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a b s t r a c t

The inference of interaction structures in multidimensional time series is a major challenge not only in
neuroscience but in many fields of research. To gather information about the connectivity in a network
from measured data, several parametric as well as non-parametric approaches have been proposed and
widely examined. Today a lot of interest is focused on the evolution of the network connectivity in time
which might contain information about ongoing tasks in the brain or possible dynamic dysfunctions.
Therefore an extension of the current approaches towards time-resolved analysis techniques is desired.
We present a parametric approach for time variant analysis, test its performance for simulated data, and
apply it to real-world data.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Since there is a tremendous number of questions considering
the interplay of different parts of the brain, the multivariate anal-
ysis of network behavior measured through time series is an
important challenge in neuroscience research. The underlying idea
is to investigate interactions in the recorded activity to draw con-
clusions about the functional connectivity of different brain re-
gions. If for example the influence of a process A on a process B
is mediated by a third process C, i.e. A! C! B is a conduction,
there is no direct influence from A to B. This scenario is often ex-
pected to be present in many real-world situations. A reliable con-
clusion is, however, only feasible if direct and indirect interactions
could be distinguished. A pairwise analysis of the signals is usually
not sufficient for the exploration of the network since direct and
indirect influences cannot be distinguished. The distinction of di-
rect and indirect influences can only be achieved by multivariate
analysis techniques, for instance by partial coherence analysis,
which corrects for the influences of third processes. Complemen-
tary to the detection of direct influences, an investigation towards
the direction of influence is often important. If there is a connec-
tion between a process A and B it is of interest whether A
influences B or vice versa, for instance to understand the physio-

logical or pathological basis of many mechanisms. Since coherence
and partial coherence are symmetric measures, they are not able to
infer the direction of influence. Partial directed coherence (PDC),
which is a parametric approach based on vector autoregressive
modelling, has been introduced as a technique to determine direc-
tions of influence in multivariate systems (Baccala and Sameshima,
2001). Originally developed for linear stochastic systems, PDC was
shown to reveal the underlying interaction structure also for non-
linear systems (Schelter et al., 2006a,b).

The methods mentioned above assume stationarity of the ob-
served processes and thus, influences that are constant in time.
Nevertheless, many problems in neuroscience are crucially con-
cerned with changes of the connectivity with time. For instance,
such a time varying behavior in the system is expected during a
movement task or the perception of a stimulus. Therefore, we ad-
dress the question of how a time dependent analysis of interaction
structures can be performed.

The paper is organized as follows. We first discuss a parametric
analysis of stationary time series which is extended to non-station-
ary processes afterwards. In Section 3 we use simulated data to
illustrate the performance of the proposed method. We provide a
real-world application to Parkinson tremor presented in Section 4.

2. Methods

In the following we briefly summarize concepts dedicated to
the analysis of stationary time series. Afterwards an extension to
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non-stationary signals which is also capable to deal with observa-
tion noise is given.

2.1. Estimation of directed influence: stationary processes

Granger causality is the basic concept for the analysis of the di-
rect directed influences between processes in a multivariate sys-
tem (Granger, 1969). It formalizes the common sense conception
that causes precede their effects in time. To quantify Granger cau-
sality in time series especially when accurate signal models are
unavailable, it is a quite common approach to model the dynamics
by a vector autoregressive processes (VAR-process) of order p

~xðtÞ ¼
Xp

r¼1

aðrÞ~xðt � rÞ þ~�ðtÞ ð1Þ

with ~xðtÞ 2 Rn denoting the n-variate process, aðrÞ the n� n coeffi-
cient matrices of the VAR-process and ~�ðtÞ 2 Rn a white noise pro-
cesses with covariance matrix R. The information about the
dynamics contained in the coefficient matrices can be analyzed in
both the time as well as the frequency domain, whereas an inspec-
tion in the latter is favorable in the case of signals with predominant
oscillatory activity. The Fourier transform of the coefficient matrices
aðrÞ is given by

AðxÞ ¼ I�
Xp

r¼1

aðrÞe�ixr ð2Þ

with the n� n identity matrix I. The direct directed linear influences
in the multivariate system can be estimated by partial directed
coherence (Baccala and Sameshima, 2001)

jpl jðxÞj ¼
jAljðxÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

kjAkjðxÞj2
q 2 ½0;1� ð3Þ

If jpl jðxÞj – 0 a direct linear influence from process j to process l
with respect to the other observed processes is indicated. A signif-
icance level for testing non-zero partial directed coherence can be
derived from the statistical properties of the partial directed coher-
ence, which are examined in Schelter et al. (2006a).

When dealing with measured data, the coefficient matrices aðrÞ
are estimated. In the estimation procedure one has to deal with
observational noise, i.e. the error-in-variables problem.

2.2. Error-in-variables problem

Contamination with observational noise is an almost inevitable
characteristics of real-world data. Disregarding observational noise
causes an underestimation of the process parameters. This issue is
usually referred to as the error-in-variables problem.

If we consider a stationary AR[1]-process without observational
noise

xðtÞ ¼ axðt � 1Þ þ eðtÞ ð4Þ

the parameter a can be readily estimated by

â ¼
P

txðt � 1ÞxðtÞP
txðt � 1Þxðt � 1Þ ð5Þ

This follows from Eq. (4) by multiplication with xðt � 1Þ. Whenever
observational noise is present

yðtÞ ¼ xðtÞ þ gðtÞ ð6Þ

with g �Nð0;RÞ, the estimator for a is biased, when the observa-
tional noise is disregarded (Deuschl et al., 1996). Hence, Eq. (5)
now reads

hâi ¼ hyðt � 1ÞyðtÞi
hyðt � 1Þyðt � 1Þi ð7Þ

¼ hðxðt � 1Þ þ gðt � 1ÞÞðxðtÞ þ gðtÞÞi
hðxðt � 1Þ þ gðt � 1ÞÞ2i

ð8Þ

¼ hxðt � 1ÞxðtÞi
hx2ðt � 1Þ þ Ri ð9Þ

¼a
1

1þ R
hx2ðtÞi

ð10Þ

where h:i denotes the mean. For the above derivation we utilized
the fact that gðtÞ is an uncorrelated white noise process. Thus, Eq.
(10) shows that as long as the variance R of gðtÞ is non-zero the esti-
mated parameter â is smaller than a. The amount of underestima-
tion is quantified by the signal-to-noise ratio SNR ¼ VARðprocessÞ

VARðgðtÞÞ .

Similar to the above argument, it can be shown that disregard-
ing the observational noise also induces an underestimation of the
estimated strength of a directed influence between two interacting
processes. To demonstrate the effect of the underestimation we
simulated a 2-dimensional VAR[2]-process ~xðtÞ

x1ðtÞ ¼ 1:6x1ðt � 1Þ � 0:96x1ðt � 2Þ þ e1ðtÞ ð11Þ
x2ðtÞ ¼ 1:8x2ðt � 1Þ � 0:95x2ðt � 2Þ þ 0:1x1ðt � 1Þ þ e2ðtÞ ð12Þ

in which x1ðtÞ is driving x2ðtÞ, with N ¼ 5000 datapoints. The simu-
lation was afflicted with observational noise gðtÞ of different vari-
ances quantified by the signal-to-noise ratios SNR ¼ VARðx1ðtÞÞ

VARðgðtÞÞ .

Partial directed coherence was estimated for each signal-to-noise
ratio using a model order of p ¼ 10. In Fig. 1, we show the estimated
PDC values jp2 1ðxÞj for different signal-to-noise ratios together
with the analytical PDC. As the variance of the observational noise
increases, i.e. the SNR decreases, the detection of the directed influ-
ence from x1ðtÞ to x2ðtÞ gets increasingly difficult. Based on the same
simulated data, we also estimated the PDC values using a procedure
that accounts for the observational noise. For the shown signal-to-
noise ratios, the estimated PDC values at the peak frequency corre-
sponded well with the analytical PDC.

2.3. State space model for stationary data

The estimation of time-varying interaction structures in multi-
variate systems is of particular interest for the understanding of
ongoing brain activity. A first approach could be to segment the
time series in reasonably short epochs, estimate the VAR-

Fig. 1. Analytical p2 1ðxÞ and estimated p2 1ðxÞ for different signal-to-noise
ratios. For increasing variance of the observational noise, the estimated PDC at the
predominant frequency of the process decreases and the influence might not be
detected.
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coefficients and estimate the PDC values for each segment. Unfor-
tunately, this method often fails to detect rapid changes in the
interaction structure and will always be a trade-off between a
desired high resolution and the necessity of data segments long
enough for the analysis.

A procedure superior to windowing the time series is given by
state space modelling, which also overcomes the challenge of poor
signal-to-noise ratios.

For stationary time series, state space modelling combined with
the Expectation–Maximization (EM) algorithm is a powerful tool to
estimate the process parameters and thereby the interaction struc-
ture when observational noise cannot be neglected (Shumway and
Stoffer, 2000). The general notation of a linear state space for a sta-
tionary process is given by

~uðtÞ ¼ A~uðt � 1Þ þ~euðtÞ ð13Þ
~yðtÞ ¼ C~uðtÞ þ~gðtÞ: ð14Þ

Thereby Eq. (11) describes the dynamic of the hidden process ~uðtÞ,
whereas the unknown process parameters are incorporated in ma-
trix A. The observed process~yðtÞ contaminated with Gaussian white
noise~gðtÞ is given by Eq. (12). In many cases, an observation matrix
C has to be taken into account which describes the way the state
~uðtÞ is transformed to the observation space. However, in the fol-
lowing we set C to the identity, assuming a direct observation of
the states possibly contaminated with observation noise. Both, A
and ~uðtÞ can be estimated via state space modelling and the EM-
algorithm applying the Kalman filter (Wan and Nelson, 2001). Note
that the state space model above addresses only a VAR[1]-process.
This is sufficient because every n-dimensional VAR[p]-process ~xðtÞ
can be rewritten as an np-dimensional VAR[1]-process ~uðtÞ.

2.4. Extension to non-stationary processes

The extension of the algorithm to non-stationary data requires
consideration of time dependent parameters AðtÞ. For this purpose,
a second state space for the parameters is introduced. The dual
state space model incorporates two state spaces, one for the hid-
den variable ~uðtÞ and one for the parameters AðtÞ. The process
parameter matrix AðtÞ is assorted in a vector~aðtÞ to make it acces-
sible for state space modelling. The dual state space is given by

~uðtÞ ¼~f ð~uðt � 1Þj~aðt � 1ÞÞ þ~euðtÞ;
~yðtÞ ¼~gð~uðtÞÞ þ~gðtÞ;
~aðtÞ ¼~aðt � 1Þ þ~eaðtÞ;
~yðtÞ ¼~gð~f ð~aðt � 1Þj~uðt � 1ÞÞ þ~euðtÞÞ þ~gðtÞ

ð15Þ

with multivariate, independent Gaussian noise ~gðtÞ,

~f ð~uðt � 1Þj~aðt � 1ÞÞ ¼~f ð~aðt � 1Þj~uðt � 1ÞÞ ¼ Aðt � 1Þ~uðt � 1Þ ð16Þ

and ~gð:Þ being the observation function. For all investigations and
simulations it was selected such that the observed time series are
the ones that are observable in the model. The function ~gð:Þ is thus
basically the identity matrix with additional zeros to account for the
fact that the delayed processes needed in the VAR[1] representation
of any VAR[p]-process are not directly observable. The used nota-
tion of~f ð�j�Þ denotes that the second argument of~f is a true param-
eter for the first argument. The expectation step of the EM-
algorithm is carried out by a dual Kalman filter and can be divided
in two main steps: first, the hidden variables ~uðtÞ are estimated
based on the parameters ~aðt � 1Þ, which are considered as true in
this step. In the above equations, denoted by~f ð~uðt � 1Þj~aðt � 1ÞÞ in
Eq. (15). In the second step, the process parameters ~aðtÞ are esti-
mated based on the process trajectory~uðt � 1Þ which has been esti-
mated in the first step and is for the estimation of the parameters
~aðtÞ considered as true (Wan and Nelson, 1997, 2001). Details

concerning the implementation of the Kalman filter can be found
elsewhere (Shumway and Stoffer, 2000). The dual estimation proce-
dure was used although others are possible. It is a numerically very
efficient way of estimating the parameters.

Thus, the EM-algorithm applying the dual Kalman filter in its
expectation step yields both the estimated parameters ~aðtÞ and
the most likely trajectory of the process ~uðtÞ. The parameters
~aðt � 1Þ of the VAR[1]-process for each sampling point can be
mapped to the parameters of a VAR[p]-process. Thereby AðtÞ is ob-
tained. The direct application of Eq. (3) leads to a time resolved
partial directed coherence jpl jðx; tÞj. This allows the quantifica-
tion of the direct directed time dependent influence in multivariate
systems contaminated with observational noise.

3. Simulations

To demonstrate the abilities of the method of time dependent
partial directed coherence previously described, we simulated a
3-dimensional VAR[2]-process

x1ðtÞ ¼ 0:59x1ðt � 1Þ � 0:2x1ðt � 2Þ þ bðtÞx2ðt � 1Þ
þ cðtÞx3ðt � 1Þ þ e1ðtÞ

x2ðtÞ ¼ 1:58x2ðt � 1Þ � 0:96x2ðt � 2Þ þ e2ðtÞ
x3ðtÞ ¼ 0:60x3ðt � 1Þ � 0:91x3ðt � 2Þ þ e3ðtÞ ð17Þ

with time variant interaction. The system can be considered as two
damped stochastically driven oscillators (x2 and x3) and a stochasti-
cally driven relaxator ðx1Þ. The time course of the parameters bðtÞ
and cðtÞ which denote the intensity of the influences are depicted
in Fig. 2. Although the presence of a directed influence from one
process on another is a binary quantity, the influence itself can be
weak or strong depending on the parameters. In the example, the
process x2 is influenced by x1 through bðtÞ with oscillating strength,
whereas x3 influences x1 with increasing strength in the first half of
the simulation and with decreasing strength in the second half. The
estimated time variant PDC is shown in Fig. 3. It reproduces the
simulated interaction structure. In matrix element ð1;2Þ, which
shows p1 2ðxÞ, the influence with oscillating strength of process
x2 on process x1 is correctly identified. The increasing and deceasing
influence of process x3 on x1 is also correctly revealed. The spectrum
of x1 reflects the driving influence of the other two processes. The
order of the VAR-process fitted to the data was chosen with p ¼ 2.
For the choice of an appropriate order p for real-world data mea-
sures like Akaike’s Information Criterion or Bayesian Information
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Fig. 2. The parameters of the strength of directed influence: bðtÞ denotes the
strength of influence between x2 and x1; cðtÞ that between x3 and x1.
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Fig. 3. Colour-coded plot of the time resolved interaction structure of the simulated VAR[2]-process: the spectra of the processes are shown on the diagonal. The off-diagonal
matrix elements ði; jÞ contain the time variant PDC values pi jðxÞ which measure the influence of process j onto process i.
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Fig. 4. Four STN neurons and flexor muscle of the contralateral forearm: spectra are shown on the diagonal. The time variant PDC coefficients are assorted as described in
Fig. 3.
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Criterion are available (Akaike, 1969; Schwarz, 1978). However, for
non-linear processes a higher model order is required to describe
the dynamics (Schelter et al., 2006a).

4. Application

One of the core symptoms of Parkinson’s disease is tremor,
which is an involuntary rhythmical movement predominantly of
the upper limbs. The pathophysiology of the human tremor is still
under debate. But it is very likely that an abnormal oscillatory acti-
vation within basal ganglia-cortical and cerebellar-cortical loops
plays an important role in generating tremor. In Parkinson’s dis-
ease the tremor frequency is mainly between 4 and 6 Hz (Timmer,
1998).

We investigated data from the subthalamic nucleus (STN), a
part of the basal ganglia, and electromyography (EMG) recordings
of trembling muscles, located at the forearm. Data was registered
in the STN using microelectrodes during stereotactic neurosurgery.
Afterwards the implantation of electrodes for deep brain stimula-
tion was performed, which is an effective method if medicamen-
tous therapy was not sufficient for treatment of tremor. The
optimal position for the electrode implantation was determined
by a fusion technique of MRI and stereotactic computerized
tomography. The penetration of the STN as the target region was
confirmed by detecting a specific neuronal spike activity. Micro
electrode recordings with a sampling rate of 25 kHz were per-
formed for different depths in the STN. During one recording ses-
sion between 2 and 5 neurons could be identified via spike
sorting (Quiroga and Nadasdy, 2004). Spike trains were down sam-
pled to make them accessible for VAR-modelling. Simultaneously
EMG electrodes were placed on the extensor- and flexor muscles
of the contralateral wrist to measure the tremor activity at a sam-
pling rate of 2.5 kHz. EMG recordings were rectified and corrected
for the mean.

Tremor is a time dependent phenomenon (Hellwig et al., 2003),
since it may change from strong to weak and vice versa. In addi-
tion, the signal-to-noise ratio of micro electrode data is not as good
as that of EMG data. Hence, a time-variant estimation procedure
that is able to deal with observational noise, is required. An exam-
ple for ongoing tremor activity is shown in Fig. 4. The activity was
analyzed over a duration of 10 s. The analysis reveals directed
influences from the recorded neurons to the muscle as well as from
the muscle to the neurons. The trembling frequency in this exam-
ple is approximately 4.5 Hz. The analysis reveals in matrix element
(1,5) influences from the muscle to neuron 1 at the tremor fre-
quency and at its first higher harmonic. The influence at the first
higher harmonic persists during the first 4 s, then it slowly van-
ishes while the influence at the tremor frequency persists over
the whole 10 s. The PDC values for the opposite direction of influ-
ence, depicted in matrix element (5,1), are also identifiable,
although characterized by a more wide-spread influence.

5. Conclusions

We have presented an approach to infer time dependent inter-
action structures in multivariate systems. The presented paramet-
ric approach consists of the estimation of the time dependent

VAR[p]-coefficients, using a dual state space model, and the esti-
mation of the PDC for each sampling point.

The performance of the method has been demonstrated by
means of a simulated VAR-system with time variant interaction
structure. The interaction structure could be inferred and the var-
iation of the parameters defining the strength of influence in time
was well captured.

We applied the method to an example of real-world data re-
corded from a patient suffering from tremor in Parkinson’s disease.
The analysis revealed changes in the dynamics as well as the inter-
action between brain structures and trembling muscles, indicating
a dynamic interplay between both. In detail, we found a direct lin-
ear time-varying influence from the muscles to the STN at the tre-
mor frequency or its higher harmonics in all four observed EMG-
neuron combinations. The influence from the STN to the muscles
could also be observed. This strongly suggests a participation of
the STN in tremor generation.

Based on the first promising results of the time varying PDC
analysis to real-world data, this technique suggests itself for fur-
ther application.
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