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Abstract

The determination of a differential equation underlying a measured time series is a frequently arising task in nonlinear
time series analysis. In the validation of a proposed model one often faces the dilemma that it is hard to decide whether
possible discrepancies between the time series and model output are caused by an inappropriate model or by bad estimates of
parameters in a correct type of model, or both. We propose a combination of parametric modelling based on Bock’s multiple
shooting algorithm and nonparametric modelling based on optimal transformations as a strategy to test proposed models and
if rejected suggest and test new ones. We exemplify this strategy on an experimental time series from a chaotic circuit where
we obtain an extremely accurate reconstruction of the observed attractor. q 2000 Elsevier Science B.V. All rights reserved.

PACS: 05.45.-a; 05.45.Tp; 84.30.-r
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1. Introduction

It is an old goal in nonlinear time series analysis
to infer the ‘Equations of motion from data series’
w x1 . Especially, for continuous flow systems mod-
elling a sampled time series by a differential equa-
tion might allow for insight into the mechanisms at
work by interpreting the resulting structure of the
equation and values of the parameters. This is known

w xas ‘interpretability’ of a model 2 as opposed to
black-box approaches like an attractor reconstruction
w x3 .

) Corresponding author. Tel.: q49 761 203 5829, fax: q49 761
203-5967.
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The straightforward procedure to estimate the pa-
rameters in differential equations is to estimate time
derivatives from the data and determine the parame-

w xters by a least-squares minimisation 4–6 . This ap-
proach is firstly limited by the additive observational
noise which usually covers the observed dynamics
and prohibits the reliable estimation of the deriva-

w xtives 7 , especially if only one component of the
multidimensional system can be measured. Secondly,
it is hampered by the huge number of possible
nonlinear models that have to be compared.

Fortunately, there is often prior knowledge that
gives constraints on the model or even suggests a

w xspecific type of model 8,9 . The validity of a spe-
cific model can be evaluated by comparing proper-
ties of simulated time series with the measured one
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w x9 . This approach faces a dilemma. For the simula-
tion the parameters have to be specified. Thus, it is
difficult to decide whether possible discrepancies
between the properties of the simulated and the
measured time series are caused by the fact that the
chosen type or structure of model is wrong or by the
circumstance that the parameters have been chosen
inappropriately in the correct type of model, or both.
In this Letter we show that parametric modelling

w xbased on Bock’s multiple shooting algorithm 10,11
can solve this dilemma. If the model type is rejected
we propose a search in structure space instead of
parameter space. A search in structure space can be
performed in two ways: Fitting coefficients for cer-

Ž .tain basis functions e.g. coefficients of polynomials
and nonparametrically. Here we chose nonparametric
modelling based on optimal transformations and

w xmaximal correlations 12–14 as an exploratory tool
to suggest a new type of model that again can be
tested by parametric modelling. We explain and
exemplify this strategy on a measured time series

w xfrom a chaotic circuit 8,15 . In this application our
strategy yields a reconstruction of the observed at-
tractor of unprecedented accuracy.

The Letter is organized as followed: In the next
section we briefly describe the two modelling proce-
dures. For detailed discussions of the mathematical
methods, proofs of convergence and numerical de-

w xtails, see 10–12 . In Section 3 we introduce the data
and the model derived from prior knowledge for

w xthese data in 8 . The parametric modelling based on
the suggested model, the search for a better model by
a nonparametric procedure and the final parametric
fit is presented in Section 4.

2. Methods

2.1. Bock’s multiple shooting algorithm for parame-
ter estimation

A common setting in modelling time series by
differential equations is

x t s f x t , pŽ . Ž .Ž .˙
m px t gR , pgR , tg t ,t 1Ž . Ž .Ž .0 f

y t sg x t qh t , 2Ž . Ž . Ž . Ž .Ž .i i i

where f defines the dynamics that depends on a
Ž .parameter vector p. The state vector x t is observed

Ž . Ž .through a function g . and the observation y t isi

sampled at times t and disturbed by white observa-i
Ž .tional noise h t of standard deviation s . In gen-i i

Ž .eral, the observation function g . can also contain
unknown parameters. In the following, for ease of
clarity, we assume the often met condition of a
known, scalar observation function

g . sx t 3Ž . Ž . Ž .1 i

which records one, for ease of notation the first,
component of the dynamical state.

A first approach to estimate the parameters with-
out the need to estimate derivatives from the data is

w xthe initial Õalue approach 16,17 . For this proce-
dure, initial guesses for the parameters and the initial

Ž . Ž .values x t are chosen. Then Eq. 1 is solved0
Ž Ž ..numerically and estimates y t , p, x t are calcu-ˆ ˆi 0

Ž .lated by Eq. 3 . The error cost function

2N1 y t , p , x t yy tŽ . Ž .Ž .ˆ ˆŽ .i 0 i2x s 4Ž .Ý 2N siis1

is minimized with respect to the parameters p and
Ž .the initial values x t by some numerical optimiza-0

w xtion algorithm 18 . For this procedure, the only
information from the measured time series that en-
ters the initial guesses of the optimization procedure

Ž .is the value of the observed component, Eq. 3 , at
time t .0

Simulation studies have shown that, for many
types of dynamics, this approach is numerically un-
stable by yielding a diverging trajectory or stopping

w xin a local minimum 19–21 . The reason for this is
that even for slightly wrong parameters, the trial
trajectory looses contact to the measured trajectory.
This is most evident in the case of chaotic dynamics,
where due to the sensitivity with respect to initial
conditions the numerical trial trajectory is expected
to follow the measured trajectory of the system only
for a limited amount of time. This divergence of the
numerical and measured trajectory introduces many
local minima in the landscape of the error functional,

Ž .Eq. 4 .
This problem can be circumvented by a multiple

w xshooting algorithm introduced by Bock 10,11 . Here
we only briefly explain this algorithm. The basic
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idea of the algorithm is to start the optimization with
an only piecewise continuous trajectory that stays
close to the data. If the observation function is
Ž . Ž .g . sx t , more information than only the first1

value of the measured time series as in the initial
value approach can be used as initial guesses for the
optimization procedure by the following strategy:

w xThe time interval t ,t of measurement is divided0 f
w xinto numerous segments t ,t . A trial trajectoryj jq1

for each segment is calculated using the information
Ž . Ž .x t sy t from the measured time series andˆ1 j j

Ž .initial guesses for the remaining components of x t .j

The condition that the underlying trajectory is smooth
enters into the algorithm by a constraint in the cost

Ž .function, Eq. 4 . This constraint is nonlinear in the
parameters but enters the optimization strategy using
a Gauß-Newton procedure only in a linearized way.
Therefore, the trajectory is allowed to be discontinu-
ous at the beginning of the optimizing iterations but
is forced to become smooth in the end. After conver-

Ž .gence the algorithm also provides an estimate x tˆ
of the unobserved dynamical state.

For time series of chaotic systems it will, in
Ž .general, not be possible to find a trajectory x t thatˆ

shadows the true trajectory for arbitrary long times.
Furthermore, if the model is not correct, experience

w xshows that a fit to the whole time interval t ,t of0 f

measurement often does not converge. For both rea-
sons, the time series is cut into pieces of equal length
and the parameters are fitted simultaneously for all

w xthe pieces. The lengths t ,t are chosen as largel lq1

as possible.
We show the process of convergence for the time

series under investigation in Section 4.3, Fig. 6.
Analogous illustrative applications to simulated time

w xseries are given in 21–23 . Note that after conver-
gence the algorithm is identical to an initial value
approach: It predicts the time series for the whole
pieces based on the estimated initial values of the
unobserved state vector.

After convergence confidence intervals for the
parameters can be calculated from the curvature of

w xthe cost function 11 . Note that both approaches do
not need an attractor reconstruction by a delay em-
bedding. Thus, all problems associated with the de-
lay reconstruction of a chaotic and noisy phase space,
like finding an optimal embedding window and the
‘curse of dimensionality’, are of no or minor impor-

tance here. Most importantly, we do not need such
huge amounts of data as generally needed for a
useful delay reconstruction and the method is also

w xapplicable to transient time series, see 20,24 .
By Bock’s multiple shooting algorithm the proba-

bility of stopping in local minima is reduced com-
pared to the initial value approach. Nonetheless, the
algorithm should be applied with different initial
guesses for the parameters and the unobserved com-
ponents at times t to yield confidence in the globalj

optimality of the resulting estimates.

2.2. Nonlinear regression and optimal transforma-
tions

Optimal transformations and the associated con-
cept of maximal correlation provide a nonparametric
procedure to detect and determine nonlinear relation-
ships in data sets. Let X and Y denote two zero-mean
data sets and

w xE XY
R X ,Y s 5Ž . Ž .

2 2( w x w xE X E Y

Ž .their normalized linear correlation coefficient,
w xwhere E . is the expectation value. The basic idea of

Ž .this approach is to find transformations Q Y and
Ž .F X such that the absolute value of the correlation

coefficient between the transformed variables is
maximized. That is, the so-called maximal correla-

w xtion 25–27

< ) ) <C X ,Y s sup R Q Y ,F X 6Ž . Ž . Ž . Ž .Ž .
) )Q ,F

Ž . Ž .is calculated. The functions Q Y and F X for
which the supremum is attained are called optimal
transformations. Generalizing the concept of linear
correlation, where the linear correlation coefficient
Ž .R X,Y quantifies linear dependences

YsaXqh agR , 7Ž . Ž .

Ž .C X,Y quantifies nonlinear dependences of the
form

Q Y sF X qh . 8Ž . Ž . Ž .

Especially, if there is complete statistical dependence
w x27 , i.e., Y is a function of X or vice versa, the
maximal correlation attains unity. This is also true

Ž .for the relation 8 with hs0. Here we are mainly
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interested in the estimation of the optimal transfor-
mations for the multivariate regression problem

Q Y sF X q . . .qF X qh . 9Ž . Ž . Ž . Ž .1 1 m m

ŽThis is an additive model for the not necessarily
.independent input variables X , . . . , X . The regres-1 m

sion functions involved can be estimated as the
optimal transformations for the multivariate problem

Ž .analogous to Eq. 6 . To estimate these in a nonpara-
metric way, we use the Alternating Conditional

Ž . w xExpectation ACE algorithm 12 . This iterative pro-
cedure is nonparametric because the optimal trans-
formations are estimated by local smoothing of the
data using kernel estimators. We use a modified
algorithm1 in which the data are rank-ordered before
the optimal transformations are estimated. This makes
the result less sensitive to the data distribution. We
remark that optimal transformations for multiplica-

˜ ˜tive combinations of variables X , . . . , X can be1 l

estimated by forming

˜ ˜X sh X , . . . , X , 10Ž .ž /i i 1 l

where the h are arbitrary functions.i

With respect to the analysis of data from nonlin-
ear dynamical systems, the maximal correlation and
optimal transformations have been applied to iden-

w x w xtify delay 14 and partial differential equations 28 .
In application to differential equations, time deriva-
tives have to be estimated from data. The effects of
the noise on the estimated optimal transformations is
not yet completely understood. On the one hand, for
neglectable amounts of noise this approach has suc-
cessfully been applied to experimental physical data

w xof different origin 29,30 , yielding also quantita-
tively accurate results. On the other hand, if noise
contamination is strong, this method should more be
used as an exploratory tool in the process of model
selection. To minimize the influence of the noise on
the results, the variable with the best signal-to-noise
ratio, usually the undifferentiated time series, should
be chosen as Y. In Section 4.2 we show an applica-
tion to a measured time series.

1 A MATLAB- and a C-program for the ACE algorithm can be
obtained from the authors or from the web page http:rr
www.fdm.uni-freiburg.der;hvrhv.html.

3. The data

The time series that we will analyze in Section 4
by the methods described in Section 2 was taken
from an electric circuit in a chaotic regime. Techni-

w xcal details of the circuit are given in 15 . The data
were measured at The Institute for Nonlinear Science
of UCSD and are available in the scope of the
Y2K Benchmarks of Predictability competition at
http:rry2k.maths.ox.ac.uk

w xThe model proposed in 8,15 to describe the
circuit reads in dimensionless units

xsy˙
ysyxyd yqz˙

zsg a f x yz ys y , 11Ž . Ž .Ž .˙

where x corresponds to a voltage, y to a current and
z to another voltage. The parameters correspond to
combinations of an inductivity, the resistances and
the two capacitances of the circuit. For the chosen
experiment the proposed parameters are as15.6,

w xgs0.294, ss1.52, and ds0.534 8 .
The nonlinearity is given by

0.528 if xFy1.2°
2~f x s 12x 1yx if y1.2-x-1.2 .Ž . Ž .Ž .¢

y0.528 if xG1.2

The measured time series corresponds to the x-com-
ponent of the differential equation.

The nonparametric modelling by optimal transfor-
Ž .mations requires a reformulation of Eq. 11 as a

scalar higher order differential equation. The equiva-
lent description reads:

x Ž3.q dqg xq 1qgdqs xŽ . Ž .¨ ˙

qg xya f x s0 . 13Ž . Ž .Ž .

For the sake of clarity, we define asdqg , bs1
Ž . Ž Ž ..qgdqs and g x sg xya f x . For the pro-

posed parameters, as0.828 and bs2.677. Further-
more, to facilitate the comparison of the results of
the different approaches in Section 4.3, based on Eq.
Ž . Ž .13 , we transform the original system 11 , into

xsÕ˙
Õsw˙
wsyawybÕyg x 14Ž . Ž .˙
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Visual inspection of the time series indicates that the
variance of the observational noise is rather small.
This is confirmed by spectral analysis which shows a

w xlow power flattening for high frequencies 31 . Thus,
we assume that the observational noise is due to
discretization during sampling and follows a uniform
distribution:

h;U y0.0005,0.0005 . 15Ž . Ž .

4. Results

Fig. 1 shows attractor reconstructions for the mea-
Ž .sured and a simulated time series based on Eq. 11 ,

and the proposed parameters given in the previous
section. For the simulated time series, the attractor is
smaller, the ‘holes’ in the two loops are larger and
the distances between the inner edges of the loops
and the region in phase space where the trajectories
change the loops are smaller.

4.1. Parametric modelling I

To compare the measured and the simulated time
series in the time domain we apply a restricted
version of Bock’s algorithm. As outlined in Section

2.1 the algorithm finally yields estimates for the
parameters as well as for the unobserved dynamical

Ž Ž . .state in Eq. 11 denoted by x, y, z . Here, we fix
the parameters during the optimization process to the
proposed ones and only allow the estimation of the
state to be optimized. Fig. 2 shows a segment of the

Ž .measured time series dotted line and the estimated
time series conditioned on the parameter values as

Ž15.6, gs0.294, ss1.52, and ds0.534 broken
.line . We have reproduced identical results for nu-

merous different choices of the initial guesses for the
unobserved components y and z. The maximal length
of the pieces applied in the estimation procedure that
yielded a convergence was 1280ms corresponding to
64 data points, which represents approximately 1.5
rotations on the loops. The mean squared error be-
tween the measured and the estimated time series is
2.312=10y2 . Now we are in the situation men-
tioned in the Introduction, Section 1: The proposed
model type with proposed specific parameters is not
able to reproduce the measured time series.

To decide the question if a change of the parame-
ters is sufficient to explain the measured data or
whether a different model type has to be chosen, we
apply the full version of Bock’s algorithm. As initial
guesses for the parameters we chose those originally
proposed and also tested different ones in the same

Ž . Ž . Ž .Fig. 1. Reconstructed attractors. a From the measured time series. b From the simulated time series based on Eq. 11 and parameters
as15.6, gs0.294, ss1.52, and ds0.534. The delay time is 15 sampling units, corresponding to 300ms.
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Ž .Fig. 2. Segment of the measured time series dotted line , the best fit trajectory with fixed parameters as15.6, gs0.294, ss1.52, and
Ž . Ž .ds0.534 broken line and result for the best fit parameters as1333, gs0.00291, ss1.420, and ds0.799 solid line .

order of magnitude. As initial guesses for the initial
values of the unobserved y, z-components we chose
values between y10 and 10. The result is given in

Ž .Fig. 2 solid line . The estimated parameters are
as1333"101, gs0.00291"0.00031, ss1.420
"0.075, and ds0.799"0.075. The mean squared
error between the measured and the estimated time

series is 7.689=10y3. The mean deviation to the
measured time series is decreased, but there are still
systematic discrepancies. This can be observed by
the mismatch at the minima and maxima of the time
series. Moreover, as in the first attempt, the maximal
length of the pieces applied in the estimation proce-
dure that yielded a convergence was 1280 ms. As

Fig. 3. Piece of the time series and, from top to bottom, pieces of first to third time derivatives estimated from the time series. To obtain the
highest accuracy, the derivative estimations are performed in frequency domain by multiplying the transformed data with the first to third

Ž . Ž .power of the wave numbers, respectively, and subsequent back-transforming into the time domain. a is a direct estimate, b uses a cut-off
at 10% of the Nyquist frequency corresponding to a low-pass filter. The reliability of the derivative estimates can be checked roughly by

Ž . Ž .noting that the extrema of the ith derivative is0,1,2 always correspond to a zero in the iq1 th derivatives one line below.
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mentioned in Section 2.1 this gives evidence that the
proposed model type is incorrect.

4.2. Nonparametric modelling

Fig. 2 shows that there is a systematic deviation
of the estimated time course from the measured one
even for the best fit parameters. This calls for an
alteration of the model. Since there is only one

Ž .nonlinearity in the suggested model, see Eq. 11 , we
suspect that the proposed functional form of this
nonlinearity might not be correct. To obtain a non-
parametric estimate of the functional form, we apply
the method of optimal transformations, described in
Section 2.2. Therefore, in order to make all variables
accessible, we use the equivalent one-dimensional

Ž .third order system 13 . As input variables for the
Ž .multiple nonparametric regression problem 9 we

use

Ysx , X sx , X sx , X sx Ž3. . 16Ž .˙ ¨1 2 3

The time derivatives entering X , X and X have1 2 3

to be estimated from the data. The observational
Žnoise on the data is rather small, see Fig. 2 solid

.line , presumably only resulting from the analog-to-
digital conversion. Despite the small variance the

estimated time derivatives are rather noisy. Fig. 3a
shows segments of the estimated derivatives of first
to third order. The third derivative appears to be
useless for a further analysis. However, by a proper
filtering in frequency domain, also third-order
derivatives can be recovered easily and with high
precision, as shown in Fig. 3b.

Ž .According to Eq. 13 we expect the optimal
transformations of X , X and X each to be linear.1 2 3

The optimal transformation of Y should turn out to
be a linear combination of the unknown nonlinearity
in the circuit and a linear function. It corresponds to
Ž . Ž Ž ..g x sg xya f x in the original system.

Applying the nonparametric regression analysis,
we get the optimal transformations as displayed in
Fig. 4. In estimating conditional expectation values
as necessary in the ACE algorithm, we choose a
rectangular smoothing kernel that averages over 41

Ž .data points. The value of C Y, X , X , X is 0.9891 2 3

indicating that Y can be well described by the chosen
Ž .variables X , X , X . The results for X and X1 2 3 1 3

within the 5 to 95 % quantiles of the data are well
consistent with the expected linear behavior from Eq.
Ž .13 . The optimal transformation for X can still be2

described fairly well by a linear function. Linear
regression yields the parameter estimates as0.7963

Ž . Ž . Ž . Ž . ŽFig. 4. Estimated optimal transformations for the one-dimensional third order differential equation Eq. 13 . a Q Ysx , b F X sxs˙1 1
Ž1.. Ž . Ž Ž2.. Ž . Ž Ž3.. Ž .x , c F X sxsx , d F X sx . In a also a fit of a 7th order polynomial is shown. The coefficients of the nonlinearity¨2 2 3 3
Ž .g x estimated this way are given in the text. The vertical lines indicate upper and lower 5 % quantiles of the data.
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and bs2.5041. The optimal transformation for Ys
Ž .x, Fig. 4 a , deviates qualitatively from the proposed
Ž . Ž Ž ..form g x sg xya f x which exhibits a discon-

tinuous first derivative at xs"1.2, see also Fig. 7
Ž .below. It suggests a description of the term g x by

a polynomial
m

ig x s c x . 17Ž . Ž .Ý i
is0

We fitted polynomials of increasing order to the
nonparametric estimate of the nonlinearity by the
optimal transformation. An order of 7 yields a fit that
is essentially unaffected by a further increase of m,

Ž .see Fig. 4a smooth line . The resulting parameters
are c s 0.1033, c sy4.9573, c sy0.2462,0 1 2

c s 6.887, c s 0.1744, c s y 2.656,3 4 5

c sy0.040,and c s0.3652.6 7

Fig. 5 displays the reconstructed attractor based
on a simulation of the model described by the esti-
mated optimal transformations. The size of the at-
tractor coincides with the attractor reconstructed from
the measured time series, but the appearance differs.
Since, unlike in the parametric approach, we have
not optimized the dynamics of our model but per-

formed only a nonlinear regression analysis of the
Ž .variables Y, X , X , X , it can be expected that this1 2 3

result could still be improved. This would require,
however, an extensive search for optimal parameters
in the estimation of derivatives and conditional ex-
pectation values in the ACE algorithm, since the
effect of noise in these steps is not completely
understood. Rather to do that, we take this result as
an exploratory approximation that yields useful
guesses for the functional form of the nonlinearity
and the initial parameters in parametric modelling
again.

4.3. Parametric modelling II

In the following, to allow for a comparison of the
Ž .different approaches, we use the writing of Eq. 14 ,

Ž .where the proposed nonlinearity reads g x s
Ž Ž ..g xya f x .
The coefficients of the even-order monomials fit-

ted to the optimal transformation in the previous
section are rather small. Therefore, we suspect that
they are consistent with zero. Based on the suggested
form for the nonlinearity from the previous section,

Fig. 5. Reconstructed attractor based on the results for the nonparametric modelling by the optimal transformations.
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Ž .Fig. 6. Segment of the measured time series dotted line and convergence of the multiple shooting approach based on the polynomial
Ž . Ž . Ž .nonlinearity solid line . a Trial trajectory for initial guesses of the parameters and initial values, see text for details. b Trial trajectory

Ž .after 3 iterations. c Result after convergence.

we now apply Bock’s algorithm using a sum of odd
monomials up to seventh order as nonlinearity

4
2 iy1g x s c x . 18Ž . Ž .Ý 2 iy1

is1

For the new model we were able to fit the parame-
ters from pieces of length 1024 points. Fig. 6 shows
the first half of one such piece of the measured time

Ž .series dotted line and the process of convergence of
Ž .Bock’s multiple shooting algorithm solid line .

The convergence for rather long pieces as well as
the coincidence of the finally estimated time course

Ž .of x t and the measured data in Fig. 6c suggestsi
Ž .that the polynomial nonlinearity of Eq. 18 provides

a better description of the underlying system than the
Ž .saturating nonlinearity of Eq. 12 .

As mentioned in Section 3, the small observation
noise on the data leads to unrealistic small confi-
dence intervals for the estimated parameters. To
obtain a realistic impression of the variability of the
parameter estimates, we divided the time series in 8

parts and report the mean and standard deviations
calculated from the results for these parts: as0.759
"0.021, bs2.526"0.014, c sy4.56"0.16, c1 3

Fig. 7. Comparison of the proposed piece-wise differentiable
Ž . Ž Ž .. Ž .model nonlinearity, g x sg xya f x bold line , the non-

Ž . Ž .parametrically given optimal transformation Q x dithered line ,
Ž .and the parametrically fitted odd polynomial dotted line .
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Ž . Ž . Ž . Ž .Fig. 8. Reconstructed attractors. a From the measured time series. b From the simulated time series based on Eqs. 14 , 18 and the best
fit parameters, see text. The delay time is 15 sampling units, corresponding to 300ms.

s6.44"0.58, c sy2.55"0.41, and c s0.3665 7

"0.074. The mean squared error is 1.581=10y3.
Ž .Fig. 7 compares the proposed nonlinearity g x

Ž Ž .. Žsg xya f x , the optimal transformation Q Ys
.x and the corresponding function based on the final

parametric fit. Interestingly, the fitted polynomial
closely follows the proposed nonlinearity for small
absolute values of x, but approaches the estimated
optimal transformation for larger values of x.

Analogous to Fig. 1, Fig. 8 displays the recon-
structed attractor based on a simulated time series

Ž .using the polynomial Eq. 18 as nonlinearity and the
best fit parameters. The attractors are in excellent
agreement.

5. Discussion

We proposed a three-step procedure for modelling
nonlinear time series by differential equations and
exemplified this strategy on a physical application.
We chose the algorithmically more difficult mod-
elling by differential equations in favor to discrete-
time difference equations because the results of the
former are usually easier interpretable in terms of the

w xunderlying physics 23 .
Bock’s multiple shooting approach to parameter

estimation in differential equations does not require

to estimate time derivatives from the data which
limits the applicability of many other approaches.
Note that even for the very clean data in our applica-
tion it is not possible to estimate the third derivative
without using some kind of low-pass filtering, see
Fig. 3. The price to be payed in Bock’s algorithm is
that this approach needs a parameterized model. On
the other hand, nonparametric modelling by optimal
transformations does not require a specific parame-
terized model but is more susceptible to noise. Fur-
thermore, it treats the problem as a case of regres-
sion, not taking into account that the data were
generated by a dynamical system. Nevertheless, as
our application has shown, it can be applied to
inspire parametric models that, again, can be checked
by parametric modelling of the dynamical system by
Bock’s multiple shooting algorithm.

The difference between the results for the non-
parametric and the final parametric analysis dis-
played in Fig. 7 shows that a simple parametric fit to
the nonparametric estimate of the nonlinearity as
reported in Section 4.2 can be improved by the third
step of our procedure that evaluates the predictive
ability of the model in the time domain. In the
discussed application our final result is extremely
accurate considering that we used an experimental
time series and that we can reproduce the global
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Ž .dynamics of this highly nonlinear system Fig. 8 .
The excellent agreement between the dynamics of a
measured chaotic time series and an estimated model

w xis a highly nontrivial result 32 in nonlinear mod-
elling.

Canonically, dynamical systems are given as vec-
tor-valued first order differential equations. A pre-
condition to apply the second, nonparametric, model
generating step of the proposed strategy is that the
dynamical system can be expressed as a scalar,
higher order differential equation. It follows from

w xTheorem III of Takens’ seminal paper 33 that for
an m-dimensional system of first order differential
equations there is always an equivalent one dimen-
sional differential equation of maximum order 2mq
1. Unfortunately, it depends on the given system
whether it is possible to find an explicit form for the
one dimensional counterpart. Fortunately, as far as
known to the authors, for all chaotic standard sys-
tems the one-dimensional writing is possible. Note
that in the investigated case of electronic circuits
Ž w x.due to Kirchhoff’s laws 34 a huge class of nonlin-
ear circuits can be modelled by differential equations

Ž .like Eq. 11 anyway.
It has to be emphasized that the suggested proce-

dure of alternating parametric modelling by Bock’s
algorithm and nonparametric modelling by optimal
transformations is not a general purpose procedure in
the sense of ‘Equations of motion from a data series’
w x1 . The success of the discussed application de-
pended on prior knowledge about the system, i.e. a
roughly correct first suggestion on the structure of
right hand side of the differential equation. This,
however, is often the case in systems where the
dynamics is qualitatively understood, and one is
interested in obtaining coefficients or special forms
of nonlinearities involved in the dynamics. There-
fore, we assume that our approach will be applicable
mainly for systems from physics, like electronic

w xcircuits or lasers 9,21 , engineering, e.g. effects of
w xnonlinear friction 35 , biochemistry, e.g. dynamics
w xof protein folding 36 , and biophysics, e.g. dynamics
w xof photosynthesis 24 .
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