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In the analysis of neuroscience data, the identification
of task-related causal relationships between various
areas of the brain gives insights about the network
of physiological pathways that are active during the
task. One increasingly used approach to identify
causal connectivity uses the concept of Granger
causality that exploits predictability of activity in
one region by past activity in other regions of
the brain. Owing to the complexity of the data,

2013 The Author(s) Published by the Royal Society. All rights reserved.

 on September 16, 2013rsta.royalsocietypublishing.orgDownloaded from 

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2011.0612&domain=pdf&date_stamp=2013-07-15
mailto:schelter@fdm.uni-freiburg.de
http://rsta.royalsocietypublishing.org/


2

rsta.royalsocietypublishing.org
PhilTransRSocA371:20110612

......................................................

selecting components for the analysis of causality as a preprocessing step has to be performed.
This includes predetermined—and often arbitrary—exclusion of information. Therefore, the
system is confounded by latent sources. In this paper, the effect of latent confounders is
demonstrated, and paths of influence among three components are studied. While methods
for analysing Granger causality are commonly based on linear vector autoregressive models,
the effects of latent confounders are expected to be present also in nonlinear systems. Therefore,
all analyses are also performed for a simulated nonlinear system and discussed with regard to
applications in neuroscience.

1. Introduction
An increasing number of studies based on, for instance, electroencephalography (EEG),
magnetoenecephalography (MEG), near-infrared spectroscopy (NIRS) or functional magnetic
resonance imaging (fMRI) use complex data analysis methods to investigate the functional
architecture of the brain [1–5]. These novel methods analyse the internal ‘communication’
networks of the brain based on functional connectivity [6–10]. For a better understanding of the
results of such connectivity analyses, the inferred networks are often visualized by graphs in
which recorded time series indicating activity of certain brain regions are represented by nodes,
whereas dependences among the time series are encoded by edges linking the nodes. Depending
on the type of analysis, such edges can be undirected (lines) for undirectional associations or
directed (arrows) for directional associations. In the context of EEG, MEG, NIRS and fMRI, both—
undirected and directed—types of connectivity measures are commonly applied. Most studies,
however, comprise undirected analyses, for an overview, see Smith et al. [11].

The ultimate goal of connectivity analyses is the identification of physiological pathways that,
for instance, transport information between brain regions. Therefore, one further step in the
analysis of interrelations is the investigation of causal relationships. Although there is no clear
universally accepted definition of causality, several concepts for causality that provide a suitable
framework for causal inference have been proposed; for a general overview, we refer to [12,13]
and particularly in the context of multiple time series, we refer to [14,15]. In the context of time
series and neuroscience, there are various recent works in the broader context of causality [16–18].
This study deals with Granger causality [19–21], which provides an increasingly used measure to
investigate causal interrelations. In the case of fMRI, causality assertions have to be treated with
caution because haemodynamic responses do not cause haemodynamic responses. However,
simulation studies revealed that Granger causality analyses still provide information about the
underlying network structure for fMRI data [22,23]. The derived graphical representations in this
study contain vertices referring to the acquired time-series data and edges that are defined in
terms of Granger causality, hence are directed. This kind of graph is then referred to as a Granger
causality graph [2,24,25].

In particular, with regard to statistical inference, causality is challenging because finite
numbers of correlations are used to draw conclusions about overall causal interrelations. In
neuroscience analyses, often regions of interest are established or imposed by placement of
the electrodes, before further investigations of causal connections follow. For instance, in non-
invasive EEG, hidden sources in the brain may be the cause for the acquired data at the scalp
electrodes. The severe effect of displaced electrodes in this case was emphasized in [26], where
the issue of assuming one sensor per source is addressed. So, on the one hand, constraints on
the regions restrict the complexity of the analysis, but on the other hand, restrictions contain
previous determination of relevance of components within the analysis. The investigation of
directed connections is biased from the beginning.

Missing important components in the network, aggregation over spatial information and over
time leads to an identification of components that allow latent influences to disturb deriving
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overall causalities. Unforeseen causality assertions therefore occur. Which kind of causality
structure is present then depends on the components that are included in the network analysis,
and statements about causality tend to become uncertain.

In this study, unobserved components, which provide influence structures in the network, but
which are excluded from the analysis, are called latent confounders. Other attempts to investigate
latent confounders are given, for instance, in the context of partial Granger causality [27] or in
showing the need to account for the effect of latent sources, as was done in [28] for cardiovascular
variability series. Further, the algorithm for inductive causation with latent variables [29] was
introduced to find invariant substructures based on equivalent graphs. However, errors owing to
accidental correlations may occur [30].

The investigations in this paper demonstrate how latent confounders, which form
intermediate vertices in directed paths of Granger causality graphs, lead to additional direct
relations and to further spurious relations between other components. Three specific types of
influence paths are studied in order to detect paths that can be confirmed in Granger causality
analyses. Because bivariate Granger causality analysis, as presented in [2], naturally reflects the
effect of latent confounders in subsystems, a combination of bivariate and multivariate analyses
is applied in simulations to provide further information about spurious causalities.

When dealing with the human brain, the underlying system will be nonlinear. In neuroscience,
the investigations of the effects of latent confounders thus cannot be restricted to the linear case.
We therefore provide a simulation in the nonlinear case as well. As a statistical tool to detect
Granger causalities, and thus edges in Granger causality graphs, we choose renormalized partial
coherence [31], which is a further development of partial directed coherence (PDC) [32,33].

This paper is organized according to the following structure. First, a background in vector
autoregressive (VAR) modelling as well as the concept of Granger causality are introduced, and
the notion of renormalized PDC is briefly discussed. Second, the effects of latent confounders are
illustrated in a simulated linear system based on a VAR model, and a system of four coupled
Roessler systems, to study the effect of latent confounders in nonlinear systems. Subsequently,
three types of influence paths are studied for both types of systems, and the combination of
bivariate and multivariate analyses is considered. Finally, the initially demonstrated effect of a
latent confounder is discussed with respect to applications.

2. Granger causality in vector autoregressive modelling
Underlying concepts and methods are briefly explained. Further details on VAR modelling and
Granger causality can be found in [34–36].

(a) Granger causality
The concept of Granger causality [19–21] provides operational definitions for causality relations
and interactions in empirical investigations. The concept is based on the assumption that causes
always precede their effects, that causal relationships remain constant and that all relevant
variables are included in the evaluation. In particular, on account of non-observance of the latter
assumption, numerous spurious statements in the determination of causal influences occur.

The concept is rooted in probabilistic considerations, where the assumptions above are
expressed based on stochastic processes. Hence, let XV be a |V|-dimensional stationary stochastic
process with its d components indicated by the set V= {1, . . . , d}. Individual components may
then be referred to by X1, X2, . . . , Xd. Component X1 is Granger causal for X2, if previous
outcomes of X1 improve the prediction of present outcomes of X2. Improvement means the
prediction error is less, i.e. the mean square error decreases if the causing component is included,
and directed causal influences are then captured as the effect of reduction of the variance of the
prediction error.

Owing to operational limitations, the number of components included in Granger causality
considerations is necessarily restricted. Causality assertions therefore require declaration of the
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set of components included in the analysis, which means that not the ‘whole universe’ is
considered as suggested by Granger [19]. The Granger causal influence from component X1 to
component X2, given the set of components in the stochastic process XV , can be expressed as

X1→X2 |XV . (2.1)

For theoretical reasons, inference of causality would actually require the consideration of all
subsystems. The concept of Granger causality with respect to linear influences becomes apparent
in VAR models, which in addition form the foundation for the renormalized PDC.

(b) Vector autoregressive processes
VAR processes represent multi-dimensional stochastic processes for which outcomes linearly
emerge from past values. Let XV be again a |V|-dimensional stationary stochastic process with
d components. Moreover, assume that XV possesses a VAR representation such that

XV(t)=
p∑

u=1

A(u)XV(t− u)+ εV(t), t ∈Z, (2.2)

where {A(u)}u=1,...,p is a sequence of real-valued |V| × |V|matrices and {εV(t), t ∈Z} is a Gaussian
white noise process consisting of |V| × 1 vectors. The covariance matrix of the noise process is
denoted by Σ = (σ 2

mn)m,n∈{1,...,d}.
For a VAR model of order p, the best linear predictor X̂V(t | t− 1) with respect to the past of all

other components is obtained by

X̂V(t | t− 1)=
p∑

u=1

A(u)XV(t− u). (2.3)

The variance of the error in the prediction of the ith component at time t is then given by

var[Xi(t)− X̂i(t | t− 1)]= var[εi(t)]= σ 2
ii . (2.4)

To test whether another component Xj, j �= i, has a Granger causal impact on the outcome of Xi(t),
compute the variance in the prediction error without the information of past values of Xj. Because
the process XV provides a VAR representation, the subprocess XV\{j}, i.e. the same process but
without the jth component, possesses such a representation as well [35], i.e.

XV\{j}(t)=
∞∑

u=1

B(u)XV\{j}(t− u)+ ηV\{j}(t), t ∈Z, (2.5)

where {B(u)}u=1,...,p is a sequence of real-valued (|V| − 1)× (|V| − 1) matrices, and {ηV\{j}(t),
t ∈Z} is a Gaussian white noise process. Moreover, the covariance matrix of the noise process is
recalculated and given by some Σ̃ = (σ̃ 2

mn)m,n∈{1,...,d}. Analogously, the variance of the prediction
error of the ith component is calculated. In the smaller model XV\{j}, the result is given by

var[Xi(t)− X̂i(t | t− 1)]= var[ηi(t)]= σ̃ 2
ii. (2.6)

Here, the equation consists of (|V| − 1)-dimensional vectors. Following the conceptual idea of
Granger causality, the comparison of σ 2

ii and σ̃ 2
ii is used to detect causal influence. Equality

indicates absence of linear Granger causal influence,

Xj � Xi |XV :⇔ σ 2
ii = σ̃ 2

ii. (2.7)

If all autoregressive coefficients Aij(u) are zero for every u ∈ {1, . . . , p}, then the ith entries in
all vectors of both Gaussian white noise processes are the same, and therefore, independent of
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whether the information of Xj is included or not. Thus, Granger causalities become apparent in
the autoregressive coefficients

Xj � Xi |XV ⇔ Aij(u)= 0, for all u ∈ {1, . . . , p}, for i �= j. (2.8)

(c) Renormalized partial directed coherence
The concept of detecting Granger non-causalities by zero autoregressive coefficients is also
realized as a statistical tool in the frequency domain called PDC [32,33] and its further
development as renormalized PDC (rPDC) [31]. Here, the rPDC is used to infer Granger causality
for time-series data, and the main notions for statistical inference are listed below.

Transition to the frequency domain is performed by Fourier transforming the autoregressive
coefficients, which are further split into real and imaginary parts component by component,

Asplit
ij (λ) :=

(
Re[Aij(λ)]
Im[Aij(λ)]

)
, where A(λ) :=1−

p∑
u=1

A(u) e−ıλu. (2.9)

Using the covariance matrix of the estimator Âsplit
ij (λ), i.e.

Vij(λ) :=
p∑

k,l=1

Hjj(k, l)Σii

(
cos(kλ) cos(lλ) cos(kλ) sin(lλ)
sin(kλ) cos(lλ) sin(kλ) sin(lλ)

)
, (2.10)

where H(k, l) denotes the inverse of the covariance matrix of the VAR process, Granger causality
in the frequency domain is inferred via estimating the rPDC value obtained by

rPDCij(λ)= (Âsplit
ij (λ))

t
(V̂ij)

−1(λ)Âsplit
ij (λ). (2.11)

Thus, estimation of the rPDC requires estimators for the matrices H, Σ and A(u). Through the
renormalization, a constant critical value is obtained, as shown in [31].

(d) Networks and graphs
A graph G is an abstract object that consists of two sets: a set of vertices V and a set of edges
E. In graphical modelling, graphs are used in combination with probability theory [37], and
inference of graphs in the context of time-series analysis was first introduced by Dahlhaus [38],
with further developments by Eichler [24]. In this study, single vertices correspond to single series
of time-series data, and edges reflect Granger causalities. In terms of the stochastic process XV ,
the corresponding graph then contains vertices 1, . . . , d referring to the components X1, . . . , Xd,
and a directed edge from Xa to Xb, i.e. a→ b, if Xa→Xb |XV . The frequency domain tool of
renormalized PDC is used to determine directed edges between pairs of vertices in the graph.

3. Effects of latent confounders
In this section, effects of unobserved components in the connectivity analysis of direct directed
interaction are illustrated. The influence of latent confounders is first demonstrated in a linear
stochastic system, then in a nonlinear system.

(a) Analysis of a linear stochastic system
To demonstrate the spurious detection of additional edges, we investigate the following four-
dimensional VAR process, as suggested in [2],

X1(t)= αX4(t− 2)+ ε1(t), X3(t)= ε3(t),
X2(t)= βX4(t− 1)+ γ X3(t− 1)+ ε2(t) and X4(t)= ε4(t).

}
(3.1)
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Figure 1. (a) The results of the rPDC estimation based on simulated data of the four-dimensional VAR process of order 2 given
by equation (3.1). Each subfigure contains the result of an individual rPDC estimation, such that the results from the component
corresponding to the column number to the component corresponding to the row number is shown. (b) The results of the rPDC
estimation when the time-series data of the fourth component is disregarded. (Online version in colour.)

1
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4(a) (b)

1

2
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Figure 2. The associatedGranger causality graph of the four-dimensional VAR is depicted in (a), and the associated graphwhen
the fourth component is disregarded is shown in (b).

Data that comprise the autoregressive structure above with fixed values of α= 0.5, β = 0.8 and
γ = 0.4 were generated. A VAR process was fitted to 100 000 simulated data points using the
maximum-likelihood method.

Results of the rPDC analysis are shown in figure 1, where dashed lines indicate significant
levels. Using the rPDC estimation, values that are significantly non-zero entail edges in the
associated graph (figure 2). Significant directed influences are present from the fourth to both
the first and the second component, as well as from the third to the second component. The
simulation and subsequent estimation of the connectivity structure confirmed the generated
interdependencies.

Owing to incomplete data acquisition or owing to preprocessing of the data, important
components of a system could be disregarded. Consider a subsystem in which one of the
four components was left out. In this case, some influences on the system are unobserved,
and the considered subsystem is affected by latent sources. To study such an exclusion of an
important component, the fourth component of the introduced system is now disregarded in the
data analysis.

The estimation of renormalized PDCs performed for the three time series is depicted in
figure 1b. Significantly, non-zero values are evident from the third to the second and from the
second to the first component, as well as from the third to the first component. This results in
figure 2b.

The indirect interrelation between component X1 and X2, which is mediated by component X4,
becomes a direct relation from component X2 to component X1. Additionally, another directed
edge is contained in the graph owing to the latent influence of the fourth component. Through
the direct linkage from X2 to X1, together with the preceding direct influence of X3 to X2, a
new directed edge originates that shows a direct impact of component X3 on component X1.
This shows that not only trivial but also unforeseen connectivities arise in analyses impacted by
latent sources.
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Figure 3. (a) The results of the rPDC analysis of the nonlinear system consisting of four coupled Roessler systems. Direct
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two, are detected. (b) The results, when the fourth Roessler component is unobserved. Directed connections from component
three to components one and two are detected, as well as a direct connection from component two to component one. (Online
version in colour.)

(b) Analysis of a nonlinear system
Although the derivation of directed graphs using renormalized PDC constitutes a multivariate
analysis tool that relies on linear methods, it may be applied in the nonlinear context as well. For
various systems, investigations revealed that linear methods are also applicable in the nonlinear
case, but without concluding in a universal concept. For Roessler systems and related ones, see
[39,40]. The following analysis of the effect of latent confounders in the context of a Roessler
system underpins the crucial impact of unobserved components in this nonlinear context.

In order to establish an equivalent starting point as in the linear case, a network of four coupled
Roessler systems is used with the same interaction structure as in the linear example in §3a. Data
of the complex system are generated according to the following equations:

ẋk =−(ωkyk + zk)+ αk1(x1 − xk)+ · · · + αk4(x4 − xk)+ εk,

ẏk =ωkxk + ayk

and żk = b+ zk(xk − c),

⎫⎪⎪⎬
⎪⎪⎭ (3.2)

for k= 1, . . . , 4. The parameters are ω1 = 1.03, ω2 = 0.97, ω3 = 1.09, ω4 = 0.91, a= 0.15, b= 0.2,
c= 10, α14 = 0.4, α23 = 0.5, α24 = 0.5 and αkl = 0 otherwise. The results of the rPDC analysis are
depicted in figure 3. As in the linear case, rPDC analysis is performed and repeated, disregarding
the data generated from the fourth component. This leads to the results shown in figure 3b.

The rPDC analysis of the nonlinear system also reveals the impact of latent confounders
leading to falsely derived edges. The shown numerical evidence suggests that the investigation
in the linear context may be further transferred to nonlinear cases.

4. Three types of influence paths
Renormalized PDC is a multivariate analysis tool, i.e. all other components are taken into account
in the analysis of the interrelation between a pair of components. In bivariate analyses, pairs of
components are investigated without considering other components. For three components, the
bivariate analysis coincides with an analysis of a two-dimensional subsystem with one latent
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directed influence from component two to components one and three is confirmed by the analysis in (a). The bivariate analysis
of component one and three is depicted in (b). (Online version in colour.)

confounder. For a stationary stochastic process with three components X1, X2 and X3, consider
the following three basic types of paths between X1 and X3:

type 1 : X1←X2→X3, type 2 : X1→X2←X3 and type 3 : X1→X2→X3.

To better understand the impact of latent confounders, the three basic types of paths of directed
influences within a set of three components, i.e. fork, inverted fork and chain, are studied in the
introduced linear and nonlinear systems. Effects in basic paths further provide insights for more
complicated structures, which can be expressed as combinations of basic paths.

(a) Type 1 (fork)
For the directed path of type 1, time-series data were generated according to the autoregressive
representation

X1(t)= αX2(t− 2)+ ε1(t), X2(t)= ε2(t) and X3(t)= αX2(t− 1)+ ε3(t),

where α= 0.5 was chosen. Note that the time lags differ such that the influences of component X2
on both other components are not the same.

The same structure is realized in a coupled Roessler system based on the equations of §3b
(equations (3.2)), but for k= 1, . . . , 3, and with parameters ω1 = 1.01, ω2 = 1.03, ω3 = 0.99, a= 0.15,
b= 0.2, c= 10, α12 = 0.1, α32 = 0.15 and αkl = 0 otherwise. Performance of the rPDC estimation for
both systems yields the connectivity structure as expected (figures 4a and 5a), and the resulting
graphs contain two directed edges: a directed edge from component X2 to X1 and another directed
edge from component X2 to X3 (figure 6a).

Next, alterations of interrelations between pairs of components are studied, when the
intermediate component is unobserved. Therefore, the rPDC estimation is repeated three times
and each time, one of the time-series data is left out. If directly linked pairs are considered,
the expected result should comprise a direct linkage as well. More interesting is the case of
disregarding component X2. In this case, X2 constitutes a latent confounder that influences
both components under investigation. Every single bivariate analysis yields one graph with two
vertices. For better comparison, the three graphs of the three analyses are combined into one
graph, where the same vertices are identified. Because the results depict bivariate considerations,
the combined graphs are referred to as bivariate graphs as in [2], and dashed directed edges
are used.

In figures 4b and 5b, results of the bivariate rPDC analysis for components one and three are
displayed for each system, respectively. As the rPDC analysis shows, a direct influence is found
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Figure 5. The multivariate rPDC analysis of the data generated by the coupled Roessler system for the directed path of type 1.
In (a), the analysis of all three components is displayed and in (b), the bivariate analysis of component one and three is shown.
(Online version in colour.)

1
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Figure 6. The graph associated with the multivariate analysis of influence type 1 is shown in (a). In (b), the corresponding
bivariate graph is depicted.

from component X2 to components X1 and X3, as well as a direct influence from component
X3 to component X1. This results in the bivariate graph shown in figure 6b. The bivariate graph
contains an additional directed edge between the first and third components. Thus, if the second
component would have been unobserved, a direct influence from the third to the first component
would have been perceived.

(b) Type 2 (inverted fork)
The same procedure is performed for type 2. In the linear case, time-series data were generated
according to the VAR process

X1(t)= ε1(t), X2(t)= αX1(t− 1)+ βX3(t− 2)+ ε2(t) and X3(t)= ε3(t),

with values α = 0.5 and β = 0.8. In the nonlinear case, the coupled Roessler system (equation (3.2))
was realized for k= 1, . . . , 3, ω1 = 1.01, ω2 = 1.03, ω3 = 0.99, a= 0.15, b= 0.2, c= 10, α21 = 0.1, α23 =
0.1 and αkl = 0 otherwise.

As in §4a, rPDC analyses for the complete sets of time-series data result in graphs containing
edges according to the desired directed influences. Then, rPDC analysis is performed for all pairs
of components separately, in order to derive bivariate graphs.

Results for the nonlinear system are displayed in figure 7. Figure 8 depicts the multivariate
and bivariate graphs for the influence path of type 2 obtained by both systems. In pathways of
type 2, both graphs are the same, which implies that no additional structure arises, if component
two is unobserved.

(c) Type 3 (chain)
The last type of influence path is studied via generated data from the autoregressive model

X1(t)= ε1(t), X2(t)= βX1(t− 1)+ ε2(t) and X3(t)= αX2(t− 2)+ ε3(t),
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Figure 9. The graph of the multivariate analysis in (a) versus the bivariate graph in (b), in the case of type 3.

where α= 0.5 and β = 0.8, and the coupled Roessler system obtained as in equation (3.2), for
k= 1, . . . , 3, ω1 = 1.01, ω2 = 0.99, ω3 = 0.97, a= 0.15, b= 0.2, c= 10, α21 = 0.15, α32 = 0.1 and αkl = 0
otherwise. Moreover, the analysis was additionally performed in the nonlinear case for the same
parameters, but α12 = 0.1 and α21 = 0.1, in order to also study a system with a reciprocal directed
connection.

Again, rPDC analysis, performed for all three time-series datasets, yields a graph that
contains the influence path as intended. Moreover, the executed bivariate subanalyses for all
pairs of components result in the combined bivariate graph. Figure 9 contains both graphs,
i.e. from multivariate and bivariate considerations, in the case of type 3. The additional reciprocal
connection resulted in an additional edge from vertex 2 to vertex 1, as can be seen from the results
of the analysis in figure 10. Here, the bivariate graph again contains an additional edge between
components one and three. This edge is due to the unobserved intermediate components, i.e. the
second component. In such influence pathways, a spurious direct edge would have been derived.

In summary, the pairwise investigation revealed that in the case of type 1 (fork) and type 3
(chain), bivariate graphs differ from the graphs derived in multivariate analysis. Both bivariate
graphs contain an additional edge between the first and the third component. In the case of type 1,
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Figure 11. The associated graph of the initial four-dimensional VAR in (a), together with its corresponding bivariate graph in
(b). Associatedmultivariate and bivariate graphs for the subsystem of three components, where component four is disregarded
are shown in (c) and (d).

the direction of the additional edge is determined by the difference of time lags of the unobserved
component’s influence. In influence type 2, no additional edge occurs. In all three cases, the graph
of multivariate considerations is a subgraph of the bivariate graph.

5. Multiple renormalized partial directed coherence analysis
The edges in bivariate graphs reflect connections derived under the premise that all other
components were unobserved. This procedure is now applied for the initially studied system
given by equation (3.1) and further for its subsystem affected by one latent confounder. According
to the results from §4c, latent confounders in paths of type 1 (fork) and 3 (chain) led to additional
direct connections.

The associated graph in the multivariate analysis and the derived bivariate graph of the four-
dimensional VAR process given by equation (3.1) are depicted next to each other in figure 11a,b.
In addition, for the three-dimensional subsystem, where the fourth component is unobserved,
a bivariate graph is derived. The resulting graphs are shown in figure 11a,b. It is striking that
in the analysis of the not fully observed system, the multivariate graph is not a subgraph of
the bivariate graph. There is no dashed directed edge between vertex 3 and vertex 1 because
in the original graph, both vertices are neither connected via a fork nor chain. In this way,
the combination of multivariate considerations, together with an additional bivariate analysis,
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can support the substantiation of influence assertions. However, to obtain overall assertions, all
possible subsystems have to be analysed.

6. Consequences for applications
As demonstrated in the previous sections, missing important components of a network in the
analysis might eventually result in spurious interactions. Missing important components are
certainly one of the problems most often faced. In studies based on EEG recordings [41], the
typical scenario is to have either scalp electrodes or invasive electrodes covering certain brain
regions. It is impossible to have electrodes in all potentially interesting brain regions in human
studies [42]. In animal studies, this might be possible, although owing to restrictions in the
recording equipment and lack of detailed knowledge of potentially interesting brain regions, it
is not even expected in animal studies to have a full coverage of these regions. Similar challenges
arise in some imaging studies such as NIRS studies [43], in which only a very restricted region of
the brain can be observed.

fMRI [23] or MEG [44] studies present an important alternative to standard EEG or NIRS
approaches, as these recording entities promise a full coverage of the brain. Still, in these cases,
aggregation over spatial information and over time leads to an identification of components that
allow latent influences to disturb deriving overall causalities.

Very often, another factor potentially leads to latent variables. Owing to recording capabilities
with several hundreds of channels in the measurement space that potentially observe a similar
amount of sources of activity, a reduction in the dimensionality is a necessary first step in the
analysis. Without such a reduction, most multivariate analysis techniques are simply not feasible
owing to numerical complexity or problems with numerical stability. For instance, most methods
for directional connectivity are based on fitting of unconstrained VAR models, which becomes
infeasible for large dimensions owing to the very large number of parameters.

In Granger causality analyses, the effect of potentially important third but latent processes
is often ignored. Only in a very few studies, is it clearly mentioned that the Granger causality
network obtained is restricted to the observations made, as originally emphasized by Granger
[19]. Causal inference has only recently become a topic of interest. Causal inference refers to
the investigation of the true underlying network structure based on limited observations. As
demonstrated in the previous sections, in some cases, this is indeed possible using subnetwork
analysis. In future applications of Granger causality analysis, the potential role of latent
variables should be thoroughly addressed and, potentially, the advanced information contained
in subnetwork analysis should be explored.

7. Discussion
Stochastic processes as they occur in natural procedures are often very complex, and
measurements mostly cover only parts of the complex process. Moreover, owing to the complexity
of acquired data, it is necessary to select a subset of components for application of multivariate
analysis techniques. However, selection of components for a causality analysis is a preprocessing
step that includes predetermined exclusion of information, which generates latent confounders.

In the context of partial coherence [31], falsely detected influence between two components,
caused by a third component, occurs if both exhibit a connection to a common third component.
This effect is referred to as marrying parents of a joint child [1,45]. In theoretical causality
considerations, a similar effect is known under the term spurious causality of type one, which
indicates causalities that appear in the full system and disappear in smaller subsystems as
discussed by [46]. In the context of Granger causality graphs, the knowledge of the effects of
one latent component in simple networks consisting of three components can potentially be used
to predict the impact of latent confounders in larger networks. Directed influences of components
that are missing in the analysis is sort of dispersed to the remaining observed components,
and the alterations induced by a latent confounder further affect relations between components
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that are not directly linked to the latent confounder. If additional background knowledge about
the underlying process supports the investigation, then such assertions could be decisive in the
determination of connectivity structures.

In the case of marrying parents of a joint child, bivariate analysis, i.e. coherence instead of
partial coherence, could sometimes be used to investigate such false connections. In the context
of Granger causality, bivariate graphs contain edges that are derived with regard to all pairs
of time series. If both types of graphs are derived, edges that are contained in both graphs are
confirmed with respect to all other components and when dealing just with the two components.
These edges ought to depict confirmed directed influences. Edges that are contained only in
the bivariate graph, but not in the multivariate graph, indicate derived edges on account of the
lack of distinction between direct influences. Direct influence means one component affects the
other component directly, and indirect influences are present if one component affects the other
component via a path of direct influences. However, if edges appear only in the multivariate
graph, but not in the bivariate graph, the analysis may be influenced by latent confounders. In
the rather unlikely case that two influence paths occur between two components, such that both
paths completely neutralize each other, the bivariate graph may drop an edge that is contained in
the multivariate graph. Nevertheless, such neutralizing doubled paths in complex systems that
arise in nature are doubtful.

8. Conclusion
In this article, the impact of latent confounders was demonstrated, and the problem of
arbitrariness in choosing and aggregating components for the investigation addressed. The
occurrence of additional spurious edges, owing to unobserved influences of latent confounders,
was simulated in the linear and nonlinear case. In order to classify the impact of latent
confounders, influence pathways among three components were considered in simulations.
Pairwise considerations of paths with three components revealed that additional directed edges
occur following influence paths of type 1 (fork) and type 3 (chain). In influence paths of type 2
(inverted fork), no additional edge occurs. The combination of multivariate and bivariate analysis,
in addition to further subanalyses, in dealing with latent confounders was suggested to give
evidence for unobserved components that affected the network under consideration. All analyses
were performed using rPDC estimation as a measure of Granger causality in the frequency
domain; the problem of latent confounding, however, is not bound to the chosen measure but
appears generally.

Granger causality is applicable in neuroscience, but with potential problems due to latent
confounding, as we demonstrate in our work. Therefore, latent confounders require further
research and experimental validation in order to be able to deal with the effects within the
analysis. Most important is, however, to be aware of the effects that unobserved or excluded
components have within the analysis.
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