upper limbs. In Parkinson’s disease the tremor frequency
is mainly between 4 and 6 Hz [18]. The pathophysiology
of the human tremor is still under debate. One hypothesis
that is widely accepted [19–21] states that an abnormal
oscillatory activation in the brain may be generating the
tremor. Hypotheses on the location of the abnormal oscillatory
activation differ [18,22–26].

We used electroencephalogram (EEG) data from one
electrode located over the hand area of the left sensorimotor
cortex [20,27]. Using electromyography (EMG), the muscle
activity from the flexor muscle of the right wrist was simul-
taneously recorded to obtain a readout of the tremor activity.
Data were recorded at a sampling rate of 1 kHz and EMG
recordings were rectified. Data were downsampled to 100 Hz
prior to analysis.

Parkinsonian tremor signals were shown to be nonlin-
ear [28]. We applied the proposed method of optimally
choosing the width of the smoothing window for spectral
estimation to these signals. The results of coherence estimation
of EEG and EMG, with the optimal width of the smoothing
window, is shown in Fig. 6. Choosing the width of the
smoothing window optimally, i.e., 22 frequency bins and
therefore 0.072 Hz, a significant coherence at the tremor
frequency of 4.4 Hz is identified. Thus, we conclude that,
in fact, there is coherence between muscle and brain at the
tremor frequency. This finding supports the hypothesis that an
abnormal oscillatory activation in the brain is generating the
tremor.
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FIG. 6. (Color online) Coherence spectrum of right EMG and
contralateral, i.e., left EEG time series of one patient suffering
from Parkinsonian tremor estimated using the optimal width of the
smoothing window of 22 frequency bins and 0.072 Hz, accordingly.
The critical value for a 5% significance level is depicted in red (gray).
The tremor frequency of 4.4 Hz is highlighted by the horizontal green
dashed line.

VIII. DISCUSSION AND CONCLUSION

The method presented here offers a broad opportunity to
employ unbiased and consistent spectral estimation with a data
driven choice of the width of the spectral smoothing window.
The optimal width of the smoothing window is chosen based
on the mixing properties of the process. Exemplarily, we used
a triangular kernel for smoothing of the periodogram. For
other smoothing kernels the optimal width of the smoothing
window can be derived analogously. Based on the approach
presented here, spectral estimation using an adaptive width
of the smoothing window [29] can be improved. This can be
achieved by replacing the heuristic choice of the width of the
smoothing window at the peak frequency with the width of the
smoothing window presented here.

We investigated the usefulness for univariate and bivariate
spectral estimation based on simulations both for linear and
nonlinear synchronizing systems. In an application to EMG
and EEG data of a Parkinsonian tremor patient we detected a
significant interaction of the muscle and brain activity at the
tremor frequency. We demonstrated that the choice of the width
of the smoothing window is crucial in cross-spectral analysis.
On the one hand, if the smoothing window is chosen too wide,
interactions may be detected spuriously. On the other hand,
if the smoothing window is chosen too narrow, the sensitivity
to detect actual interactions is hampered. Choosing the width
of the smoothing window optimally prevents false positive
conclusions while preserving a high sensitivity.

We emphasize that the method presented here is data driven.
This means that the optimal width of the smoothing window is
estimated based on a given measurement. The estimated width
of the smoothing window may be zero, if the measurement
is not long enough to treat segments of it as independent
realizations. In this case, the asymptotic is not reached and
smoothing is not advisable. In case the estimated width of
the smoothing window is larger than zero, the statistics can
be applied, leading to a reliable (cross-) spectral estimation.
Thus, we presented an approach to choose the width of the
smoothing window optimally with respect to the measured
data at hand.
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APPENDIX A: CALCULATION OF hopt

Here the optimal width of the smoothing window hopt is
derived for a triangular window [Eq. (8)],

Kj =
{

1
h

− |j |
h2 for|j | � h,

0 else.
(A1)
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For this, the degrees of freedom of the spectral estimators via
averaging and smoothing are set equal [Eq. (18)], leading to

M ′ = 1∑h
j=−h

(
1
h

− |j |
h2

)2 , (A2)

with

M ′ = M

[
1
L

∑L
i=1 W̃ 2

tap(i)
]2

1
L

∑L
i=1 W̃ 4

tap(i)︸ ︷︷ ︸
ν

tap
ap

1
N

∑N
i=1 W 4

tap(i)[
1
N

∑N
i=1 W 2

tap(i)
]2︸ ︷︷ ︸

(ν tap
sp )−1

, (A3)

the number of segments M scaled with the fraction of the
degrees of freedom for the taper kernels. Multiplying the
inverse of Eq. (A2) with h2 after factoring out 1

h2 on the right
yields

h2

M ′ =
h∑

j=−h

(
1 − 2|j |

h
+ j 2

h2

)
(A4)

=
h∑

j=−h

1 − 4

h

h∑
j=0

j + 2

h2

h∑
j=0

j 2 (A5)

= (2h + 1) − 2(h + 1) + (h + 1)(2h + 1)

3h
(A6)

= 2h2 + 1

3h
. (A7)

Solving the resulting equation,

3h3 − 2M ′h2 − M ′ = 0, (A8)

for h yields the optimal width of the smoothing window since
M ′ can be chosen optimally when the number of segments M

used for averaging the periodograms is chosen optimally, such
that Lopt = N

Mopt
is the optimal segment length as derived in

Sec. IV.
The cubic equation is solved by a substitution step, which

transforms Eq. (A8) to x3 + px + q = 0 with x = h + 2
3M ′,

p = − 22

33 M
′2, q = − 24

36 M
′3 − 1

3M ′, and Cardano’s method as

a second step [30]. The solution is the optimal width of the
smoothing window,

hopt = 3

√√√√(
8

729
M ′

opt
2 + 1

6
+

√
8

2187
M ′

opt
2 + 1

36

)
M ′

opt

+ 3

√√√√(
8

729
M ′

opt
2 + 1

6
−

√
8

2187
M ′

opt
2 + 1

36

)
M ′

opt

+ 2

9
M ′

opt. (A9)

APPENDIX B: APPROXIMATION OF hopt

The exact solution Eq. (A9) can be approximated if

8

729
M ′

opt
2 � 1

6
±

√
8

2187
M ′

opt
2 + 1

36
. (B1)

Subtracting 1
6 on both sides and squaring the equation yields

64

7292
M ′

opt
4− 8

2187
M ′

opt
2+ 1

36
� 8

2187
M ′

opt
2+ 1

36
. (B2)

This leads to

M ′
opt

2 � 2
7292

64

8

729 × 3
= 2

729

8

1

3
= 243

4
, (B3)

M ′
opt � 9

2

√
3 ≈ 7.8. (B4)

This means that at least M ′
opt = 8 segments are necessary

for the first term in the cubic roots larger than the remaining
terms.

Therefore,

h ≈ 3

√
8

729
M ′

opt
2
M ′

opt + 3

√
8

729
M ′

opt
2
M ′

opt+
2

9
M ′

opt (B5)

= 2

9
M ′

opt + 2

9
M ′

opt + 2

9
M ′

opt = 2

3
M ′

opt (B6)

holds if M ′
opt � 8.
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