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Abstract Cerebral autoregulation (CAR) is a control

machanism of the brain keeping cerebral blood flow con-

stant albeit the arterial blood pressure varies. Impaired

CAR may be associated with an increased risk of cerebral

ischemic events in patients with obstructive cerebrovas-

cular disease. Spontaneous blood pressure oscillations are

analyzed using a nonparametric and two parametric trans-

fer function estimators, i.e. the autoregressive-moving-

average model with exogenous inputs or the vector-auto-

regressive model. Performance of the methods was com-

pared using data from patients with unilateral stenosis or

occlusion. We also analyzed reproducibility by comparing

partitions of the data an with data from other patients which

have been measured twice. Results show that there is no

significant difference between methods (ANOVA,

p [ 0.27), and that CAR measurements can be performed

reproducibly (Kendall’s s, p \ 0.0016) by all three meth-

ods. In conclusion, CAR measurements by means of

spontaneous oscillations can be obtained stably and the

presented parametric approaches can serve for future

online application of CAR measurement.

Keywords Cerebral autoregulation � Spontaneous blood

pressure oscillations � ARMAX, VAR � Reproducibility

Introduction

Dynamic cerebral autoregulation (CAR) tries to hold the

blood supply of the brain constant albeit the arterial blood

pressure (ABP) varies (Panerai 1998; Panerai 2008).

Noninvasive diagnosis of the human CAR system, espe-

cially of patients with cerebrovascular disease, may aid in

understanding the pathophysiology of these conditons and

to identify high risk patients. Noninvasive monitoring of

CAR can be based on the physiological oscillations cere-

bral blood flow velocity (CBFV) and ABP. Basic CAR

functionality can be analyzed by investigating the response

of CBFV to artificial, i.e. experimental changes in mean

ABP. Newer types of experimental setups exhibit an

intrinsic periodic character, thus making the use of transfer

function analysis possible. Such a method to induce peri-

odic alternations of ABP and cerebral perfusion is regular

slow breathing at 6 cycles/min called the deep breathing

method (Diehl et al. 1995). A spectral peak at 0.1 Hz in the

transfer function describes in which way the basic rhythms

of ABP and CBFV are related in amplitude and phase. An

existing phase shift (30–90�) thereby indicates a function-

ing CAR mechanism while a diminishing phase shift

(below 20–30�) speaks for an impaired CAR system.

However, acutely ill subjects might not be able to perform

the deep breathing experiment. In this situation, also

spontaneous respiratory-induced oscillations (SPO) in ABP

can be used to quantify CAR functionality. Such SPOs can

occur in different frequency bands: A pronounced peak at

the pulse frequency around 1 Hz (P-waves), a broad peak

at the respiratorial frequency of 0.3 Hz (R-waves) and a
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peak in the low-frequency region around 0.1 Hz (M-waves).

Here, the average phase of M-waves in the band

0.06–0.12 Hz is used as the CAR-related parameter Zhang

et al. (1998). The SPO method is very elegant and prom-

ising Diehl et al. (1998), because it works without any

external manipulation of the subject. However, it is very

challenging from an analytical point of view because no

clear spectral peak is present.

This study aims to develop CAR analysis approaches

based on parametric transfer function estimation utilizing

either an autoregressive-moving-average model with

exogenous inputs (ARMAX) or a vector-autoregressive

model (VAR) model. Parametric approaches have the

particular advantages that less parameter estimates are

necessary than with a nonparametric approach, and also

that no spectral smoothing is necessary.

Methods

Transfer Function Estimation

The physiological measurements are regarded as discrete-

time weakly stationary processes (Brockwell and Davis

1998), whose means have been subtracted. The ABP is

denoted by xABP(t) and the two channels of the CBFV are

yCBFV
(k) (t), k = r, l, where r and l stand for right and left,

respectively. The time index t is limited by a given recording

time T, which together with the sampling frequency deter-

mines the number of samples N = T fS. A typical signal

portion of an unilaterally impaired patient is depicted in

Fig. 1. We model the ABP to be related to each of the CBFV

channels by a causal linear system, i.e. the transfer function

H(k)(x), where x [ [0, p] is the relative frequency. An

established nonparametric method is reviewed firstly, which

serves as a reference method. From an observation of several

minutes, one can estimate the transfer function by means of

cross-spectral analysis based on the smoothed periodogram

estimator. For this spectral estimator a smoothing kernel has

to be designed, it determines a trade-off between spectral

resolution and estimation variance. Here, a triangular win-

dow with a half width of h = 8 frequency bins Reinhard

et al. (2003) is utilized. The cross-spectrum estimates of

xABP(t) and yCBFV
(k) (t) are denoted as P̂ABP;kðxÞ and the auto-

spectrum estimate of each signal is given by e.g. P̂ABPðxÞ:A
nonparametric, smoothed periodogram-based estimator of

the transfer function can be derived as Brockwell and Davis

(1998), Reinhard et al. (2003)
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Fig. 1 Exemplary data set

consisting of three time series. a
Cerebral blood flow velocity of

the healthy side, b arterial blood

pressure, and c cerebral blood

flow velocity of the impaired

side
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ĤðkÞsm:p:ðxÞ M=
P̂�ABP;kðxÞ
P̂ABPðxÞ

; k ¼ r, l: ð1Þ

From the transfer function estimate, one can extract the

phase parameter as the average phase in the M-band as

wðkÞsm:p:
M

=

1

0:06Hz

Z0:12Hz

0:06Hz

arg ĤðkÞsm:p: 2p
f

fS

� �� �
df ; k ¼ r, l:

ð2Þ

wsm.p.
(k) has proven to be a relevant CAR analysis parameter

(Zhang et al. 1998). Note that a phase estimate is reliable

only if the according coherence is significantly larger than

zero (Brockwell and Davis 1998). As a criterion the sig-

nificance level (a = 5%) of the coherence is used, and only

frequency bins with a significant coherence will be inclu-

ded in the phase averaging (2).

Transfer Function Estimation Using ARMAX

Modeling

In this section the transfer function estimation will be

performed using two parametric ARMAX(Pk, Qk) models

(Ljung 1987; Panerai et al. 2001, 2003; Liu and Allen

2002; Liu et al. 2005). Again, the input signal to each

ARMAX model is the ABP signal xABP(t) and the output

signals are right respectively left CBFV signals yCBFV
(k) (t),

k = r, l. The ARMAX models are defined by the difference

equation

y
ðkÞ
CBFVðtÞ ¼ �

XPk

p¼1

aðkÞp y
ðkÞ
CBFVðt � pÞ þ

XQk

q¼0

bðkÞq xABPðt � qÞ;

k ¼ r, l;

ð3Þ

where ap
(k), p ¼ 1; . . .; pk are autoregressive (AR)

parameters and bq
(k), q ¼ 0; . . .;Qk are moving-average

(MA) parameters. Pk respectively Qk are model orders of

the right and left AR respectively MA models. By applying

the Fourier transform to (3), one can find the transfer

functions, which are completely described by the ARMAX

parameters. After the model parameters and the orders have

been estimated, an ARMAX-based transfer function

estimator is obtained as (cf. Eq. 1)

Ĥ
ðkÞ
ARMAXðxÞ M=

PQ̂k

q¼0 b̂
ðkÞ
q e�ixq

PP̂k

p¼0 â
ðkÞ
p e�ixp

; k ¼ r, l; ð4Þ

where i is the imaginary unit and a0
(k) = 1. A broad variety

of estimation methods for ARMAX models are known, e.g.

the least-squares method (Ljung 1987). Order estimation

can be performed with e.g. the Bayesian information

criterion (BIC), which is given as (Choi 1992)

BICðP;QÞ ¼ log r2
P;Q þ

Pþ Q

N
log N;

where rP,Q
2 is the variance of the error signal, i.e. the dif-

ference between yCBFV
(k) (t) and xABP(t) filtered by the AR-

MAX(P, Q) model. We prefer the BIC over the AIC,

because it delivers asymptotically consistent estimates.

Once the ARMAX model has been identified, the average

phase wARMAX
(k) in the M-band 0.06–0.12 Hz can be found

by plugging (4) into (2).

For the estimation of the significance level of the coher-

ence estimated by the ARMAX model we propose to use a

bootstrap technique. We compute AR(30) fits of yCBFV
(r) (t),

yCBFV
(l) (t), and xABP(t) separately, and we computed each of the

three innovations sequences by inverting each of the AR(30)

models. By shuffling these estimated innovations sequences,

we generate new stimuli for each of the innovations models.

In this way numerous realizations of the ~y
ðkÞ
CBFVðtÞ and ~xABPðtÞ

can be synthesized, which do not show any coherence. The

distribution of these coherence estimates is thus a distribution

under the null hypothesis that no coherence is present, and the

95% quantile serves as a significance level.

Transfer Function Estimation Based on Vector-AR

Innovations Modeling

The above CAR methodologies use separate models for the

right and left branches. Next, a multivariate modeling tech-

nique, which regards all three physiological time series as

output processes of a VAR model is presented. The models’

output process is defined to be the zero-mean process

zðtÞ M
=

y
ðrÞ
CBFVðtÞy

ðlÞ
CBFVðtÞxABPðtÞ

h iT

2 R
3

and the input is a stationary white innovations process

eðtÞ 2 R
3; which has matrix covariance function ReðmÞ ¼

RedðmÞ; where d(m) is the Dirac function, m is the time lag,

and Re ¼ EfeðtÞeTðtÞg: The unaccessible process eðtÞ is a

driving noise for the VAR model and is an expression for

the remaining modeling error. The VAR model equation is

(Hannan and Deistler 1988)

zðtÞ ¼ �
XPVAR

p¼1

Apzðt � pÞ þ eðtÞ; ð5Þ

where Ap; p ¼ 1; . . .;PVAR are the 3 9 3 AR parameter

matrices and PVAR is the VAR model order. The transfer

functions Ĥ
ðkÞ
VARðxÞ linking CBFV to ABP (cf. Eqs. 1, 4) can

be found by inspecting the spectral density matrix of the

VAR model defined as SzðxÞ M= A�1ðxÞReA�HðxÞ; with the

matrix polynomial AðxÞ M=
PPVAR

p¼0 Ape�ixp; where A0 ¼ I:

After the parameter matrices Ap and Re have been estimated,

one can compute the auto- and cross spectral matrix

respectively its components
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ŜzðxÞ ¼
ŜrðxÞ Ŝr;lðxÞ Ŝr;ABPðxÞ
Ŝl;rðxÞ ŜlðxÞ Ŝl;ABPðxÞ

ŜABP;rðxÞ ŜABP;lðxÞ ŜABPðxÞ

2
4

3
5:

Analogue to (1), the VAR-based estimator of the transfer

functions relevant for CAR modeling is defined as

Ĥ
ðkÞ
VARðxÞM=

Ŝ�ABP; kðxÞ
ŜABPðxÞ

; k ¼ r, l; ð6Þ

where only the lower three elements of ŜzðxÞ have been

used. For VAR models, also a broad variety of parameter

estimators are available (Kay 1988) and the BIC can serve

for order estimation. From Eq. 6, the phase parameters

wVAR
(k) (cf. Eq. 2) can be estimated. We also base the

validity of the phase estimate incorporating the VAR

model on the estimated coherency, whose significance

level is estimated by the same bootstrap approach as for the

ARMAX model.

Analysis of Model Complexity

The size of a modeling approach can be quantified by its

number of real-valued parameters M. The more parameters

have to be estimated from a given sample, the higher the

estimation variance becomes. Thus, the ratio parameters M

to data size should be kept small. In our case, M is the

number of real-valued parameters, which is needed to

compute the phases of right and left transfer functions in

the interesting frequency range. The number of relevant

frequency bins depends on the frequency resolution given

by Df = fS/N, which is constant if the measurement time T

is fixed. Let us now compute M for all three discussed

modeling approaches. For the smoothed periodogram

method both cross-spectral estimates P̂ABP;kðxÞ have to be

considered, because only they carry the phase information.

The number of relevant complex-valued parameters in

the M-band is 0:06
Df þ 1þ 2h
l m

; thus one obtains Msm:p: ¼

2 0:06
Df þ 1þ 2h
l m

per side, which is inversely proportional

to Df. The transfer function estimates from the ARMAX

approach (4) at any frequency are represented by all real-

valued estimated ARMAX parameters, thus MARMAX =

Pr ? Qr ? Pl ? Ql ? 2. Finally, the VAR approach (6)

needs MVAR = 9PVAR ? 6 real-valued model parameters

for describing both transfer functions, where six parameters

are for the Hermitian matrix Re:

Patient Collectives, Data Acquisition and Processing

The current methods were applied to a group of previously

studied patients with severe ([70%) uni-or bilateral inter-

nal carotid artery stenosis or occlusion (Reinhard et al.

2003). Measurements were performed with the patients in a

supine position with an inclination of 50� of the upper

body. Cerebral blood flow velocity (CBFV) was measured

in both middle cerebral arteries by transcranial Doppler

sonography (DWL-Multidop-X �, Sipplingen, Germany)

with 2 MHz transducers attached to a headband. Non-

invasive recordings of arterial blood pressure (ABP) were

obtained with a servo-controlled finger plethysmograph

(Finapres � 2300, Ohmeda, Englewood CO) with the

subjects right hand positioned at heart level. For the present

analysis, spontaneous oscillations of ABP and CBFV dur-

ing a resting period of 10 min were used. All data were

sampled at 100 Hz and for further analysis, the sampling

rate was reduced to 2.5 Hz incl. appropriate lowpass fil-

tering. From the raw data a segment of T = 400 s has been

selected and reviewed for measurement artifacts. For the

estimation of the ARMAX models the least-squares

method (Ljung 1987) including the BIC for order estima-

tion was implemented. VAR estimation has been per-

formed by using a least-squares method from Neumaier

and Schneider (2001) and Schneider and Neumaier (2001)

including the BIC as order estimation criterion.

The results which will be presented in the next section

have been obtained on two different patient collectives. On

the first set of patients, called data set I, a comparison of

the three discussed model types in terms of statistical

equivalence and model complexity was performed. We

also assess short-term reproducibility on data set I. From

n0 = 91 unilateral impaired patients (mean age 65, stan-

dard deviation 10 years, 35–85 years, 14 female) we

obtained data from healthy sides as well as from impaired

sides. Sides which did not show coherence significantly

larger than zero assessed by the 95% confidence interval of

the coherence at at least one frequency bin between 0.06

and 0.12 Hz have not been included in the analysis. We

then analyze long-term reproducibility of all three esti-

mators separately by means of a collective of consecutive

patient measurements, called data set II. Fourty four

patients (mean age 71, standard deviation 10 years, 43–84

years, 6 female) have been reexamined after a mean

interval of 2.5 months, range 6 months, where the degree

of stenosis was confirmed to be unchanged beforehand.

Results

Inter-Method Agreement

For healthy and impaired sides, we tested the phases from

all three estimation methods for differences in the mean by

a two-way ANOVA for repeated measurements from data

set I (cf. Table 1). In Figs. 2 and 3 the scatterplots for the

healthy and for the impaired sides are shown. These figures
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also show Bland-Altman plots, which are rotated scatter-

plots such that the mean value of both measurements are

plotted against their difference. The mean of the phase

estimate from the smoothed periodogram, the ARMAX,

and the VAR approach are not significantly different

(healthy side: p = 0.279, impaired side: p = 0.450, cf.

Table 1). The healthy side shows a significant higher phase

parameter than the impaired side for all three methods

(p \ 0.0002). On average, the ARMAX model shows the

lowest complexity, i.e. the lowest �M ¼ 20; while the

smoothed periodogram method ð �M ¼ 164Þ and the VAR

method ð �M ¼ 80Þ need more model parameters to describe

the phase in the M-band.

We also present the same analysis for shorter signal

blocks from data set I in Fig. 4. The VAR model is able to

yield significant coherence estimates also for short data

segments N C 12,000, while the ARMAX and the smoothed

periodogram drop several patients for shorter N (cf. Fig. 4a).

Table 1 Statistical results for the inter-method comparison smoothed periodogram, ARMAX and VAR on data set I

Sides Approach w
l ± r

ANOVA, p value

Inter-method Healthy vs. impaired

Healthy Smoothed per. 43.2 ± 23.3 0.279 0.000133*

ARMAX 44.0 ± 20.3

VAR 42.3 ± 18.8

Impaired Smoothed per. 29.4 ± 23.8 0.450

ARMAX 33.5 ± 22.9

VAR 29.1 ± 20.6

* Significant differences

The phase was evaluated in the frequency range 0.06–0.12 Hz for all three methods and on the healthy and impaired sides separately. Columns 4

and 5 state the p values for the inter-method comparison and the comparison healthy versus impaired
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Fig. 2 Healthy side of data set I

(maximum length N = 40,000).

Top row scatterplots of the

parametric methods versus the

smoothed periodogram method:

a ARMAX versus smoothed

periodogram, b VAR vs.

smoothed periodogram. p values

from Kendall’s s. Dashed-
dotted lines indicate the mean ±

variance of the marginal

distributions. Bottom row
Bland-Altman plots with the

smoothed periodogram as a

reference method: c ARMAX

versus smoothed periodogram,

d VAR versus smoothed

periodogram. The dashed lines
show the 95% confidence

interval of the differences and

the solid line indicated the bias.

p values from linear regression

difference versus mean
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For all three methods, the phase estimate (mean and standard

deviation) do not depend on N (cf. Fig. 4b). Also the coef-

ficient of variation, which is defined as CV = r/l is stable

for varying block length as depicted in Fig. 4c. The average

model orders (Fig. 4d) and average model complexity �M
(Fig. 4e) increase slowly with N for both parametric meth-

ods whilst for the smoothed periodogram it is constant.

Measurement Reproducibility

The proposed estimators have been applied to two con-

secutive signal portions of length N = 20,000 of data set I

and to both measurements of data set II (N = 40,000) to

analyze whether CAR can be measured in a reproducible

manner. For the first setup we refer to short-term repro-

ducibility and for the second setup we refer to long-term

reproducibility. Only sides which showed significant

coherence for both measurements have been included in

the analysis. Scatterplots plots are presented in Fig. 5. For

all three methods significant correlations between both

measurements (p \ 0.0016) have been found by Kendall’s

rank correlation. For the data from data set I, i.e. short-term

reproducibility, the variability between measurements 1

and 2 are very low as depicted in Fig. 5d–f. For the mea-

surements of data set II, i.e. long-term reproducibility,

much more variability is present (cf. Fig. 5a–c). Also, the

coefficients of variation are very similar for short-term

reproducibility, while for long-term reproducibility they

vary much more. This variability can be explained by

several external influences, such as progress of the disease

or changing condition of the subject. These influences are

certainly not present in short-term reproducibility. How-

ever, even for long-term reproducibility a highly significant

correlation between both measurements can be obtained.

Discussion

In this study, a nonparametric and two parametric transfer

function estimators for the assessment of the dynamic

cerebral autoregulation from noninvasive measurements of

spontaneous oscillations were analyzed. Essentially, we

could not find a difference in performance between the

methods and we showed highly significant short-term and

−20 0 20 40 60 80 100

−20

0

20

40

60

80

100

p<0.00001

−20 0 20 40 60 80 100

−20

0

20

40

60

80

100

p<0.00001

−20 0 20 40 60 80 100

−60

−40

−20

0

20

40

60

p= 0.09481

−20 0 20 40 60 80 100

−60

−40

−20

0

20

40

60

p= 0.00018

meanmean

di
ff

er
en

ce

di
ff

er
en

ce

(a)

(c)

(b)

(d)

Fig. 3 Impaired side of data set

I (maximum length

N = 40,000). Top row
scatterplots of the parametric

methods versus the smoothed

periodogram method: a
ARMAX versus smoothed

periodogram, b VAR versus

smoothed periodogram. p values

from Kendall’s s. Dashed-
dotted lines indicate the mean ±

variance of the marginal

distributions. Bottom row
Bland-Altman plots with the

smoothed periodogram as a

reference method: c ARMAX

versus smoothed periodogram,

d VAR versus smoothed

periodogram. The dashed lines
show the 95% confidence

interval of the differences and

the solid line indicated the bias.

p values from linear regression

difference versus mean
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long-term reproducibility for all three methods. Parametric

models have also been applied in other fields related to

cerebral hemodynamics. In Matsukawa and Wada (1997) a

VAR model was utilized to analyze the feedback rela-

tionship between fluctuations in blood pressure and the

heart rate, while in Panerai et al. (2001, 2003) an ARMAX

model was used to assess CAR functionality. These studies

demonstrated that physiological data can be modeled by

parametric approaches and that several properties of the

human feedback regulation related to hemodynamics can

be measured reliably. In contrast to the present study, the

measurement setups were based on time-domain methods

and not on frequency-domain methods, thus other param-

eters than the phase parameter as in here have been

quantified. In Panerai et al. (2003) the authors considered

the autoregulation index (ARI) (Tiecks et al. 1995) instead

and reformulated it in terms of ARMA models. Also, a

cardiac cycle averaging (R–R preprocessing) has been

included and order estimation has not been performed on

each single observation, but on an ensemble of data. It was
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Fig. 5 Repeated measurements.

a–c on two separate days (data

set II), d–f by splitting a given

data block into two half (data

set I). For the case with

measurements on separate days

(a–c) the reproducibility is

much lower than for the second

case (d–f) as the p values are

much higher. The coefficient of

variation CV = r/l is stated in

each subplot. However, for all

cases highly significant

correlations (Kendall’s s) have

been obtained (p \ 0.002)
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shown that the ARMA-ARI produces more stable estimates

compared to the regular ARI. Parametric models have thus

proven to be a valuable tool to analyze signals stemming

from the human circulation system. Especially for CAR

assessment they are able to deliver valid results for time-

and frequency domain setups.

For a physiologically meaningful interpretation of the

present data it is of importance that the blood pressure

measured at the index finger is reasonably representing the

blood pressure in the carotid artery. Differences in pulse

pressure and to a lesser degree in mean blood pressure

between the Finapres device and invasively recorded blood

pressure in the aorta have been reported. These differences

lead to small but significant differences in parameters that

characterize dynamic cerebral autoregulation. However, as

those differences are small in absolute values and as fre-

quency domain measures which are of interest here appear

to be quite similar (Panerai et al. 2006, 2008; Sammons

et al. 2007), it is a reasonable approach to use the Finapres

data for the comparisons performed here.

Inter-Method Agreement

The smoothed periodogram method and the two methods,

i.e. the autoregressive-moving-average with exogenous

inputs (ARMAX) and the vector-autoregressive (VAR)

methods perform similar on the data set I in terms of dis-

tribution of the phase parameters. Similar figures for the

smoothed periodogram method only have been reported

(Reinhard et al. 2003, Table 2). Due to the technical

advantages of parametric methods, and their ability to

perform adaptive parameter estimation, they could be a

central part of future diagnosis devices, which are able to

deliver results online, without time delay due to block

processing. Such a measurement device could be of value

for monitoring of acutely ill patients in an intensive care

unit.

Sampling Rate and Model Complexity

It was observed that for higher sampling rates the perfor-

mance of the parametric approaches deteriorates. An

explanation for this is that the parametric estimators need

to model the transfer function over the whole frequency

range intrinsically, while for the smoothed periodogram

approach only the relevant frequency range 0.06–0.12 Hz

(M-wave band) needs to be evaluated. Thus, the sampling

rate of the raw data has been lowered to 2.5 Hz, which has

been shown to be optimal in the sense that no influence of

the phase estimates on the sampling rate between 2 and

4 Hz has been observed. For the smoothed periodogram

approach, no dependence of the phase parameter on the

sampling rate has been noticed up to a minimum sampling

rate of 1 Hz. Note that in (Panerai et al. 2003) a compa-

rable sampling rate of 1.67 Hz has been used.

The ARMAX model exhibits the lowest complexity,

while the VAR method and the smoothed periodogram

method need a larger amount of model parameters.

Although the smoothed periodogram method is able to

select only frequencies of interest and neglects the others

completely, it needs the highest number of model param-

eters. For the smoothed periodogram method it is necessary

to design a taper window, whose shape and length need to

be tuned a priori. In contrast, both parametric methods rely

on objective parameter and order estimation criteria and

thus they allow for a fully automated measurement pro-

cedure of the CAR functionality.

Regarding technical and practical applicability, the

minimum data length for analysis of CAR is of importance.

The minimal data length prescribes the maximum fre-

quency resolution, which is available for the phase aver-

aging (cf. Eq. 2) and it thus has to be bounded below. The

frequency range of interest during spontaneous oscillations,

0.06–0.12 Hz, has the width of a full octave and should

therefore be resolved in more detail. The frequency reso-

lution is thus bounded by Df � 0.06 Hz, the minimum

block length Nmin becomes Nmin � fS/0.06 & 16fS. For a

sufficient frequency resolution, as needed for the fre-

quency-averaging of spontaneous hemodynamic oscilla-

tions, the measurement time needs to be much larger than

Tmin&16 s and it is independent of fS. For much shorter

time intervals than 16 s, the SPO phase parameters cannot

be computed by frequency averaging as defined in Eq. 2

but they become an estimate based on a single frequency

bin. We have shown that measurement of CAR based on

spontaneous oscillations can be done with a data minimum

length of N = 12,000 corresponding to 12 s. Block-based

processing schemes, as discussed in here, will introduce a

delay in the range of 10–20 s. For parametric models

various adaptive estimation schemes are available, which

have the potential to lower this delay time substantially,

thus making an online measurement procedure possible. A

true online processing with a delay smaller than some

seconds can be of great interest in (1) intensive online

monitoring, and in (2) measurement protocols with

changing paradigms such as deep breathing and sponta-

neous breathing interlaced.

Measurement Reproducibility

We showed that the phase parameter defined in Eq. 5 can

be measured in a reproducible way on even data set II.

From the scatter plots in Fig. 5 one can see that the per-

formance is excellent for short-time reproducibility and it

is also highly significant for the long-time reproducibility.

Previous studies on reproducibility of CAR measurements
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showed similar results but using other measurement setups.

In (Smielewski et al. 1996) the transient hyperemic

response test, i.e. inducing changes in middle cerebral

artery blood flow velocity by brief ipsilateral carotid artery

compressions of several seconds was compared to the thigh

cuff test. The reproducibility of the transient hyperemic

response ratio was more consistent than for the autoregu-

lation index from the thigh cuff experiment. Another

classical measurement setup, the lower body negative

pressure box has been used to perform another study on

reproducibility based on an eight-fold of measurements

(Birch et al. 2002). In each session, a 12 s cycle has been

applied to the person for a duration of 5 min and from ABP

and CBFV the phase relationship has been estimated.

Analyzing the deviation from the mean showed that the

measurements are very reproducible. In (Liu et al. 2005) a

reproducibility study based on the ARI was presented on a

relatively small data set. It was concluded that data with

too small variability in ABP shall be excluded from pro-

cessing. However, we conclude that with our frequency-

domain approaches the exclusion of weaker patients can be

done automatically by estimating the coherence between

ABP and CBFV. Finally, in Reinhard et al. (2003) the

reproducibility for both deep breathing and spontaneous

oscillations have been investigated, where for deep

breathing at 0.1 Hz a higher significance has been shown

because of univocal phase determination at 0.1 Hz. Inter-

estingly, in that study, the phase from spontaneous oscil-

lations was manually extracted from the point of maximum

coherence within the low-frequency band, while in the

present study automated extraction of phase was done by

averaging phase values over all frequency bins exhibiting a

significant coherence within the low-frequency band. The

better reproducibility found with the presented procedure

suggests that manual extraction of single phase values may

be less adequate for phase estimation from spontaneous

hemodynamic oscillations. We conclude that using aver-

aged phase extraction also spontaneous oscillations can be

used for reliable CAR measurement. The advantage of

spontaneous oscillations is that no special patient compli-

ance is needed.

Conclusions

The two parametric approaches are valid alternatives to the

smoothed periodogram method, and they are suitable for

automatic assessment of cerebral autoregulation (CAR)

with lower model complexity. It has also been shown that

CAR measurement based on spontaneous oscillations can

be a valid diagnostic tool. Thus the proposed methods as

well as the classical method are useful for clinical moni-

toring of patients. The parametric estimators can be applied

in an adaptive real-time manner with minimum delay time.

Especially the VAR approach is due to its very low

minimum data length an attractive alternative for future

monitoring applications. We also have shown that repro-

ducibility of CAR measurement is highly significant, even

for the case of repeated measurements within several

months.
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