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a  b  s  t  r  a  c  t

Inferring  Granger-causal  interactions  between  processes  promises  deeper  insights  into  mechanisms
underlying  network  phenomena,  e.g.  in  the neurosciences  where  the level  of  connectivity  in  neural  net-
works  is of  particular  interest.  Renormalized  partial  directed  coherence  has  been  introduced  as  a  means
to  investigate  Granger  causality  in such  multivariate  systems.  A  major  challenge  in estimating  respec-
eywords:
on-stationary causal influences
ime-resolved partial directed coherence
ector autoregressive processes
tate space models
xpectation–Maximization algorithm

tive  coherences  is a reliable  parameter  estimation  of  vector  autoregressive  processes.  We discuss  two
shortcomings  typical  in  relevant  applications,  i.e. non-stationarity  of  the  processes  generating  the  time
series  and  contamination  with  observational  noise.  To  overcome  both,  we present  a  new  approach  by
combining  renormalized  partial  directed  coherence  with  state  space  modeling.  A  numerical  efficient  way
to  perform  both  the  estimation  as  well  as  the  statistical  inference  will be  presented.

© 2011 Elsevier B.V. All rights reserved.
. Introduction

Several analysis techniques exist to determine relationships
nd causal influences in multivariate systems. Based on transfer
ntropy (Schreiber, 2000; Staniek and Lehnertz, 2008), recurrences
n state space (Arnhold et al., 1999; Chicharro and Andrzejak,
009; Romano et al., 2007), mutual information (Pompe et al.,
998; Paluš and Stefanovska, 2003; Paluš and Vejmelka, 2007;
ejmelka and Paluš, 2008; Frenzel and Pompe, 2007), phase
ynamics (Rosenblum and Pikovsky, 2001; Rosenblum et al., 2002),
oherence (Halliday and Rosenberg, 2000; Dahlhaus, 2000; Nolte
t al., 2008), the Fokker Planck formalism (Prusseit and Lehnertz,
008; Bahraminasab et al., 2009), or autoregressive processes
Dahlhaus and Eichler, 2003; Schack et al., 1995; Eichler, 2000;

orzeniewska et al., 1997; Kamiński et al., 1997; Kamiński and
linowska, 1991; Arnold et al., 1998) they aim at detecting directed

nfluences. Recently, partial directed coherence was  introduced to

∗ Corresponding author at: FDM, Freiburg Center for Data Analysis and Modeling,
niversity of Freiburg, Eckerstr. 1, 79104 Freiburg, Germany. Tel.: +49 761 203 7709;

ax:  +49 761 203 7700.
E-mail address: linda.sommerlade@fdm.uni-freiburg.de (L. Sommerlade).

165-0270/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jneumeth.2011.08.042
assess causal influences (Baccala and Sameshima, 2001) for exam-
ple in neuroscience (Sameshima and Baccala, 1999; Nicolelis and
Fanselow, 2002). This frequency domain concept extends bivariate
coherence analysis (Brockwell and Davis, 1993) and multivariate
graphical models applying partial coherences (Dahlhaus, 2000;
Brillinger, 1981). It has recently been generalized to renormalized
partial directed coherence (Schelter et al., 2009), which allows the
interpretation of the results also in terms of the strength of inter-
action.

In the neurosciences structural, functional and effective con-
nectivity are distinguished (Horwitz, 2003). Here, we  refer to
functional connectivity unless otherwise stated. The functional
connectivity of neural networks is usually estimated by classi-
cal methods like correlation and coherence based on raw data or
power spectra approaches. All these methods do not give informa-
tion about the direction of information flow. The use of Granger
causality applied to electroencephalography (EEG) data is useful
to identify the possible underlying functional network connectiv-
ity in order to gain information on the dynamics and connection

strengths between different recording-sites.

Renormalized partial directed coherence is based on modeling
time series by multivariate autoregressive processes. Commonly,
the coefficients of such processes are estimated via the multivariate

dx.doi.org/10.1016/j.jneumeth.2011.08.042
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:linda.sommerlade@fdm.uni-freiburg.de
dx.doi.org/10.1016/j.jneumeth.2011.08.042
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ule Walker equations (Lütkepohl, 1993). Autoregressive models
ave the major drawback, that they are not able to cope with obser-
ational noise (Brockwell and Davis, 1993). Since neglecting the
atter leads to a dramatic underestimation of the process coeffi-
ients, usually the order of the process is increased. This is not a
ufficient solution to the challenge of observational noise (Timmer,
998). The estimated coefficients of the autoregressive process are
hen Fourier transformed resulting in renormalized partial directed
oherence, a quantity in the frequency domain replacing tests
f statistical significance for the individual autoregressive coeffi-
ients.

The estimation algorithms assume stationarity and thus cannot
eal with time-dependent autoregressive coefficients. Window-

ng the time series and analyzing the interaction structure in
ach window would result in an approximation of the results
or non-stationary data, however, rapid changes in coefficients
annot be detected in this way. Actual estimation methods for
ime-dependent coefficients (Grenier, 1983; Kitagawa and Gersch,
996; Wan  and van der Merwe, 2000) are based on a priori infor-
ation either about their functional relationship or at least about

he smoothness of changes. A time-dependent implementation
f autoregressive models and their corresponding parameter fit-
ing algorithms is crucial for many applications such as transitions
etween sleep stages (Jyoti et al., 2010; Sunderam et al., 2007) or
ransitions into epileptic seizures (Gluckman et al., 2001; Sunderam
t al., 2010).

Time-resolved Granger causality estimated from EEG data could
or example be used as a mathematical tool to test hypothesis
elated to the interaction of brain areas. It could give important
nformation and provide new insights into pathologies involv-
ng a fronto-temporal disconnection like schizophrenia (Lawrie
t al., 2002) and confirm a possible mechanism providing a feasi-
le biomarker for early disease detection or improved differential
lassification.

In task oriented and tactile exploratory movements an oscilla-
ory activity in the beta frequency range (14–30 Hz) is observed
n different part of the sensorimotor cortex (Brovelli et al., 2004).
his observation suggests that the oscillations in the beta range
ould provide a mechanism that connects sensory and motor corti-
al areas during the tasks. Advancing this observation the Granger
ausality analysis allowing a narrow range spectral interpretation
ould reveal the directed influences between nodes in the sensori-
otor brain networks.
The understanding of brain network dynamics based on EEG

ata may  help to build a next level of logic built on the network
tructure combining other techniques that highlight structural con-
ection like magnetic resonance imaging (MRI) (Seth and Edelman,
007). Interestingly, the dynamic changes identified with Granger
ausality may  depend on the context and behavioral situation of
he measurement.

Some time-dependent methods (Winterhalder et al., 2005;
emmelmann et al., 2009) do not specifically consider obser-
ational noise. To overcome the shortcomings introduced by
bservational noise and non-stationarity simultaneously, tech-
iques that enable investigation of directional relationships on
ery short time scales from multiple realizations of short and tran-
ient noisy time series have been proposed (Andrzejak et al., 2006;

agner et al., 2010; Martini et al., 2011). Using only single realiza-
ions, we combine state space modeling (Harvey, 1994; Shumway
nd Stoffer, 2000; Hamilton, 1994) with time-dependent autore-
ressive coefficients and renormalized partial directed coherence.
ctual estimation techniques of time-dependent autoregressive

oefficients in state space models are improved and enhanced
or noisy and vector autoregressive processes. The presented
stimator for the time-dependent autoregressive coefficients does
ot rely on any prior assumptions. This leads to a time resolving
ence Methods 203 (2012) 173– 185

analysis technique that detects causal influences between pro-
cesses in multivariate systems contaminated with observational
noise.

The paper is structured as follows: first, Section 2 summarizes
renormalized partial directed coherence. Aspects of inadequate
current estimators are discussed in Section 3. Time-dependent
state space modeling and a parameter estimation technique able to
cope with non-stationarity and observational noise are presented
in Section 4. Examples of the combination of renormalized par-
tial directed coherence and state space modeling are illustrated
in Section 5, followed by an application to EEG data during sleep
transitions recorded in mice in Section 6.

2. Renormalized partial directed coherence

Baccala and Sameshima et al. (Baccala and Sameshima, 2001,
1998; Baccala et al., 1998; Sameshima and Baccala, 1999) intro-
duced partial directed coherence to examine causal influences in
multivariate systems. This frequency domain measure was refined
to allow to draw conclusions about the strength of interactions by
renormalization (Schelter et al., 2009). In order to estimate renor-
malized partial directed coherence, a vector autoregressive process
is fitted to the multivariate time series. Therefore, an n-dimensional
vector autoregressive model of order p (VAR[p])

�x(t) =
p∑

r=1

ar �x(t − r) + �εx(t) �εx(t)∼N(�0|�) (1)

is considered, where �εx denotes independent Gaussian white noise
with covariance matrix � and ar the coefficient matrices of the VAR.
A single component of such a vector autoregressive process can be
interpreted in physical terms as a combination of relaxators and
damped oscillators (Honerkamp, 1993).

The spectral matrix of a VAR process is given by Brockwell and
Davis (1993)

S(ω) = H(ω)� HH(ω), (2)

where the superscript (·)H denotes the Hermitian transpose. The
transfer matrix H(ω) is defined as

H(ω) = [I − A(ω)]−1 = [A(ω)]−1, (3)

where I is the n-dimensional identity matrix and A(ω) is given by
the Fourier transform of the coefficients

Akj(ω) =
p∑

r=1

ar,kj e−iωr . (4)

Consider the two-dimensional vector

Xkj(ω) =
(

Re(Akj(ω))

Im(Akj(ω))

)
(5)

with Xkj(ω)′Xkj(ω) = |Akj(ω)|2. The corresponding estimator X̂kj(ω)

with Âkj(ω) substituted for Akj(ω) is asymptotically normally dis-
tributed with mean Xkj(ω) and covariance matrix Vkj(ω)/N (Schelter
et al., 2009), where N is the number of data points and

Vkj(ω) =
p∑

l,m=1

R−1
jj (l, m)�kk

(
cos(lω) cos(mω) cos(lω) sin(mω)

sin(lω) cos(mω) sin(lω) sin(mω)

)
(6)
with R the covariance matrix of the VAR process. This leads to the
renormalized partial directed coherence

�kj(ω) = Xkj(ω)′V−1
kj (ω)Xkj(ω). (7)
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ions for different amounts of observational noise. Renormalized partial directed
oherence was estimated using a model order of p = 10. Significance was evaluated
t the oscillation frequencies of approximately 0.12 Hz and 0.05 Hz respectively.

f �kj(ω) = 0, a Granger-causal linear influence from xj to xk taking all
ther processes into account can be rejected at frequency ω. The ˛-
ignificance level for �kj(ω) = 0 is given by �2

2,1−˛/N (Schelter et al.,
009).

. Two  shortcomings: observational noise and
on-stationarity

Reliable estimation of n-dimensional VAR[p] coefficient matri-
es is the major task in estimating renormalized partial directed
oherence. Since in many applications observational noise is
navoidable, parameter estimation techniques like algorithms
ased on generalized Yule–Walker equations might yield mislead-

ng results.
This so-called error-in-variables-problem is illustrated in the fol-

owing by an autoregressive process of order one (Timmer, 1998).
or the parameter a of an AR[1]-process

(t) = ax(t − 1) + ε(t) ε∼N(0, 1) (8)

n unbiased estimator can be obtained based on the auto-
ovariance function

ˆ  = E[x(t)x(t − 1)]
E[x(t)x(t)]

(9)

ith E[·]  denoting the expectation value. Contamination with Gaus-
ian distributed observational noise �(t)

(t) = x(t) + �(t) (10)

eads to an underestimation of the parameter

ˆ = E[y(t)y(t − 1)]
E[y(t)y(t)]

= a

[
1 + E[�2(t)]

E[x2(t)]

]−1

. (11)

his underestimation becomes worse with increasing noise-to-
ignal ratio E[�2(t)]/E[x2(t)]. In the case of a noise-to-signal ratio of
ne, the estimated parameter â reaches only 50% of the true value
.

The underestimation of parameters and its effects on renor-
alized partial directed coherence are illustrated in Fig. 1 for a

-dimensional VAR[2] process

(t) =
2∑

r=1

ar �x(t − r) + �εx(t), (12)

i(t) = xi(t) + �i�i(t) i = 1, 2, (13)
ith

1 =
(

1.3 c

0 1.7

)
, a2 =

(−0.8 0

0 −0.8

)
. (14)
ence Methods 203 (2012) 173– 185 175

The coupling parameter c was  set to c = 0.3 and noise-to-signal
ratios of NSR = 0 to NSR = 1 in steps of 0.25 were simulated by choos-
ing the standard deviation of the observational noise �i accordingly.
We simulated 100 realizations of N = 5000 data points and used a
model order of p = 10 for the estimation. Assuming the true model
order is unknown, if it is chosen too low, false positive conclusions
may  be drawn (Sommerlade et al., 2009). Thus, we chose the model
order higher than the true one. The choice of 10 aims at demonstrat-
ing that a too high order does not spoil the results. Since the VAR[2]
processes used here correspond to driven damped oscillators with
a frequency of approximately 0.12 Hz and 0.05 Hz respectively, the
renormalized partial directed coherence was evaluated at these
frequencies. In Fig. 1 the percentage of significant renormalized
partial directed coherences is shown in dependence of different
noise-to-signal ratios. The number of erroneously detected interac-
tions increases with increasing observational noise, while the true
coupling is correctly detected for all NSRs.

Furthermore, if the interaction between the processes is not con-
stant in time, the renormalized partial directed coherence analysis
is expected to fail in estimating the true interaction structure. The
causal influence from process x2 to x1 is represented by the param-
eter c in our model (Eqs. (12)–(14)). We  set �i = 0 for i = {1, 2}, i.e. no
observational noise, and simulated a time dependent interaction by
setting

c =
{

0 if t ≤ 2500

0.5 else
, (15)

i.e. the influence from process x2 to x1 is present only in the second
half of the simulation period. Again we simulated 100 realizations
of N = 5000 data points and used a model of order p = 10 for our
estimation. Since the parameters are estimated for the whole time
series, the renormalized partial directed coherence could not detect
this time-dependence of the parameter. The influence from process
x2 to x1 evaluated at 0.05 Hz was detected in 100% of the simulated
realizations, which is misleading since the coupling is only present
in the second half of the simulation.

In most applications, there is no prior knowledge about the
time-dependence of parameters. Additionally, observational noise
is usually present. Therefore, a time-dependent estimation tech-
nique that accounts for observational noise is required.

4. State-space modeling of time-dependent VAR processes
contaminated with observational noise

To determine the time-dependent renormalized partial directed
coherence the parameter matrices a1(t), . . .,  ap(t) of an n-
dimensional time-dependent vector autoregressive (VAR) process

�x(t) =
p∑

r=1

ar(t)�x(t − r) + �εx(t) �εx(t)∼N(�0|�) (16)

have to be estimated for each time-step. Furthermore, the esti-
mator of the parameter matrices must take the additive Gaussian
observational noise ��(t) contaminating the VAR[p] process �x(t)

�y(t) = �x(t) + ��(t) ��(t), ∼N(�0|R), (17)

into account.
The linear state space model is a powerful tool to estimate

processes contaminated with observational noise as well as time-
dependent parameters (Harvey, 1994; Kitagawa and Gersch, 1996).
In the following, we  introduce the concept of the linear state space

modeling first in general and second for a stationary VAR[p] process
contaminated with observational noise. Finally, we generalize this
state space description of the VAR[p] process to time-dependent
parameters a1(t), . . .,  ap(t).
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To include observational noise explicitly, the state space model
epresentation (Shumway and Stoffer, 2000; Harvey, 1994)

�(t) = A�u(t − 1) + �εu(t) �εu(t)∼N(�0|Qu) (18)

�(t) = Cu �u(t) + ��(t) ��(t)∼N(�0|R) (19)

here �u(t) is the multivariate hidden process and �y(t) the observed
rocess contaminated with Gaussian noise ��(t), of a VAR[1] process

s used, handling of higher orders is introduced below.
In linear state space models, the optimal estimators for the hid-

en process �u(t), given certain observations {�y(1), . . . , �y(s)} and
ssuming knowledge about the true parameters, are the Kalman
lter (Kalman, 1960; Kalman and Bucy, 1961) and smoother (Rauch
t al., 1965; Ansley and Kohn, 1982). The Kalman filter yields the
onditional expectation value �u(t|t) := E{�u(t)|�y(1), . . . , �y(t)} con-
idering only observations up to time t. The Kalman smoother, also
alled fixed interval smoother, calculates the conditional expec-
ation value of the hidden process �u(t|N) := E{�u(t)|�y(1), . . . , �y(N)}
aking account of all observations. These two estimators need the
rue parameters, i.e. the matrices A, Qu, C, R determining the linear

odel (18) and (19) as input. Thus, they are not sufficient to esti-
ate the model parameters. The Expectation–Maximization (EM)

lgorithm (Dempster et al., 1977) applied to linear Gaussian state
pace models (Shumway and Stoffer, 1982) presents an iterative
lgorithm for Maximum Likelihood parameter estimation based on
he Kalman filter and smoother.

A stationary VAR process of order p and dimension n as intro-
uced in Eq. (1) can be rewritten as a process of first order by
ugmenting its dimension. Therefore, all past information needed
o predict �x(t) is collected in one single new nu-dimensional vector

�(t − 1) = (�xT (t − 1), �xT (t − 2),  . . . , �xT (t − p))T , (20)

ith dimension nu = np.  The model equation⎛
⎜⎜⎜⎜⎝

�x(t)

�x(t − 1)

...

�x(t − p + 1)

⎞
⎟⎟⎟⎟⎠

︸ ︷︷  ︸
�u(t)

=

⎛
⎜⎜⎜⎜⎝

a1 a2 · · · ap

In 0n · · · 0n

...
. . .

. . .
...

0n · · · In 0n

⎞
⎟⎟⎟⎟⎠

︸ ︷︷  ︸
A

⎛
⎜⎜⎜⎜⎝

�x(t − 1)

�x(t − 2)

...

�x(t − p)

⎞
⎟⎟⎟⎟⎠

︸ ︷︷  ︸
�u(t−1)

+

⎛
⎜⎜⎜⎜⎝

�εx(t)

�0
...

�0

⎞
⎟⎟⎟⎟⎠

︸ ︷︷  ︸
�εu(t)

(21)

ith

�u(t)∼N

⎛
⎜⎜⎜⎜⎝�0

∣∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎜⎝

� 0n · · · 0n

0n 0n · · · 0n

...
. . .

. . .
...

0n · · · 0n 0n

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

︸ ︷︷  ︸
N(�0|Qu)

(22)

f the new vector �u(t) is an equivalent representation of the VAR[p]
rocess �x(t). The matrices In and 0n denote the n × n identity and
he n × n matrix of zeros. The new representation in Eq. (21) of
he VAR[p] process ensures a direct applicability of the linear state
pace model of Eq. (18).

The state space model divides the VAR process contaminated
ith observational noise into two equations. The first, the system

q. (18), describes the VAR[p] process. The second, the observation
q. (19)

�(t) = ( In 0n · · · 0n )�u(t) + ��(t) = �x(t) + ��(t), (23)
︸  ︷︷  ︸
Cu

escribes the observation of the n-dimensional vector �x(t) of the
AR[p] process with additive observational noise ��t of dimension
ence Methods 203 (2012) 173– 185

n.  Finally, the EM algorithm for the linear state space model in com-
bination with the Kalman filter or smoother estimates the n2(p + 2)
entries of the matrices {a1, . . .,  ap, �, R} as well as the hidden trajec-
tory {�x(1), . . . , �x(N)} using only the observations {�y(1), . . . , �y(N)}
(Shumway and Stoffer, 1982).

4.1. Time-dependent parameters by the dual Kalman filter

To include non-stationary dynamics, state space modeling

�u(t) = A�a(t−1) �u(t − 1) + �εu(t) (24)

�y(t) = Cu �u(t) + ��(t) (25)

has to be extended to include time-dependent parameters A�a(t−1)

with A�a(t−1) the matrix

A�a(t−1) =

⎛
⎜⎜⎜⎜⎝

a1(t − 1) a2(t − 1) · · · ap(t − 1)

In 0n · · · 0n

...
. . .

. . .
...

0n · · · In 0n

⎞
⎟⎟⎟⎟⎠ (26)

that consists of the entries of the vector of the n2p time varying
entries of the coefficient matrices a1(t), . . .,  ap(t) of the VAR[p]
process.

To estimate time-dependent parameters �a(t) together with the
hidden process �u(t) the dual Kalman filter has been proposed (Wan
and Nelson, 1997). For an approach based on a joint state space
and the unscented Kalman filter (Julier et al., 2000) the dimen-
sion increases rapidly with the process dimension and order of
the autoregressive model. Thus, we  consider the dual approach
here. Therefore, a second state space model complementing the
one presented in Eqs. (24) and (25)

�a(t) = �a(t − 1) + �εa(t) (27)

�y(t) = C�u(t−1)
a �a(t) + �εx(t) + ��(t), (28)

whereby C�u(t−1)
a denotes the observation matrix that results from

the knowledge of �u(t − 1), has been introduced, which models the
time-dependent parameters �a(t) as a hidden process. The hidden
parameters are observed through the concatenated observation –
(25) and process – (24) equation, i.e. the observation matrix C�u(t−1)

a

contains the hidden process vector �u(t − 1) in such a way that
C�u(t−1)

a �a(t) correspond to the first n components of A�a(t) �u(t − 1).
We emphasize that the apparently non-stationary equation

�a(t) = �a(t − 1) + �εa(t) (29)

for the parameter vector can be interpreted as a restriction of
the difference �a(t) − �a(t − 1), which is the discrete counterpart of
the first derivative, by independent Gaussian distributed noise
�εa(t)∼N(�0|Qa) with a diagonal covariance matrix Qa (Kitagawa
and Gersch, 1996). The variance (Qa)ii determines the amount the
parameter ai(t) is allowed to change within one time step and thus
the smoothness of the entire parameter curve ai(t).

The dual Kalman filter is divided into one linear Kalman filter for
the process state space (24) and (25) and another one for the param-
eter state space (27) and (28). The process Kalman filter calculates
the optimal estimates �u(t|t) given the time-dependent parameters
�a(t − 1) based on all causal observations. The parameter Kalman
filter computes the optimal estimates �a(t|t) given the process state
vectors �u(t − 1). Thus, the process Kalman filter depends on the

parameters and the parameter Kalman filter relies on the process
state vectors. This cross-over dependence of the parameter and pro-
cess state space is resolved by using the estimates of the parameters
�a(t − 1|t − 1) in the process Kalman filter and vice versa the results
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Table  1
The dual state space model for the coefficients and process vectors of a time-dependent VAR[p] process contaminated with observational noise is presented.
The  Expectation–Maximization algorithm is shown for this dual state space. The improvements of the dual Kalman filter are highlighted in red. The model and
Expectation–Maximization algorithm are presented for the process state space on the left and the parameter state space on the right.

Time-dependent VAR[p] process contaminated with observational noise

Dual state space model
Process state space Parameter state space
�u(t)  = A(t)�u(t − 1) + ��u(t)

�y(t) = Cu �u(t) + ��(t)

�a(t) = �a(t − 1) + ��a(t)

�y(t) = Ca(t)�a(t) + ��x(t) + ��(t),
Process transition matrix Parameter observation matrix

A�a(t−1) =

⎛
⎜⎜⎝

a1(t − 1) · · · anp(t − 1)

.

.

.
. . .

.

.

.

a(n−1)p+1(t − 1) · · · an2p(t − 1)

Inp−n 0(np−n)×n

⎞
⎟⎟⎠ =

(
A0(t)

A1

)

A(t) := A�a(t−1)

C�u(t−1) =

⎛
⎜⎝

�uT (t − 1) · · · �0T
np

.

.

.
. . .

.

.

.
�0T

np · · · �uT (t − 1)

⎞
⎟⎠

Ca(t) := C�u(t−1)

Expectation step
Improved dual Kalman filter

Process Kalman filter for t = 1, . . .,  N Parameter Kalman filter for t = 1, . . .,  N
Process transition matrix Parameter observation matrix

A(t|t  − 1) = A�a(t−1|t−1) =
(

A0(t|t − 1)

A1

)
Ca(t|t − 1) := C�u(t−1|t−1)

Process prediction Parameter prediction

(t|t − 1) = A(t|t − 1) (t − 1|t − 1),

Pu(t|t − 1) = A(t|t − 1)Pu(t − 1|t − 1)AT (t|t − 1) + Qu

Px(t|t − 1) = Px(t|t − 1) + Ca(t|t − 1)Pa(t − 1|t − 1)CT
a (t|t − 1)

Pyu (t|t − 1) = CuPu(t|t − 1)CT
u + R

(t|t − 1) = (t − 1|t − 1),
Pa(t|t − 1) = Pa(t − 1|t − 1) + Qa

Pya (t|t − 1) = Ca(t|t − 1)Pa(t|t − 1)CT
a (t|t − 1) + Qu

+A0(t|t − 1)Pu(t − 1|t − 1)AT
0 (t|t − 1) + R

= Pyu (t|t − 1) + Ca(t|t − 1)QaCT
a (t|t − 1)

Process update Parameter update

Ku(t) = Pu(t|t − 1)CT
u(Pyu (t|t − 1))−1

�u(t|t) = �u(t|t − 1) + Ku(t)(�y(t) − Cu �u(t|t − 1)),

Pu(t|t) = (Inp − Ku(t)Cu)Pu(t|t − 1).

Ka(t) = Pa(t|t − 1)CT
a (t|t − 1)CT

x (Pya (t|t − 1))−1

�a(t|t) = �a(t|t − 1) + Ka(t)(�y(t) − Ca(t)�a(t|t − 1)),

Pa(t|t) = (In2p − Ka(t)Ca(t))Pa(t|t − 1).

Dual  smoothing filter
Process smoothing filter for t = N, . . .,  1 Parameter smoothing filter for t = N, . . .,  1

Bu(t − 1) = Pu(t − 1|t − 1)AT (t|t − 1)(Pu(t|t − 1))−1

�u(t − 1|N) = �u(t − 1|t − 1) + Bu(t − 1)(�u(t|N) − �u(t|t − 1))

Pu(t − 1|N) = Pu(t − 1|t − 1) + Bu(t − 1) ·
(Pu(t|N) − Pu(t|t − 1))BT

u(t − 1)

Ba(t − 1) = Pa(t − 1|t − 1)(Pa(t|t − 1))−1

�a(t − 1|N) = �a(t − 1|t − 1) + Ba(t − 1)(�a(t|N) − �a(t|t − 1))

Pa(t − 1|N) = Pa(t − 1|t − 1) + Ba(t − 1) ·
(Pa(t|N) − Pa(t|t − 1))BT

a (t − 1)
Maximization step

A(t|N) := A�a(t−1|N)

Q(m+1)
u = 1

N

∑N

t=1

{
(�u(t|N) − A(t|N)�u(t − 1|N)) ·

(�u(t|N) − A(t|N)�u(t − 1|N))T + Pu(t|N) − A(t|N)Bu(t − 1)Pu(t|N)

−P(t|N)uBT
u(t − 1)AT (t|N) + A(t|N)Pu(t − 1|N)AT (t|N)

}
R(m+1) = 1

N

∑N

t=1

{
(�y(t) − Cu �u(t|N))(�y(t) − Cu �u(t|N))T}

Q(m+1)
a = 1

N

∑N

t=1

{
(�a(t|N) − �a(t − 1|N)) ·

·  (�a(t|N) − �a(t − 1|N))T + Pa(t|N) − Ba(t − 1)Pa(t|N)

−Pa(t|N)BT
a (t − 1) + Pa(t − 1|N)

}

o
e

4

1
N
A
l

P

i
i

+CuPu(t|N)CT
u .

f the process Kalman filter �u(t − 1|t − 1) to calculate the parameter
stimates �a(t|t) via the parameter Kalman filter.

.1.1. Improvement of the dual Kalman filter
The dual Kalman filter neglects the estimation error of �a(t −

|t − 1) in the process state space, Eqs. (24) and (25) (Wan  and
elson, 1997). Thus, the variance of the random variable u(t) =
�a(t−1) �u(t − 1) given the observations {�y(1), . . . , �y(t − 1)}  calcu-

ated by

u(t|t − 1) = Var
(

u(t)
∣∣�y(1),  . . . , �y(t − 1)

)

= A�a(t−1|t−1)Pu(t − 1|t − 1)A�a(t−1|t−1) (30)

s underestimated. Instead of considering �a(t − 1) as exact, we  treat
t as a random variable and approximate u(t) = A�a(t−1) �u(t − 1) by a
first order Taylor expansion. The first n components contain the
actual VAR[p] process vector �x(t) defined by a nonlinear function
f (�a(t − 1), �u(t  − 1)) of second order. This leads to a correction of the
variance Px(t|t − 1) of �x(t) resulting in

Px
t|t−1 = A0

t|t t|t−1P
u
t−1|t−1(A0

−1)
T +Ct,aPa

t−1|t−1C
T
t,a + Σ

(31)

with A0
t|t−1 referring to the first n rows of transition matrix At|t−1

of the process state space. Details are given in Appendix A. In the
same way, the parameter Kalman filter is improved. For the detailed

improved dual Kalman filter equations please refer to Table 1.

The dual Kalman filter uses only causal information to calculate
the estimates for �a(t) and �u(t). The dual smoothing filter improves
the estimates �a(t|t) and �u(t|t) of the dual Kalman filter using even
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ig. 2. One realization of a non-stationary AR[1] process is shown in black. The time-
ependent AR coefficient a(t) is given in red. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web  version of the article.)

uture observations. The dual smoothing filter equations to calcu-
ate �a(t|N)�u(t|N) are described in Table 1.

The usage of future observations however does not influence the
stimation of causal relationships. The dual smoothing filter uses
uture observations to improve the estimation of the autoregressive
oefficients. Thereby, the estimation is still based on Eqs. (24)–(28)
nd thus, only past values of �u are allowed to influence the present
alue �u(t).

.1.2. Choosing the covariance Qa

Until now, we assumed that the variances Qa, � and R of the
wo state spaces were known. In the following, we demonstrate
he importance of an adequate choice of the so-called smoothness
rior Qa (Kitagawa and Gersch, 1996). To have a distinguishable
otation, we are going to call the vector �a(t) the parameters and the
ariances Qa, � and R hyper-parameters, although strictly speaking
hey are not hyper-parameters.

To investigate the results of the dual Kalman filter and dual
moothing filter, a one dimensional AR[1] process was  simulated
ith a time varying parameter

(t) = −0.2 + 1.5 sin
(

2	t

1000

)
exp
(−2(t − 1)

999

)
. (32)

he variance of the system noise �x(t) was set to 
 = 1. In Fig. 2, the
rocess variable x(t) and the time-depending AR coefficient a(t) are
hown.
The observation of the time-dependent AR[1] process xt is con-
aminated with observational noise �(t)∼N(0, R = 0.5). Since the
ariance of the AR process depends on a(t) and thus on time, the
oise-to-signal ratio lies between 0.2 and 0.5.

a b 

ig. 3. The time-dependent parameter a(t) of an AR[1] process x(t) = a(t)x(t − 1) + �x(t) wi
y  the dual smoothing filter. The system noise 
 = 1, the observational noise R = 0.5 and t
or  the dual smoothing filter. The results are shown in red in (a), (b) and (c) respectivel
eferred to the web  version of the article.)
ence Methods 203 (2012) 173– 185

In Fig. 3, the time-dependent parameter of a one dimensional
AR[1] process (Eq. (32)) is presented in black. The time-dependent
parameter a(t) has been estimated by the dual smoothing filter. The
process and observational noise variances have been set to the true
values (
 = 1 and R = 0.5) and the effect of using different parameter
noise variances is demonstrated.

In Fig. 3(a), the parameter noise variance Qa = 5 × 10−2 is cho-
sen too large and the estimator a(t|N) fluctuates around the true
parameter curve. In Fig. 3(c), the Qa = 5 × 10−6 is very small and
the Kalman smoother results cannot follow the true parameter
values. In Fig. 3(b), the estimated parameters capture the true
parameters with a parameter noise variance of Qa = 5 × 10−4 well.
This example demonstrates that the parameter a(t) can only be
estimated well if the hyper-parameters Qa, 
 and R are well
known.

4.2. Estimation of time-dependent parameters and stationary
hyper-parameters by the EM algorithm

A Maximum Likelihood approach to estimate the hidden state
vectors {�a(1), . . . , �a(N), �u(1), . . . , �u(N)} as well as the hyper-
parameters �� containing all unknown elements of {Qa, �, R} is the
Expectation–Maximization (EM) algorithm for linear state space
models (Shumway and Stoffer, 1982). The algorithm uses in its
expectation step the dual smoothing filter to calculate the esti-
mates �u(t|N), �a(t|N) and their variances Pu(t|N), Pa(t|N) of the
hidden processes �u(t) and parameters �a(t). With the results of
the expectation step the most likely hyper-parameters ��n+1 are
calculated analytically in the maximization step, analog to the
ordinary EM algorithm. Since the estimator ��n+1 of the hyper-
parameters �� depends on the results of the dual smoothing filter,
which themselves depend on the hyper-parameters ��n used in the
expectation step, this is a self-consistency problem. Therefore, the
expectation and maximization step are iterated until it converges,
which is checked by quantification of the parameter changes. The
detailed EM algorithm for the two  state spaces is resumed in
Table 1.

To examine the results of the EM algorithm we  apply it to the
noise-contaminated time-dependent AR[1] process presented in
Fig. 2. Thereby, we use two different kinds of expectation steps.
First, the dual Kalman filter (Wan  and Nelson, 1997) and second,
the improved dual Kalman filter as introduced above is used. In

Fig. 4, the convergence of the variances R, 
,  and Qa are shown for
the two EM algorithms.

The Expectation–Maximization algorithms using the improved
dual Kalman filter converges to the correct values of R and 
, while

c

th �x(t) ∼ N(0, 1) is presented in black. The time-dependent parameter is estimated
hree different parameter noise variances Qa = 5 × 10−2, 5 × 10−4, 1 × 10−6 are used
y. (For interpretation of the references to color in this figure legend, the reader is
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a b

Fig. 4. The values of the hyper-parameters Qa , 
 and R are shown in dependence
of  the iterations of the Expectation–Maximization algorithm using the dual Kalman
filter (DKF, blue) and the improved dual Kalman filter (DKF2, red) in the expecta-
tion step. In (a), the convergence of the variances of the process 
 (solid lines) and
observational noise R (dashed lines) are compared to their true values. In (b), the
development of the smoothness prior Qa is shown. (For interpretation of the refer-
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nces to color in this figure legend, the reader is referred to the web version of the
rticle.)

he results of the EM algorithm using the dual Kalman filter without
mprovements differ up to 70% from the original hyper-parameters
Fig. 4). Different estimated variances of the process and obser-
ational noise lead to different parameter estimates a(t|N) (not
hown) and thus, to a different smoothness prior Qa as seen in Fig. 4
). The improved dual Kalman filter uses an improved estimation
f the variances of all nonlinear contributions. Since the estimators
or the variances of the observational and process noise 
, R depend
trongly on the variance estimates of the process Pu(t|t), parame-
ers Pa(t|t) and observations Py(t|t), the improved dual Kalman filter
s used in the Expectation–Maximization algorithm to obtain an
nbiased estimator for 
 and R.

The presented estimation method for the parameters
�(t) = {a1(t), . . . , ap(t)} and hyper-parameters �� = {R, �, Qa} of
ime-dependent VAR[p] processes is compared to other techniques
n (Grenier, 1983; Kitagawa and Gersch, 1996; Wan  and van der

erwe, 2000) independent of prior knowledge. The computational
ffort of the EM algorithm is high for high dimensional, high-order
AR processes. The computing time for one Kalman filter iteration

ies in the order O(n3
z ), where nz is the dimension of the joint state
2
pace nz = na + nu = n p + np.  Since one iteration is required for each

ata point, the computing time of one expectation–maximization
teration is additionally scaled with the number of data points N.
ncreasing the dimension n of the system, the computing time

ig. 5. Time-dependent renormalized partial directed coherence for 2-dimensional VAR[
oherence for the direction from x1 to x2 is shown. In the simulation the coupling from x2 t
re  shown on the right.
ence Methods 203 (2012) 173– 185 179

scales with n6. Memory in the order of O(N · (n2
a + n2

u)) is demanded
for the computation. Compared to a joint state space approach
the dual approach already reduces the dimension of the state
space since correlations between the process vector u and the
coefficients a are discarded by separating two state spaces. We
present several methods to additionally speed-up the algorithm
and to reduce the dimension of the dual state space model in
Appendix B.

5. Combination of renormalized partial directed coherence
and state-space models

Since renormalized partial directed coherence is defined only
by the p coefficient matrices of the VAR[p] process underlying
the time series, the determination of time-resolved renormal-
ized partial directed coherence from noisy data corresponds to
the estimation of a time-dependent VAR[p] process from noisy
data as proposed in the last section. Once the p VAR coeffi-
cient matrices are estimated {a1(t), . . .,  ap(t)} renormalized partial
directed coherence can be calculated for every time step t using
Eq. (7).

As an example we use the 2-dimensional VAR[2] process Eq. (12)
with coupling parameter c given in Eq. (15) and �i /= 0 respec-
tively. The results for renormalized partial directed coherence in
combination with the state-space models are shown in Figs. 5 and
6. For the estimation a model order of p = 10 was  used. Again the
model order is chosen higher than the true model order since
in an application the true process order is usually unknown. If
the model order was chosen too low, spurious interaction might
be detected. On the other hand if the model order is chosen far
too high, true interactions might be discarded in the statistical
fluctuations of rPDC. Thus, the model order should be chosen
as high as necessary but as low as possible. Information criteria
can guide the choice as suggested by Akaike (1974) and Schwarz
(1978). Also a comparison of parametrically estimated spectra
with their non-parametric counterparts is conceivable. Thus, the
model order should be chosen as high as necessary but as low as
possible. Concerning the time dependent coupling the influence
from x2 to x1 was  present only in the second half of the sim-
ulation. This interaction was correctly revealed by renormalized
partial directed coherence in combination with the state-space

models as shown in Fig. 5. Given a constant coupling c = 0.3 the
true interaction was revealed for different amounts of observa-
tional noise. Here, the noise-to-signal ratio was varied between
NSR = 0 and NSR = 1 in steps of 0.25, exemplary results are depicted

2] process with non-stationary coupling. On the left, renormalized partial directed
o x1 is present only in the second half of the simulation, the results for this direction
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ig. 6. Time-dependent renormalized partial directed coherence for 2-dimensional
b)  Noise-to-signal ratio of 0.5. (c) Noise-to-signal ratio of 1. On the left, renormaliz
nly  the coupling from x2 to x1 is present, the results for this direction are shown o

n Fig. 6. Compared to renormalized partial directed coherence
ithout state space modeling no false positive detections occurred
ere.

In order to illustrate the multivariate capability of the method
resented here, we simulated a 4-dimensional VAR[2] process with

 = 5000 data points and parameters

1 =

⎛
⎜⎜⎜⎝

1.3 c12 0 c14

c21 1.6 0 0

c31 0 1.5 c34

0 0 0 1.7

⎞
⎟⎟⎟⎠ (33)

⎛−0.8 0 0 0
⎞

2 =
⎜⎜⎜⎝ 0 −0.8 0 0

0 0 −0.8 0

0 0 0 −0.8

⎟⎟⎟⎠ (34)
] process with different amounts of observational noise. (a) No observational noise.
rtial directed coherence for the direction from x1 to x2 is shown. In the simulation
right.

and

c31 = 0.5 (35)

c12 =
{

0 if t ≤ 3333

0.7 else
(36)

c21 =
{

0.7 if t ≤ 1666

0 else
(37)

c34 = 0.8
(

1 − |t − 2500|
2500

)
(38)

c14 = e−t/2500 sin(0.005t) (39)

This corresponds to the following interaction structure: the

influence from x1 to x3 is constant for the whole simulation, the
influence from x1 to x2 is present only in the first third of the simula-
tion while the reverse direction (x2 to x1) is present in the last third.
The influence from x4 to x3 starts with zero, is linearly increased
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ig. 7. Results of renormalized partial directed coherence analysis in combination
esolved rPDC analysis with respect to frequency in Hz (y-axis) and time in samples

ntil the middle of the simulation and then linearly decreases to
ero until the end of the simulation. The influence from x4 to x1
s modulated by a damped oscillation fading to zero in the end of
he simulation. All other possible interactions are zero. The results
sing a model order of p = 10 for this simulation are shown in Fig. 7.
ll simulated interactions are revealed correctly. Thus, the method
resented here is capable of inferring the time dependent interac-
ion structure in multivariate systems.

In order to test the multivariate capability of the method in the
resence of noise, we reran the above simulation with 5% obser-
ational noise. As shown in Fig. 8 the simulated interactions were
evealed correctly. We  achieved satisfying results when testing for
p to 25% observational noise (results not shown).

. Application

To demonstrate the applicability of the proposed approach
o a biological data set, we used EEG recordings from a mouse
uring a transition from slow-wave (NREM) to rapid eye move-
ent (REM) sleep (Fig. 9). EEG recordings were obtained under

reely-moving conditions with a wireless device (NeuroLogger, TSE
ystems GmbH – Bad Homburg/Germany). The signal was  pre-
mplified (AC input range ±750 �V, unity gain buffer, 500× gain,
and-pass filtered 1–70 Hz), sampled (199 Hz), analog-to-digital
onverted (ADC resolution 10 bits), and the data stored (capacity
56 MB)  are handled by an on-board microcontroller. Gold screw

lectrodes were placed into the skull into bur holes at the following
o-ordinates relative to Bregma above (i) medial pre-frontal cor-
ex (PFx: AP +2 mm/close to midline); and (ii) parietal cortex and
orsal hippocampi (bilateral, AP +2 mm/1.5 mm  lateral to midline).
state space modeling for the 4-dimensional VAR[2] process (Eqs. (33)–(39)). Time
is) is shown – direction of information flow is from column to row.

Reference and ground electrodes were placed at neutral locations
superficial to parietal and occipital cortex, respectively. For details
of the recording technique, see (Jyoti et al., 2010).

The transition takes place after 16.7 s. The dataset was ana-
lyzed with time resolved renormalized partial directed coherence.
A model order of p = 10 was  used as revealed by the Akaike infor-
mation criterion (Akaike, 1974). The results (Fig. 9) illustrate a
strong interaction between all brain regions particularly affecting
frequencies close to 10 Hz, and coincident with the transition from
slow-wave to REM sleep. Before the transition only short inter-
actions are detected which are more irregular compared to the
post-transition coherences.

In the prominent alpha range (i.e. ∼10 Hz), an influence from
left hippocampus (lHC) to prefrontal cortex (PFx) occurred earliest
in this example. The opposite direction (PFx to lHC) followed and
strengthened towards the end of the recording. The onset of the
influence from right hippocampus (rHC) to lHC was  close to that
of lHC to PFx. The strongest influence was  found from rHC to lHC.
Interestingly, interactions from lHC to rHC as well as from rHC to
PFx were weaker, but increased towards the end of the recording.

Communication between hippocampus and prefrontal cortex
areas play crucial roles in working memory and memory con-
solidation. Assessed in a robust way, the dynamics of how and
when the communication occurs in different recording scales
(EEG/LFP/single unit recording) is essential for the understanding of
the behavioral relevance and may  ultimately uncover bio-markers

for neurodegenerative diseases. Indicators that enable the charac-
terization of transitions and predict their onsets would be desirable,
but cannot be achieved based on a single example. This will be sub-
ject to further investigations and involve transitions between other
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Fig. 8. Results of renormalized partial directed coherence analysis in combination with state space modeling for the 4-dimensional VAR[2] process (Eqs. (33)–(39)) with
5%  observational noise. Time resolved rPDC analysis with respect to frequency in Hz (y-axis) and time in samples (x-axis) is shown – direction of information flow is from
column to row.

Fig. 9. Renormalized partial directed coherence analysis applied to murine EEG data recorded bilaterally above the hippocampus (left: lHC, right: rHC), and prefrontal cortex
(Pfx).  Raw data are depicted on the diagonal (amplitude (Amp) in arbitrary units) over time in seconds, presented together with the autospectra (S) – logarithm of the spectra
color  coded with respect to frequency in Hz (y-axis) and time in samples (x-axis). The lines indicate the time point of transition between NREM to REM sleep, the gray
underlay denotes the time resolved rPDC analysis – direction of information flow is from column to row. Color coding indicates intensity of coherence.
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tages, which may  ultimately allow the identification of transition-
pecific patterns.

. Conclusion

Detection of relationships and causal influences are of particular
nterest in multivariate time series analysis. This is commonly ham-
ered by time-dependent dynamics and especially relationships
etween processes. Moreover, time series generated by underlying
tochastic processes are contaminated with observational noise.

e presented a new approach to address both challenges. Combi-
ation of renormalized partial directed coherence and state space
odels is feasible to detect time variant causal influences in noisy
ultivariate processes. It allows to detect transitions for exam-

le from slow-wave to REM sleep and thus offers a more detailed
nsight into the dynamics of the brain.

Further studies should also include non-linear processes. For
on-linear systems, a higher order of the VAR process may  also yield

nformation about causal, time-dependent influences. Using state
pace modeling alone often leads to hardly interpretable results, if
oo many parameters are unequal to zero. This difficulty is over-
ome by renormalized partial directed coherence. Since, the latter
s estimated in the frequency domain, it allows detecting causal
nfluences at frequencies that are of interest (e.g. theta range in REM
leep), advantageous for oscillatory processes in applications like
EG analysis. Furthermore, a time-dependency in the parameter
stimation is intrinsic to the analysis. This is superior to epoch-
ased data analysis since only piece-wise constant parameters can
e detected in this way. Moreover, the epoch duration would have
o be pre-selected. Since some vigilance stages such as REM sleep
an be very short (<10 s), equivalent epochs would have to be cho-
en. The length of the epochs restricts the maximum order that
an be used for autoregressive modeling which in turn restricts the
requency-resolution that can be obtained. Thereby for short epoch
nly a very low resolution in the frequency-domain is possible.
dditionally, cutting points force the parameter estimation tech-
ique to assume stationarity for each epoch, introducing a potential
ependence on the choice of cut points.

Another successful approach dealing with time and frequency
esolution of data are wavelets (Dhamala et al., 2008; Sato et al.,
006). In future, wavelet based techniques should be compared to
he method presented here. Thereby, revealing the advantages of
oth approaches and possibly a way to combine them.
The combination and enhancement of renormalized partial
irected coherence and state space modeling with extended
alman filtering allows for detection of time-dependent and even-

ually continuously changing causal influences in multivariate

Pz
t|t−1 = JtPz

t−1|t−1J
T
t + Q

=

⎛
⎝ Ina 0

Ct↪a

0(nx−n)×na

· Ina CT
t↪a

0nx×na (A0
t )

=

⎛
⎜⎜⎜⎝

Pa
t−1|t−1 + Qa

Ct,aPa
t−1|t−1

0(nx−n)×na

=

⎛
⎜⎝

Pa
t|t−1 Pax

t|t−1

Pxa
t|t−1 Px

t|t−1

0 Pxpastx
t|t−1
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linear processes. Future applications could include ageing, sleep
studies as well as nervous system diseases. The code is available
upon request from the authors.
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Appendix A. Improvement of the dual Kalman filter

For brevity we define Ct,a := C�ut−1|t−1
a and At|t−1 := A�at−1|t−1 . The

random vector �a(t − 1) originates from the process state Eq. (24)

(t) = A (t−1) (t − 1) + u(t),
(A.1)

where the dependences of A on the parameter state variable �a(t − 1)
are highlighted in red. Instead of replacing the random variable
�a(t − 1) in the process state space by its estimator �a(t − 1|t − 1), as
the standard dual Kalman filter does, �a(t − 1) is treated as a random
variable and (A.1) as a nonlinear equation that is approximated by
a Taylor expansion of first order around �u(t − 1) and �a(t − 1). In
the extended Kalman filter the prediction of the variance Pz

t|t−1 is
approximated in the same way by the first order Taylor expansion
of �z(t) = f (�z(t − 1)) + ��z(t) around �z(t − 1) = (�aT (t − 1), �uT (t − 1))T .
Therefore, the prediction of the variance of the joint state space
Pz

t|t−1 is estimated based on the variance matrix Pz
t−1|t−1. The latter

contains the same information as the dual Kalman filter, i.e. Pz
t−1|t−1

has block diagonal form with Pa
t−1|t−1 and Pu

t−1|t−1 on its diagonal.
The result of the predicted submatrix Pu

t|t−1 of Pz
t−1|t−1 leads to the

improved variance matrix of the process state space. For the deriva-
tion, the process state �u(t) = (�xT (t), �xT (t − 1),  . . . , �xT (t − p + 1))T is
divided into the actual process state vector �x(t) and the past of the
process state vector �xpast(t) = (�xT (t − 1),  . . . , �xT (t − p + 1))T . In the
same way, the transition matrix At|t−1 of the process state space
is divided into the first n rows A0

t|t−1 containing all parameters
�a(t − 1|t − 1) and A1 with the remaining (p − 1)n  constant rows.
The prediction of the variance of the joint state vector

z

na×nx

A0
t

A1

⎞
⎠ Pa

t−1|t−1 0na×nx

0nx×na Pu
t−1|t−1

0na×(nx−n)
T (A1)T +

⎛
⎝ Qa 0 0

0 Σ 0
0 0 0

⎞
⎠

Pa
t−1|t−1C

T
t,a 0na×(nx−n)

A0
t|t−1P

u
t−1|t−1(A0

t|t−1)
T

+Ct,aPa
t−1|t−1C

T
t,a + Σ A0

t|t−1P
u
t−1|t−1(A1)T
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t−1|t−1(A0
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T A1Pu

t−1|t−1(A1)T

⎞
⎟⎟⎟⎠

0
⎞

Pxxpast

t|t−1

Pxpast

t|t−1
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(A.2)
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s using the same information as the dual Kalman filter. The dif-
erences between the variance predictions of the standard dual
alman filter Pa

t|t−1 and Pu
t|t−1 and the extended Kalman filter are

ighlighted in red. The changes in Pu
t|t−1 are used to improve the

rediction of the variance of the dual Kalman filter. The first n com-
onents �x(t) of the process state vector �u(t) are predicted through
he transition matrix A0

t incorporating the parameter vector �a(t).
he result for the variance of the actual process state vector in (A.2)

x
t|t−1 = A0

t|t−1P
u
t−1|t−1(A0

t|t−1)
T +Ct,aPa

t−1|t−1C
T
t,a + Σ

(A.3)

reats the parameters �a(t) as a random vector and incorporates its
ariance into the prediction of the variance Px

t|t−1. This corresponds
o a multivariate Gaussian error propagation. The correlations
ax
t|t−1 = Pa

t−1|t−1CT
t,a are not considered in the dual Kalman filter,

ut they show that the nonlinear model correlates the parameter
nd process vectors.

ppendix B. Methods to speed-up the algorithm

The state space representation of an n-dimensional VAR[p] pro-
ess requires a nu = np-dimensional process state vector while the
arameter space is na = n2p-dimensional. The joint state space is
lways nz = nu + na-dimensional. The matrix inversion of Pa

t|t−1, pre-
ormed in every step of the smoothing filter, requires 80% of the
ntire computing time. Thus, we present an alternative smooth-
ng algorithm for linear state spaces. This so-called disturbance
moother

� t|N = Rt[(P
y
t|t−1)−1(�yt − �yt|t−1) − KT

t AT
t+1�rt] (B.1)

�
t|N = Rt − Rt

[
(Py

t|t−1)−1 + KT
t AT

t+1FtAt+1Kt

]
(B.2)

�t|N = Qt�rt (B.3)

�
t|N = Qt − QtFtQt (B.4)

t−1 = CT
t (Py

t|t−1)−1Ct + ET
t FtEt (B.5)

t−1 = CT
t (Py

t|t−1)−1(�yt − �yt|t−1) + ET
t �rt (B.6)

t = At+1(Inu − KtCt) (B.7)

s derived in detail in Durbin and Koopman (2001).  Based on this,
he estimators for the hyper-parameters

(m+1) = 1
N

N∑
t=1

{
��t|N ��T

t|N + P�
t|N
}

(B.8)

(m+1) = 1
N

N∑
t=1

{
��t|N ��T

t|N + P�
t|N
}

(B.9)

n the mth expectation–maximization iteration are derived. Apply-
ng the disturbance smoother to dual state space representation
f the time-dependent n-dimensional VAR[p] process, only the
nverse of the n × n matrices Pyu

t|t−1 and Pya
t|t−1 are required and the

omputationally expensive inversion of the nu × nu matrix Pu
t|t−1

nd the na × na matrix Pa
t|t−1 drop out. This leads to an increased

peed of about 20–30%.
The dual Kalman filter successfully reduced the computing time

y separating the nz = nu + na-dimensional joint state space into
wo state spaces with dimensions nu and na. In the same way,
he parameter state space �at = (�a1,t . . . �an,t) can be separated into
 parameter sub-state spaces �aj,t . Thus, the sub-state spaces are
nly nu-dimensional reducing the computing time and memory
torage. The separated parameter state space models cannot con-
ider the correlations between �aj,t and �ak,t for k /= j. Additionally
ence Methods 203 (2012) 173– 185

the different components xj,t may  not be mixed in the observation
equation, i.e. the observation matrix Cx must be diagonal. Know-
ing the constraints of this representation, the Kalman filter can be
applied.
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Vejmelka M,  Paluš M. Inferring the directionality of coupling with conditional
mutual information. Phys Rev E 2008;77:026214.

Wagner T, Fell J, Lehnertz K. The detection of transient directional couplings based
on  phase synchronization. New J Phys 2010;12:053031.

Wan  EA, Nelson AT. Neural dual extended Kalman filtering: applications in speech
enhancement and monaural blind signal separation. IEEE Proc Neural Netw
Signal Process 1997:466–75.
Wan  EA, van der Merwe R. The unscented Kalman filter for nonlinear estimation.
IEEE Commun Contr Symp Adapt Syst Signal Process 2000:152–8.

Winterhalder M,  Schelter B, Hesse W,  Schwab K, Leistritz L, Klan D, et al. Com-
parison of linear signal processing techniques to infer directed interactions in
multivariate neural systems. Sig Proc 2005;85:2137–60.


	Inference of Granger causal time-dependent influences in noisy multivariate time series
	1 Introduction
	2 Renormalized partial directed coherence
	3 Two shortcomings: observational noise and non-stationarity
	4 State-space modeling of time-dependent VAR processes contaminated with observational noise
	4.1 Time-dependent parameters by the dual Kalman filter
	4.1.1 Improvement of the dual Kalman filter
	4.1.2 Choosing the covariance Qa

	4.2 Estimation of time-dependent parameters and stationary hyper-parameters by the EM algorithm

	5 Combination of renormalized partial directed coherence and state-space models
	6 Application
	7 Conclusion
	Acknowledgments
	Appendix A Improvement of the dual Kalman filter
	Appendix B Methods to speed-up the algorithm
	References


