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Data-driven optimal filtering for phase and frequency of noisy oscillations:
Application to vortex flow metering

A. G. Rossberg,* K. Bartholomé, and J. Timmer
Zentrum fu¨r Datenanalyse und Modellbildung, Universita¨t Freiburg, Eckerstrasse 1, 79104 Freiburg, Germany

~Received 21 May 2003; published 30 January 2004!

A method for measuring the phase of oscillations from noisy time series is proposed. To obtain the phase, the
signal is filtered in such a way that the filter output has minimal relative variation in the amplitude over all
filters with complex-valued impulse response. The argument of the filter output yields the phase. Implemen-
tation of the algorithm and interpretation of the result are discussed. We argue that the phase obtained by the
proposed method has a low susceptibility to measurement noise and a low rate of artificial phase slips. The
method is applied for the detection and classification of mode locking in vortex flow meters. A measure for the
strength of mode locking is proposed.

DOI: 10.1103/PhysRevE.69.016216 PACS number~s!: 05.45.Tp, 06.30.Ft, 05.45.Xt
ak
E

fs

th

et
r

al
to

ng

at
ni
e

pi
re
ra
e
is
r
e
th
s
i

ia

of
oor.
fi-
es.
tinc-

tra-
ed
riza-

ure

e

-
2

state

ies
ro
rty.
e

he
-
a

ter-
sly
me
y in

In
-

to

ise.
cal-
ible,

ure
nalp:/
I. INTRODUCTION

Several modern methods for time series analysis m
explicit use of the phase of measured oscillatory signals.
amples are tests for unidirectional@1# or mutual@2# synchro-
nization of chaotic oscillators, based on accurate or noisy@3#
data, identification of the coupling direction@4,5#, or indica-
tors @6# for generalized synchronization@7#. Phase analysis
has successfully been applied in neurology@8–10#, cardiol-
ogy @3,5,11,12#, ecology@13#, and astronomy@14# and laser
physics@15# ~for recent, comprehensive reviews, see Re
@16,17#!.

A number of ways have been proposed to measure
phase from univariate signals. Among these are~a! phase
determination from the argument of the analytic signal@18#,
from the convolution of the signal with a Morlet wavel
@15,19#, or after complex demodulation or quadrature filte
ing @20#, ~b! the angle of circulation of a two-dimension
~2D! projection of the reconstructed phase-space trajec
@17# or its time derivative@21# around a point; and~c! linear
interpolation@1# of phase between distinct events marki
the beginning new cycles@17#.

In principle, the problem of choosing the most appropri
method to obtain the phase has two aspects: First, defi
phase for the oscillator under investigation and, second,
timating this phase from an univariate signal which is ty
cally biased by noise. While for autonomous, noise-f
limit-cycle oscillators the definition of phase has a natu
and rigorous foundation, there is no obvious unique gen
alization of this concept to oscillators deviating from th
ideal, e.g., due to internal noise or chaotic dynamics. P
sumably, those measures of phase are to be given prefer
which lead to the most distinctive characterizations of
observed systems@22#. Of course, with increasing deviation
from the ideal of a periodic oscillator, there are less merits
using the concept of phase.

When the phase is to be estimated from an univar

*Electronic address: rossberg@uni-freiburg.de; URL: htt
www.fdm.uni-freiburg.de
1063-651X/2004/69~1!/016216~11!/$22.50 69 0162
e
x-

.

e

-

ry

e
ng
s-

-
e
l
r-

e-
nce
e

n

te

signal, knowledge about the oscillator and the contribution
the oscillator and other processes to the signal is often p
Thus, systematically deriving estimators for particular de
nitions of phase is possible only in a few exceptional cas
Instead, the measure of phase is again chosen by the dis
tiveness of the resulting characterization@9,15,23#. Thereby
it is generally assumed correctly that, if the phase-space
jectory of the oscillator was directly accessible, an improv
measure of phase that leads to more distinctive characte
tions could be obtained.

Although some rules for selecting a method to meas
phase for a given signal have been proposed@17#, the choice
is not always obvious. The wish list for properties of th
phasef(t) includes a constant advance of 2p per cycle, a

steady accumulation@ḟ(t)'const#, accuracy in the pres
ence of measurement noise, unambiguity with respect top
phase slips, and a functional dependence on the current
of the oscillator~locality!. Autonomy of the oscillator com-
bined with steady accumulation and locality of phase impl
that f(t) is the variable that corresponds to the ze
Lyapunov exponent of the system—another desired prope

But only for perfectly periodic signals can all thes
wishes be fulfilled. For deterministic, chaotic oscillators t
linear-interpolation method~c! does often lead to a satisfac
tory steady and local phase. The problem of defining
steady, local phase when the internal dynamics of a de
ministic, chaotic oscillator are known was treated rigorou
in Ref. @24#. But as internal and measurement noise beco
stronger, some temporal averaging is required and localit
time has to be traded for accuracy and/or unambiguity.
Refs. @3,5,8,11–14# the condition of unambiguity was re
laxed and only the cyclic phases@f(t)mod2p# of noisy os-
cillations were used. Thus data analysis was insensitive
phase slips, i.e., sudden advances of the phase by62p,
which may or may not be artifacts of measurement no
Here we choose to be less demanding with respect to lo
ity, in favor of a steady, accurate and, as much as poss
unambiguous phase.

In order to identify a corresponding method to meas
the phase, notice that the computation of the analytic sig
~or complex demodulation! @method~a!# is generally recom-

/
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ROSSBERG, BARTHOLOME´ , AND TIMMER PHYSICAL REVIEW E 69, 016216 ~2004!
mended to be combined with linear bandpass filtering of
desired oscillatory component@20,25#. The overall effect is
the application of a complex-valued, linear bandpass fi
@15#. When the method of delays is used for the phase-sp
reconstruction of the angle-of-circulation method~b!, the 2D
projection is also equivalent to complex-valued linear filt
ing @26#, likewise the calculation of time derivatives.

Finally, in the vicinity of a Hopf bifurcation, where dy
namics can be brought into Hopf normal form by a nonline
coordinate transformation~see, e.g., Ref.@27#!, this transfor-
mation is done in such a way that all contributions to dyna
ics which are ‘‘nonresonant’’ with the oscillation at the fu
damental frequency are eliminated. In merekinetic terms this
simply amounts to eliminating higher harmonics and offse
which can be achieved by complex, linear bandpass filter
The SU(2) symmetry of the Hopf normal form guarante
the steady accumulation of phase in the steady state, w
phase is measured as the angle of rotation around the or

Thus, a unified view on~a! and ~b! is complex, linear
bandpass filtering. It achieves steady accumulation in a n
ral way when the fundamental mode is isolated. The res
regarding accuracy and unambiguity depend on the choic
the filter. Since the concept of phase originates from lim
cycle oscillations, which, in the transformed coordinat
correspond to a motion on a circle, our idea for choosing
filter here is to make the filtered signal move as close
possible to a circle in the complex plane. Roughly speak
we consider the motion on the circle as the signal and
deviations as noise and maximize the signal to noise r
~SNR!—even though not all deviations are actually due
measurement noise. Since, with such a filter, noise-indu
excursions of the trajectory to the origin of the compl
plane are minimized, this is also a good way to reduce a
biguities in the phase. The maximization of the SNR is do
not only with respect to width and center frequency of t
filter, but with respect to the complete dynamics of its im
pulse response. The determination of the filter is nonpa
metric and data driven.

We proceed as follows. Section II contains a mathemat
formulation of the ideas outlined above and lists some im
cations. In Sec. III the method is applied to simulated da
with special attention to the effect of filtering on measur
frequencies. A practical application to vortex flow meters
discussed in Sec. IV, where we also introduce a measure
the strength of mode locking.

II. THEORY

A. MIRVA filters

1. Definition

Let x(t) be a real- or complex-valued stationary sign
with oscillatory components. Denote byz(t) the signal ob-
tained fromx(t) by linear filtering with a complex-valued
filter with impulse responsef (t), i.e., z5 f * x where ‘‘*’’
indicates convolution. Defineq as the non-negative numbe
such that
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q25
varuzu2

^uzu2&2
5

^uzu4&

^uzu2&2
21, ~1!

where^•& denotes the expectation value.
Now, search for a filterf such that the quantityq given by

Eq. ~1! has a local minimum with respect to the filter. Such
filter f minimizes the relative variance of the amplitud
~MIRVA ! for the given signalx(t). The practical computa-
tion of MIRVA filters is addressed in Appendix A.

For every MIRVA filter f, there is a two-parameter famil
of MIRVA filters f s,c(t)5c f(t2s) with real s and complex
c. Below we shall always have a single member stand for
whole family without saying.

2. Example

As an example, assume thatx(t) is composed of a
constant-amplitude oscillation with phase fluctuations a
white measurement noise,

x~ t !5cos@v0 t1f0~ t !#1h~ t !, ~2!

where

^ḟ0~ t !ḟ0~ t8!&52Dd~ t2t8!, ^h~ t !h~ t8!&52Gd~ t2t8!.
~3!

This signal mimics narrow-banded limit-cycle and chao
oscillations in the vicinity of the fundamental frequency. T
larger the noise strengthG, the more difficult the determina
tion of the phasef0(t) from x(t) becomes. We simulatex(t)
with D51, G50.01, andv0520 over an interval of length
T5256. Without any filtering, the SNR is zero. Figure 1~a!
shows the demodulated signalsZ(t)5z(t)exp(2iv0 t) for
three different complex filtersf (t). The first two filters are of
the form

FIG. 1. Three different filters applied to the same time series~2!.
~a! The demodulated, filtered signalsZ(t)5z(t)exp(2iv0 t). ~b!
The phasef0(t)2v0 t of the original signal and the relative phas
f(t)2f0(t) obtained using the three filters. See text for details
6-2
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f ~ t !;exp@ iv0 t2 1
2 ~Dv t !2#. ~4!

One is a comparatively wide~Dv58.0! bandpass, the othe
one is rather narrow~Dv51.0!. The third is the MIRVA filter
obtained by minimizing Eq.~1!. It is approximated by Eq
~4! with Dv52.9. As is shown in Fig. 1~b!, both the narrow
and the wide filter lead to artificial phase slips. Only wh
using the MIRVA filter isf0(t) faithfully tracked.
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3. Remarks on the minimization of q

Let qmin denote the value ofq attained at a local mini-
mum. Since the operation of linear filtering defines a se
group, qmin is also a local minimum ofq with respect to
further filtering ofz(t), i.e., for q calculated withz replaced
by z8ªg* z. The minimum is attained when the filterg is the
unit element of the semigroup, the Diracd function. As a
result one has
05
1

2

dq2

dg~t!
U

g[d

5
^uz~ t !u2z̄~ t !z~ t2t!&^uz~ t !u2&2^uz~ t !u4&^z̄~ t !z~ t2t!&

^uz~ t !u2&3
~5!
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for all t. In particular, when differentiating with respect tot
at t50 and taking the imaginary part, it follows that

^uzu4v i&

^uzu4&
5

^uzu2v i&

^uzu2&
5vmean, ~6!

wherev i is the instantaneous frequency defined by

v iªImH ż

zJ ~7!

andvmeanis known as themean frequency, defined either by
the last equation of Eq.~6! or, equivalently, as the ‘‘center o
mass’’ of the power spectrum of the signalz. For the relation
of the mean frequency to thephase frequency~or average
frequency! vphª^v i& see Sec. III.

Often, signals contain oscillations at several different f
quencies. A systematic method to extract various oscilla
frequencies has been proposed in Ref.@28#. When using the
concept of MIRVA filtering, distinct local minima ofq can be
identified with distinct oscillatory components of the sign

4. Special cases

In two special cases the problem of finding MIRVA filte
can be discussed analytically. For perfectly periodic or q
siperiodic signals there is, for every Fourier mode excited
the signal, a MIRVA filter that extracts exactly this mod
The filtered signal is of the formz(t)5exp(ivt) and qmin
50. This holds true also if the signal is overlaid by any ki
of noise.

For Gaussian, linear processes it is always possible to
filters such that̂ z2&50 and^uzu2&Þ0, e.g., by letting only
Fourier modes with positive frequency pass. Then^uzu4&
52^uzu2&2, q5qmin51, and all these filters are MIRVA fil-
ters.

The processes we are interested in here are typically
cated between these two poles: noisy, nonlinear, perio
processes with some fluctuations in the phase. Thus we
pect 0,qmin,1. When solving the optimization problem
q25min numerically with time series of finite lengthT ~see
Appendix A!, local minima with qmin.1 have also been
-
n

.

-
y

d

o-
ic
x-

found. It is not clear whether these persist in the lim
T→`.

B. The phase of MIRVA filtered signals

1. Definition and error estimates

The main purpose of MIRVA filtering is to obtain th
phase

f~ t !5E t

v i~ t8!dt8[argz ~mod 2p! ~8!

of the oscillations extracted by the filter.
In order to analyze the effect that the contribution

measurement noiseh(t) to z(t) has on the measure
phase f(t), denote by z0(t)ªz(t)2h(t) the noise-free
component ofz(t), and the phase that would have be
measured in the absence of measurement noise byf0(t)
ª* t Im$ż0(t8)/z0(t8)%dt8. Two kinds of errors inf(t)
caused by measurement noise can be distinguished: d
tions by multiples of 2p, i.e., phase slips, which are due
noise-induced excursions ofz(t) around the origin and accu
mulate as time proceeds, and errors in the cyclic ph
@f(t)2f0(t)1p#mod2p2p, which have a finite correla-
tion time. The distinction is particularly sharp whenqmin is
small enough, so that the probability density for values
z(t) near zero is small, or, as we shall consider now, wheq
is small for general filtersf.

An order-of-magnitude estimate for an upper bound to
rate of noise-induced phase slips is given by

pF uzu2

^uzu2&
50GDv, ~9!

where the first term denotes the probability density
uzu2/^uzu2& at zero and the second term denotes the spec
width of the filter. The first term typically decays expone
tially fast asq2 decreases, while the relation betweenq2 and
Dv is only algebraic in general. Hence, minimizingq2 is a
good strategy to minimize phase slips.
6-3
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For the noise-induced error in the cyclic phase, an ex
upper bound can be obtained in the limit thatq2 is small. For
simplicity, assume that the noise has undergone suffic
temporal averaging by the filterf, so that the central limit
theorem applies andh(t) is Gaussian. Sincef is a complex
bandpass filter,̂h2&50. In order to derive an upper boun
for ^uhu2& from q2, we assume the worst case, that is,
variation inuzu2 is due toh only, while uz0u2[const51 with-
out loss of generality. For limit-cycle oscillators the resulti
upper bound is attained. In the general case, including c
otic oscillators, a conservative estimate of the noise inten
is obtained.

Sinceh is independent ofz0, Eq. ~1! can then be written
as

q25
114^uhu2&12^uhu2&2

112^uhu2&1^uhu2&2
21. ~10!

Solving for ^uhu2& yields

^uhu2&5~12q2!21/2215
q2

2
1O~q4!. ~11!

The corresponding noise-induced variance inf is

varf5var@arg~z01h!2arg~z0!#

5varFargS 11
h

z0
D G

5varF ImH h

z0
J G1O~^uhu2&2!

5
^uh~ t !u2&

2
1O~^uhu2&2!. ~12!

In the general case, whenuz0u is not constant, we get, from
combining Eqs.~11! and ~12!,

varf<
q2

4
1O~q4!. ~13!

Thus, minimizingq2 is a good strategy to minimize noise
induced errors in the measured cyclic phases.

2. Phase diffusion

Over long time intervals,f(t) typically performs a ran-
dom walk with drift. Thus, an important characteristic of t
phase is its diffusion coefficient

Dª lim
T→`

^f~ t1T!2f~ t !2vphT&
2T

. ~14!

The estimation ofD from finite-length samples off(t) is
discussed in Appendix B.

C. Invariance with respect to filtering of x„t…

The MIRVA filtered signalz(t) and the phase and fre
quency derived thereof are invariant with respect to lin
01621
ct
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filtering of the original signalx(t) in the following sense. Let
y(t) be a signal obtained fromx(t) by linear filtering, i.e.,
y5h* x, and letf be a MIRVA filter for x. Then, a MIRVA
filter for y is, at least formally, given byf 85 f * h21, where
h21 is the inverse ofh defined byh21* h5d. So the filtered
signal z5 f * x5 f 8* y which satisfies the minimization con
dition ~5! is identical forx andy. For example, MIRVA fil-
tering can be used to obtain the phase and frequency o
oscillatory signal which has been ‘‘bleached’’@29#, i.e., fil-
tered such as to make its power spectrum white~see Ref.
@30#!.

The concept of MIRVA filtering carries straightforwardl
over to a discrete-time representation of signalsxi , zi and
filters f k , sampled at time intervals of lengthDt. In Ref.@30#
the notion of atopological frequencyof a time-discrete sig-
nal xi is defined. Roughly speaking, this is the rate of tra
sitions of the trajectory of the signal in a sufficiently hig
dimensional delay space through a particular kind
Poincare´ section called acounter. For the topological fre-
quency, the invariance with respect to linear filtering h
been proven rigorously@30#. When the modulus of the signa
zi obtained by MIRVA filtering a signalxi and its linear
interpolation have a nontrivial lower bound, i.e.,u l zi1(1
2 l ) zi 11u.d.0 for 0< l<1, and when the impulse re
sponsef k of the MIRVA filter decays sufficiently fast for
largek, thenvph obtained fromzi and its linear interpolation
is ~up to the sign! identical to a topological frequency of th
oscillations of the signalxi . A corresponding counter can b
obtained as follows. Assume that all significant contributio
to f k are within a range ofM consecutive delay times. The
the filter operationf * x can be interpreted as a projectio
from the M-dimensional delay space ofxi into the two-
dimensional complex plane. The counter is given by
points in delay space which are projected onto the real, n
negative half axis.

III. THE EFFECT OF MIRVA FILTERING
ON MEASURED FREQUENCIES

In order to illustrate the effects of MIRVA filtering on
measured frequencies, the method is applied to a nume
solution of the noisy Stuart-Landau equation~or Hopf nor-
mal form!

Ȧ5~e1 iv l !A2~gr1 i gi !uAu2A1z, ~15!

whereA5A(t) represents the complex amplitude of an o
cillator and z(t) is complex-valued, Gaussian, white noi
with correlations

^z~ t !z~ t8!&50 and ^z~ t !z̄~ t8!&54Gd~ t2t8!. ~16!

In a certain sense, this system universally describes n
oscillations in the vicinity of a Hopf bifurcation@31#. As-
sume the bifurcation to be supercritical (gr.0) and do a
linear change of coordinates to setgr5G51 and v l50
without loss of generality~even though, in practice,v l
@e). WhengiÞ0, the phase frequency,

vph,A52gi ~e12N 21! ~17!
6-4
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DATA-DRIVEN OPTIMAL FILTERING FOR PHASE AND . . . PHYSICAL REVIEW E69, 016216 ~2004!
~where Nªp1/2exp(e2/4)@11erf(e/2)#, see, e.g., Refs
@30,32#!, calculated fromv i ,A5Im$Ȧ/A% directly without
filtering, differs from the corresponding mean frequency

vmean,A52gi@2e211e24 ~2e1e2N!21#. ~18!

This is a direct consequence of the correlation betweenv i ,A
and uAu2 (^v i ,AuAu2&/^uAu2&Þ^v i ,A&).

As an example, a simulation ofA(t) of length T5106

with e52 andgi51 is generated using Euler steps of leng
2211. For these parameters,vph,A522.225, vmean,A
522.899, and the relative variance of the unfiltered am
tude is ^uAu4&/^uAu2&2215(2N 222eN24)/(eN12)2

50.303.
The MIRVA filter for the time seriesx(t)5A(t) is calcu-

lated by the indirect method described in Appendix A. T
filter reduces the relative variance of the amplitude toqmin

2

50.164. Figure 2 shows the characteristics of the MIR
filter in comparison with the power spectrum of the origin
signal A(t) and the filtered signalz(t). The locations of
phase and mean frequency before filtering and after filte
@vph,z522.245(2), vmean,z522.298(2)] arealso indicated.
The MIRVA filter is a rather wide~half width 2Dv'6.5!,
approximately symmetric bandpass filter with a center f
quencyvc'21.3 below the linear frequencyv l50. As a
result, the phase frequency of the filtered signal is a
shifted to lower frequencies, but the effectvph,z2vph,A
'20.025O(Dv21N 21vc) ~see Ref.@30#! is quite small.

On the other hand, there is a pronounced shift in the m
frequency by MIRVA filtering: the mean frequency a
proaches the phase frequency. This is a generic effec
MIRVA filtering. In the presence of a negative correlatio
between amplitude and instantaneous frequency, as foun
our example, a filter that amplifies the signal whenv i is high

FIG. 2. MIRVA filtering of the processA(t) given by Eqs.~15!
and~16! with v l50, gr5gi5G51, ande52. The lower graph is
a blowup of the upper graph. Both show the power spectral den
of A(t) ~solid!, of the filtered signalz(t) ~dotted!, and the charac-
teristics of the MIRVA filter~dash-dotted!. The vertical lines indi-
cate the locations of various frequencies associated with the
cess.
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and damps the signal whenv i is low reduces fluctuations in
the amplitude and, at the same time, reduces the correla
Since the phase frequency is only weakly affected by MIR
filtering, the mean frequency is shifted toward the phase
quency.

IV. APPLICATION TO VORTEX FLOW METERING

A. Background

Next, an application of MIRVA filters to vortex flow me
tering is discussed. Vortex flow meters are widely used in
industry to measure pipe flow. The measurement princ
makes use of the phenomenon of the von-Ka´rmán vortex
street. Behind a shedder bar inserted normal to the flow
pipe, a regular chain of vortices is formed, rotating altern
ingly left and right. The volume flow through the tube can
determined from the frequency of vortex formation. In t
device used here, a piezoelectric sensor sensitive to tran
sal flow, which is inserted downstream behind the shed
bar, is used to detect the vortices passing by. A comm
problem of vortex flow metering is mode locking of the vo
tex oscillations to pulsations in the flow. The second-ord
statistics~power spectra! of the sensor signal and the bias o
the flow measurement in the presence of mode locking h
been thoroughly investigated@33#. But it seem possible that
by processing the sensor signal with a stronger focus on
nonlinear dynamics of the system, a better control of mo
locking can be achieved.

Here we describe the analysis of time series recorde
an experiment designed to simulate the problem of detec
mode locking in an industrial context, using only the sen
signal. Methods that have been proposed to detect m
locking from univariate time series are the analysis of
map of subsequent period lengths of the oscillation~angle-
of-return-times-map! @34# and the application of the estab
lished bivariate methods on pairs of time series extrac
from the univariate series by filtering@35#. We go along the
lines of the second approach, making it more powerful
applying MIRVA filters to separate the signals.

The setup of the experiment is sketched in Fig. 3. Pu
tions of the pipe flow were generated by a rotating cylind
with three bores orthogonal to the cylinder axis, which
inserted into the pipe in such a way that, by the rotation,
flow is periodically blocked. This pulsator is driven by a
electric motor. The sensor signal of a commercial flow me
which was mounted about 40 pipe diameters downstre
from the pulsator, was recorded. Estimates of the pulsa
rate npuls and the frequency of vortex formationnvort were
available on-site, while recording the time series. Reyno
numbers wereO(105) and the flow was highly turbulent. As
a result, both inherent and measurement noise contrib
substantially to the signal. Details of the experimental se
will be reported elsewhere. Below, two experimental tim
series labeled as A and B are discussed. Both were reco
from the sensor of the vortex flow meter at 2 kHz over 250

B. Series A: hard lock-in

1. Determination of the phases

When recording series A, the flow rate was adjusted s
as to obtainnvort'110 Hz and the pulsation frequency wa

ty
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ROSSBERG, BARTHOLOME´ , AND TIMMER PHYSICAL REVIEW E 69, 016216 ~2004!
set tonpuls'
2
3 nvort . The time series was analyzed to det

mine the strength of the expected 2:3 lock-in. In Fig. 4
representative section of series A and the power spectrum
shown. The oscillations atnvort can clearly be seen. Since th
pulsations themselves do not produce any transversal fl
there is only a weak signal atnpuls, presumably due to sligh
asymmetries in the setup. By the nonlinear interaction
vortex street and pulsation, flow oscillations atn25nvort
2npuls are excited. These contain significant transver
components and can clearly be seen in the power spect
The power spectrum also reveals several other oscilla
components in the signal. Some of these are nonlinearly g
erated, others are of unknown origin.

The impulse response of the MIRVA filter for the 110 H
vortex oscillations (nvort) is shown in Fig. 5. It was calcu
lated by the indirect method described in Appendix A usin

FIG. 3. Schematic representation of the experimental setu
record the sensor signal of a vortex flow meter in pulsatile flow. T
shedder bar has a triangular cross section for efficient vortex
eration.

FIG. 4. A representative section~a! and the power spectral den
sity ~b! of time series A, which was recorded in the experime
sketched in Fig. 3.
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down-sampling factorh550, M530 sampling points, a de
modulation frequencyv0/2p5109.643 Hz, and a regular
ization bym510th order polynomials. The overall Gaussia
shape of the impulse response of the MIRVA filter c
clearly be seen. But the filter has additional structure. T
oscillation frequency of the response function decreases
time ~see the phase in Fig. 5!. The reason for this particula
phase dynamics is not clear by now. As can be seen from
trajectory of the demodulated filtered signalZi shown in Fig.
6 ~right!, the phase of the vortex oscillations is always w
defined.

From the construction of the pulsator it is clear that t
flow pulsations have a well defined phase. Each passage
bore along the pulsator inlet~or outlet! defines one pulse. Bu
the signal-to-noise ratio of the oscillations atnpuls is too low
to derive unequivocal phase information. As is shown in F
6 ~center!, the MIRVA filtered signal atnpuls repeatedly
reaches the origin of the complex plane.

In contrast, the phase of the oscillations atn2 is much
better defined~see Fig. 6, left!. Since the signal-to-noise rati
is smaller atn2 than atnvort , the MIRVA filter atn2 is about
eight times more narrow in Fourier space than the MIR
filter at nvort . Use of the MIRVA filter~or some approxima-
tion! is critical for measuring the phase atn2 . Here,
straightforward boxcar filtering of a region in Fourier spa
containing then2 peak~see, e.g., Ref.@35#! would be insuf-
ficient.

The phasef2 of the oscillations atn2 can be used to
determine the phasefpuls of the pulsator. By the physica

to
e
n-

t

FIG. 5. The impulse responsef (t) of the MIRVA filter calcu-
lated for series A at the frequencynvort . Solid, Re$ f (t)%; dashed,
phase of f (t), relative to an oscillation at constant frequen
v0/2p5109.64 Hz, i.e., arg@ f (t)exp(2iv0t)#. The overall offset in
time is an accidental choice of the search algorithm.

FIG. 6. The trajectories of demodulated, MIRVA filtered signa
Zi ~see section 2 of Appendix!, obtained from series A at the indi
cated frequencies. The corresponding values ofqmin are 0.41 (n2),
0.81 (npuls), and 0.13 (nvort).
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interpretation of the oscillation atn2 as a nonlinear excita
tion, one has the relation

f25fvort2fpuls ~19!

that yieldsfpuls for known f2 andfvort .

2. Relative phases and symmetry

From the 2:3 mode locking, one expects that the rela
phasef2,3, given by

fn,mªnfvort2mfpuls, ~20!

changes only little over time. For hard mode locking, it flu
tuates around a constant value. With both hard and soft lo
in, the cyclic relative phaseC2,3 defined by

Cn,mªfn,m mod 2p ~21!

has an uneven distribution. Generally, one expects the di
bution to be increasingly sharper localized to a single va
as mode locking becomes stronger. The synchronization
dex defined in Ref.@36# as

gn,m
2

ª^cosCn,m&21^sinCn,m&2 ~22!

with expectation values estimated by temporal averag
was therefore proposed as a measure for the strength of m
locking or, more general, phase locking. Absence of mo
locking is indicated bygn,m50, hard coupling bygn,m51.
In our experiment, we encounter the particular situation t
vortices and pulsation have opposite symmetries with res
to transversal reflection. Thus, dynamics is equivariant
ready with respect to a shift offvort by p, rather than 2p.
Ideally, one would therefore always expectg2,3

2 50, with or
without mode locking. In order to take this degeneracy in
account,g4,6

2 should be used instead ofg2,3
2 .

3. Interpretation of the measured phases

The evolution of the measured values forf2 andfvort ,
and of the relative phasef2,352 fvort23 fpuls53 f2

2fvort is shown in Fig. 7. Since the definition of MIRVA

FIG. 7. Phases, obtained from series A. Large upper panel
unwrapped phases 3f2(t)2v0t ~solid! and fvort(t)2v0t
~dashed!, wherev0/2p5109.654 Hz~nominal value!; f2,353f2

2fvort ~dotted!. Large lower panel: the cyclic relative phaseC2,3.
Small panels: empirical distributions ofC4,6 andC2,3.
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filters leaves the overall delay of the filtered signal undet
mined, the relative delay off2 andfvort has to be adjusted
in a reasonable way. We choose the delay such thatg2,3
becomes maximal (g2,3 turns out not to vanish, see below!.
From the evolution off2,3 it appears that the vortex oscilla
tions contain only a single phase slip at about 150 s into
time series. But upon closer inspection, it appears more p
sible to account the phase slip to an error in measuringf2 .
As expected for this case, the difference inf2,3 before and
after the slip is to a good accuracy 6p. For slips infvort , any
other multiple ofp would have been possible as well. Fu
thermore, the slip occurs just at the moment when the
modulated MIRVA signal atn2 ~Fig. 6, left! goes through
the small loop reaching toward the coordinate center. It
pears that the MIRVA filter is too narrow for the compar
tively low pulsation frequency at this moment. In fact, th
phase slip disappears when wider filters are used—at
price of obtaining new artificial phase slips at other times.
conclusion, the data indicate that there is not a single
phase slip. Lock-in is hard over the full 250 s sampling tim

The relevant synchronization indexg4,6
2 50.16 is much

smaller than one would expect for hard mode locking~see
also the distributions ofC4,6 in Fig. 7!. Use of a synchroni-
zation index based on Shannon entropy@3# yields a similar
result. Even when the transversal reflection symmetry w
strongly broken, the then relevant synchronization ind
g2,3

2 50.62 would be rather low. But, as can be seen from F
10 below, the symmetry is only weakly broken. A natur
explanation for the discrepancy between the synchroniza
index and the phase-slip statistics is to assume that mos
the fluctuations inC2,3, respectively,C4,6 ~Fig. 7; C4,6
52C2,3mod2p), are due to measurement noise, and not
trinsic to the vortex dynamics. This view is compatible wi
the upper bound derived for the variance due to noise in S
II B. From q2ªqmax50.41 atn2 and qvortªqmax50.13 at
nvort , one gets the approximate upper bound 32q2

2 /4
1qvort

2 /450.38 for the variance contributed toC2,3 by mea-
surement noise, while the total variance is varC2,350.48. It
appears that, in some situations, a characterization of m
locking by phase-slip statistics is less susceptible to meas
ment noise than characterizations based only upon cy
phases, i.e., quantities such asfpuls/vortmod 2p or, comput-
able thereof,C4,6.

C. Series B: Soft lock-in

1. Determination of the phases

Series B was recorded withnvort'110 Hz and npuls
'55 Hz and 1:2 mode locking is expected. Similar as
series A, MIRVA filtering readily yields the unwrapped pha
fvort of the oscillation;exp(ifvort) at nvort ~Fig. 8, right!.
We assume that, as for series A, the oscillations;exp(ifpuls)
due to pulsation alone are much weaker than the oscillat
;exp(ifvort2 ifpuls) excited by nonlinear interaction of vor
tices and pulsation. Thus, the nonlinear excitation domina
the oscillations atnpuls'n2ªnvort2npuls. In contrast to se-
ries A, MIRVA filtering at n2 does not lead to an unequivo
cal phase~Fig. 8, center!. It appears that this is due to phas

he
6-7



n
tio

m

o
-

l re-

rnal

n-
ends
se-

ls
e
n-

ROSSBERG, BARTHOLOME´ , AND TIMMER PHYSICAL REVIEW E 69, 016216 ~2004!
slips in fvort , which broaden the range of relevant freque
cies atn2 and, as a result, worsen the signal-to-noise ra

By making use of the MIRVA filtered signalzvort(t) of the
vortex oscillations,fpuls can nevertheless be measured fro
the signal. In variation of a method proposed in Ref.@37#, a
complex-valued time seriesx8(t)ªx(t)/zvort(t) is con-
structed from the original signalx(t). The overall effect of
this transformation is to shift all oscillations bynvort to nega-
tive frequencies. The oscillations that were atn2 are now at
n22nvort52npuls. They are of the form;exp(2ifpuls),
i.e., they do not depend on the phase of the vortices. N
MIRVA filtering x8(t) at 2npuls yields the desired unequivo
cal phase information~Fig. 8, left!. As is shown in Fig. 9, the
fvort follows fpuls, but several phase slips occur.

FIG. 8. The trajectories of demodulated, MIRVA filtered signa
Zi ~see section 2 of Appendix A!, obtained from series B and th
quotient signalx8(t), defined in Sec. IV C, at the indicated freque
cies. The corresponding values ofqmin are 0.30@2npuls in x8(t)],
0.39 (n2), and 0.22 (nvort).
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The histogram of the cyclic relative phaseC1,2 reveals the
two preferred phase angles which are due to transversa
flection symmetry~Fig. 10!. Since the symmetry is weakly
broken, their separation is not exactlyp. Again, it is not clear
to what degree the broadening of the distribution ofC1,2 is
due to measurement noise and to what degree to inte
noise.

2. Quantification of the degree of mode locking

In order to quantify the degree of mode locking indepe
dent of measurement noise, a characterization that dep
only on the long-term dynamics of the phases would be u
ful. Such a measure is, for example, given byr1,2, with

FIG. 9. Unwrapped phases, obtained from series B: 2fpuls(t)
2v0t ~solid! and fvort(t)2v0t ~dashed!, where v0/2p
5110.697 Hz ~nominal value!; the relative phasef1,25fvort

22fpuls ~dotted!.
rn,mª
n2D@fvort#1m2D@fpuls#2D@fn,m#

2 m2D@fpuls#
5 lim

T→`

n cov@fvort~ t1T!2fvort~ t !,fpuls~ t1T!2fpuls~ t !#

2 m var@fpuls~ t1T!2fpuls~ t !#
, ~23!
d

r-
as
able
of
s
se
es

d to

well
nfa-

ent
th of
whereD@•# stands for the diffusion coefficient of the spec
fied phase variable.rn,m measures in how far the respon
oscillator ~here vortices! follows phase fluctuations of th
drive oscillator~pulsation!. Whenfvort andfpuls evolve in-
dependently,rn,m50 for all n, m. In the case of hardn:m
lock-in, as was found for series A,D@fn,m#50,
n2D@fvort#5m2D@fpuls#, and rn,m51. Weak mode cou-
pling interpolates between these two extremes. Values
rn,m outside the range@0,1# are possible in principle bu
unphysical in the situation of direct, unidirectional couplin
Since only the long-term dynamics of the phases is ta
into account, rather long time series are required to ob
reproducible values ofrn,m . For series B we find, using th
estimator given by Eq.~B1! with t512.5 s, D@f1,2#
50.4(1) s21, D@fvort#52.4(6) s21, and 4D@fpuls#
52.5(6) s21, resulting inr1,2'0.9. The empirical value o
r1,2 is stable over a wide range int. Of course,rn,m could
not be used when the frequency of the drive oscillator w
perfectly stable, i.e., whenD@fpuls#50. A detailed analysis
of

.
n
in

s

of the measurern,m and its interpretation is yet to be worke
out.

V. CONCLUSION

MIRVA filtering was introduced as a method for measu
ing the phase of oscillations from noisy time series. It w
argued that the phase so obtained is, among other favor
properties, particularly robust to noise and linear filtering
the signal. Detailed directions for computing MIRVA filter
numerically are given in Appendix A. In a numerical ca
study it was demonstrated that MIRVA filtering introduc
only little bias to the phase~or average! frequency. A syn-
chronization index has been proposed, which is designe
be robust to noise if MIRVA filtering is used.

By applying MIRVA filtering to the signal of a vortex flow
meter, we showed that the method can be used to obtain
defined phases from oscillatory time series even under u
vorable conditions such as strong internal and measurem
noise. The phases were used to investigate the streng
6-8
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mode locking. As another application, the MIRVA filtere
signal was used for a data driven demodulation techniqu
Sec. IV C. Limitations to phase measurement, which rem
even when MIRVA filters are used, have been addressed
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APPENDIX A: COMPUTATION OF MIRVA FILTERS

1. Main algorithms

In practical applications time seriesxi ( i 51, . . . ,N),
sampled fromx(t) at evenly spaced discrete timest5 iDt are
given. The MIRVA filters have to be estimated from this da
Here, two methods are proposed. The first method is m
appropriate for short time series, the second is more effic
whenN is large. With both methods, the impulse responsef j
of the filters is restricted to a finite lengthM ( j
51, . . . ,M ).

a. Direct method

When using the first method, the convolution

zk5~x* f !k1M5(
j 51

M

f jxk1M2 j ~A1!

~for k51, . . . ,N2M11) is calculated directly, and the ex
pectation values in Eq.~1! are estimated as averages overk.
An iterative search algorithm~e.g., a quasi-Newton, soft
line-search minimizer@38#! is used to find the MIRVA filter
f j with q25qmin

2 .

b. Indirect method

The second method makes use of the fact thatq depends
on x(t) only through its second and fourth moments. It
often more efficient than the first method but, as a trade-
entails systematic errors of the orderO(M /N) in the estima-

FIG. 10. Empirical distribution function of the cyclic relativ
phaseC1,2 obtained from series B. The double peak is a res
of the transversal reflection symmetry of the experimental sys
~Fig. 3!.
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tion of the moments ofzi . For notational convenience, w
define the second and fourth momentsxi in the time-discrete
representation as

ci jkl 5^xt2 ixt2 j x̄t2kx̄t2 l& ~A2!

and

ci j 5^xt2 i x̄t2 j& ~A3!

with arbitrary t. These expectation values are estimated
averaging over time and making use of symmetries, e
ci j 5 c̄ j i 5ci 1k j1k .

Equation~1! now reads

q25

(
i jkl

ci jkl f i f j f̄ k f̄ l

S (
i j

ci j f i f̄ j D 2 21 ~A4!

with all sums running over 1, . . . ,M . Thus, while the com-
putation of the moments takes time of orderO(N M3), the
time required for the optimization itself is independent ofN.
Besides, derivatives ofq2 with respect tof i are calculated at
little additional cost, and can be provided to the optimizati
algorithm to help finding a MIRVA filterf i .

2. Down sampling, demodulation, and regularization

In order not to introduce artificial restrictions of th
search space forf i , the duration of the impulse respons
i.e., M3Dt should be of the order of the phase coheren
time of the oscillation. This time can easily cover seve
hundred oscillation periods. Computation time depends c
cally on M. To keepM low and make the computation fea
sible, it is therefore advisable not to work with the raw tim
series xi but to perform a demodulation and a dow
sampling step prior to the main calculation. For the calcu
tions discussed in Secs. III and IV, instead ofxi , the de-
modulated time seriesXj given by

Xjª(
l

Klxh j1 l exp@2 i ~h j1 l !v0Dt#, ~A5!

were used with a symmetric, triangular smoothing kernelKl
at a width of two time the down-sampling factorh. The
demodulation frequencyv0 should be set to a value close
the frequency of the targeted oscillations.

To see the effect of this transformation, notice that
stationary, discrete-time processes the value ofq defined by
Eq. ~1! with z replaced byZ5F* X is for any filterFk iden-
tical to the value obtained withz5 f * x, provided

f k5(
l

KlF (k1 l )/h exp~ ikv0Dt ! ~A6!

andFkª0 for nonintegerk by convention. It is not difficult
to verify thatZj5zh j exp(2ihjv0Dt), independent ofKl .

As a result, every MIRVA filterFk for Xj leads by Eq.
~A6! to the approximate MIRVA filterf k for xi . The approxi-
mation is good if the interpolation~A6! of Fk defined byKl
is reasonable.

lt
m
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ROSSBERG, BARTHOLOME´ , AND TIMMER PHYSICAL REVIEW E 69, 016216 ~2004!
The MIRVA filters Fk found for typical experimental dat
are more or less deformed variants of Gaussian filtersFk
'exp@21

2(k2M/2)2h2Dv2Dt2# with bandwidth Dv. The
linear interpolation forf k given by the triangularKl is good
if hDvDt!1. In practice, this requires filter lengths of
leastM'15–30.

Experimental time series are often not long enough
yield faithful estimates for allO(M3) independent element
of ci jkl . This problem can be overcome by a regularizat
of Fk . In our calculations, we restricted the filtersFk to the
family Fk5exp@Pm(k)#, with mth order polynomialsPm .

3. A guide to choosing appropriate parameters

The following procedures were used to find appropri
values for the demodulation frequencyv0 and the down-
sampling factorh, which determines the duration of the fi
ter’s impulse responsehMDt. The sampling rateDt is as-
sumed to be given andM is restricted to a small range b
computational limitations.

After an initial guess, the value ofv0 was set to the value
of the empirically found phase frequencyvph of zi in an
iterative process. In order to adjusth, the envelopeuFku of
the computed MIRVA filter was investigated. Whenh is too
large,uFku has a sharp peak and vanishes for all other valu
Whenh is too small, most weight of the filter is concentrat
near the end pointsF1 and FM . By inspection one finds
F1'6 i F M , i.e., the MIRVA filter with a constraint in the
filter length approximates a simple 2D delay embedding.h is
adjusted accordingly.

A systematic procedure for finding good values for t
polynomial orderm has not been developed yet. But wi
m'6 –10 results generally depend little on the precise va

4. Convergence and side minima

In Sec. II it was proposed to identify local minima ofq
with distinct oscillatory components of the signal. The stru
ture of the search space is therefore of immediate theore
interest. In fact, with long enough time series sampled fr
a typical signal, the numerical search algorithms used h
consistently and effortlessly reach local minima located i
small set of well separated points in the space of all filte
irrespective of the—randomly chosen—starting points.
unique minimum is typically singled out when using d
modulation and down sampling, since this effectively impl
a preselection of the frequency range of interest. With sho
time series, however, these minima split into large cluster
several side minima. In order to cope with these artific
J

ev

, J
tt
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multiplicities, only those local minima were accepted for s
lecting MIRVA filters which where found three times withi
a series of minimization runs with random starting poin
without previously finding any point with a lower value ofq.

APPENDIX B: REMARKS ON THE ESTIMATION OF D

We discuss a method to determine the diffusion coe
cient D defined by Eq.~14! from samplesf(t) of finite
length (0<t<T). First vph is estimated asv̂ph5@f(T)
2f(0)#/T. ThenD can be estimated by

D̂tª

E
0

T2t

@f~ t1t!2f~ t !2v̂pht#2 dt

2t~T2t!~12t/T!
, ~B1!

where 0,t,T. The last factor in the denominator compe
sates for the loss of statistical degrees of freedom by
estimation ofvph asv̂ph. When assumingf(t) to perform a
random walk with constant drift, it is straightforwardly ver
fied that v̂ph is a maximum likelihood estimator and̂D̂t&
5D. Under the same assumption, the variance ofv̂ph is
2D/T and

cov~D̂kT ,D̂ lT!

5D2
l @6~12k!2k22~12k!~113k2!l 2~124k!l 2#

3k~12k!2~12 l !2

~B2!

for 0,k< l<1/2 ~the last expression was obtained with t
help of symbolic computer algebra!. In particular,

varD̂ l T5D2
l ~4211 l 14 l 216 l 3!

3 ~12 l !4
, ~B3!

which increases monotonically with 0, l<1/2. For good es-
timates ofD, the parameterl should be chosen as small a
possible but large enough to justify the assumption of a r
dom walk over timesl T. The estimatorD̂t can be slightly
improved by using linear combinations with differentt. For
example, the variance of

D̂t8ª
3
2 D̂t2 1

2 D̂2t ~B4!

is about 10% smaller than ofD̂t , as is verified using Eq
~B2!.
k,
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