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The considerations are based on the understanding that somitic cells polarization in
bistability window of embryonic (pre-somitic) mesoderm is a dynamical process. It occurs
in the form of a polarization wavefront of somite cells spread in anterior–posterior direc-
tion of the embryonic mesoderm. It is assumed that a macroscopic cell polarization has
a bistable behavior corresponding to the molecular mechanism of bistability window for-
mation. Moreover this type of polarization is supposed to be transmittable to the other
cells by contact interaction. At the end, a volume of polarized cells is taken, which is
able to create mechanical tension in the volume of nonpolarized neighbor cells and to
inhibit their polarization. On this basis we explore the leading aspect of somitogenesis
robustness by considering a simple wavefront model of polarization and analyzing its
propagation in terms of the standard methods of qualitative theory of differential equa-
tions. The obtained theoretical results are interpreted in the context of their possible
experimental verification.

1. Introduction

It is known that the somite formation correlates with cycles of cell-autonomous
gene expression, which spread from the tail bud to the rostral presomitic mesoderm
(PSM) border with a periodicity equal to that of the somitogenesis.1 Real-time
imaging of Hes 1 expression suggests that a given cell moving from the tail bud
undergoes around five oscillations before reaching the forming somite. The mech-
anism by which the PSM oscillations are converted into a spatial pattern remains
unknown, inspite of some hints provided by theoretical models. One explanation is
that the PSM gradients affect a biochemical parameter of the segmentation clock
by which the oscillation period tends towards infinitive in the most rostral PSM.2

∗Corresponding author.

259



September 1, 2009 16:28 WSPC/170-JMMB 00306

260 V. Petrov & J. Timmer

Another one is that a permanent record, e.g. a covalent protein modification, is made
when the PSM cells exit the tail bud, and the actual somite formation depends on
the time needed to interpret this record.3 A third proposition is that the oscillation
arrest is defined after a given number of oscillations, e.g. through the accumulation
of some molecule.4,5

The general impression from all the models cited above and other similar mod-
els (see Ref. 6; Baker et al., 2003; Petrov et al., 2007) is that they are mathe-
matical formalisms of somite biochemical specifications but not somite physical
formation.7 The last paper shows as an exception the mathematical model of
Schnell et al.8 attempting to describe the bulk movement of somitic cells to
form a somite. We would also mention here a paper of Beloussov,9 presenting
exception in this sense. Segmentation mechanism of somitogenesis is a result of
axial stretch (chemotaxis) action. Together with surface tension (adhesion) it can
account for post-gene-expression stage in converting temporal into spatial patterns
of somitogenesis. It means the gene expression oscillations govern on time the axial
stretching and surface compression of PSM. On the other hand the variable mechan-
ical factors (stretching, compression and viscosity) determine the morphological
changes in the time allotted for somite formation. In addition Beloussov argues the
idea that somitogenesis is a robust process based upon the mechanical relationship
between a long-range tension forces stretching the axial mesoderm and short-range
forces of presomite cell cohesion. In the literature the terms robust and structurally
stable have one and the same sense.10 It is of interest therefore to analyze the sta-
bility in terms of both Lyapunov’s definition and structural one and to interpret it
in the context of somitogenesis robustness.

In an earlier paper of Beloussov,11 it is suggested that the organization of the
axial structures is established and maintained by tensile fields created by uniformly
polarized cells. Following Belintsev et al.,12,13 we consider somatic cells polarization
exists in a form of morphologically polarized and nonpolarized cells distributed
in somite pre-pattern of embryonic mesoderm. Both polarized and nonpolarized
states should be considered as stable ones by analogy with the sharp developmen-
tal thresholds defined through bistability by antagonistic gradients of retinoic acid
(RA) and fibroblast growth factor (FGF) signaling.14 Moreover cell polarization
can be transmitted by contact from a given somite cell to its neighbor. At the end a
mutual relationship between cross polarization and axial elastic tension of the meso-
derm is introduced. That is why we call this model as elasto-polarization model.
In this paper we show that, as a result of interaction of elastic forces, spontaneous
and contact polarization, a traveling front of somatic cells polarization, propagates
through the bistability window of mesoderm layer. The specificity of this propagat-
ing wavefront is discussed in terms of stability and robustness analysis.

The mathematical scheme of the above described mechanism is already devel-
oped in the papers of Belintsev et al.12,13 Nevertheless, we realize as necessary some
specification of the analysis, in view of the fact that the concrete process of somite
formation is not considered there.
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It is known that at cellular level the somitogenesis is accompanied with the same
forms of mechanical activity of the cells as during the polarization in epithelial
tissues.9 Nonsegmented mesoderm presents a bushy cell mass, essential part of
which is occupied by intercellular elements. The same tissue, involved in somites,
is essentially different. It distinguishes by denser and more extended intercellular
contacts, resembling to polarized cells of embryonic epithelial tissues. In papers
of Belintsev et al.,12,13 the universal event in morphogenesis, i.e. the formation of
domains of morphologically polarized cells in the initially homogeneous epithelial
sheets can be obtained as self-organization effect of elasto-polarization model. When
considering PSM we can interpret this event as somite formation.

2. Determining the Bistability Window of Embryonic Mesoderm
where Somitic Cells Polarization Occurs

In the paper of Goldbeter et al.,14 a remarkable scheme (Fig. 1) is shown. It presents
dependence between the stable steady state values MG of fgf8 mRNA concentration
in PSM and the positions x along PSM of the lower and upper limits of the region
of RA and FGF bistability.

From the graphs of this figure it is seen that, the position of such named bista-
bility window can be parametrically moved from left to right, when the concen-
tration MG of fgf8 mRNA tends to zero by low values. The kinetic explanation of
this dependence consists in the consideration that bistability window moves at the
expense of decreasing the effect of FGF inhibition on segmentation clock rest.14

However for fixed value of MG the window does not move and we can consider it
as constant prepattern (with fixed boundaries), where a somatic cells polarization
occurs.

0
0

20

5

40 60 80 100

10

15

20

25

Position, x

FGF dominates over RA

bistabilityM
G

RA
dominates
over FGF

x1 x2

Fig. 1. Relationship between fgf8 concentration and bistability domain position.
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As it is shown by Goldbeter et al.,14 in order to prove the existence of bista-
bility window in the PSM of the embryo, we have to consider the establishment
of thresholds along morphogen gradients. It is mathematically proven that mutual
inhibitory gradients generate sharp morphogen thresholds in the PSM. For this
purpose it is demonstrated that the antagonistic gradients of RA and FGF along
PSM may lead to the coexistence of two stable states. Bistability results from the
mutual inhibition of RA and FGF and provides a molecular mechanism for the
“all-or-none” transitions assumed both in the specific clock and wavefront model
of somitogenesis15 and more general cell polarization model of morphogenesis.12,13

In order to specify the model of Belintsev et al.12,13 for the case of somatic
cells polarization, it is necessary to accentuate the circumstance that the molec-
ular mechanism for “all-or-none” transition, established by Goldbeter et al.,14 is
in evident correspondence with the well-known capacity of an individual cell for
morphological polarization considered as a bistable “all-or-none” transition of a cell
from a nonpolarized to a polarized state. In this way we consider the cell polariza-
tion in the bistability window of PSM as an apico-basal elongation (i.e. macroscopic
deformation), connected with the above-mentioned molecular mechanism.

3. Bistable Equation for Propagating Polarization WaveFront

The experimental observations of somitogenesis suggest the most natural assump-
tion that somitic cells polarization wavefront looks like a moving plateau. If we
use w to denote the wavefront variable of polarization, then in front of the wave,
w is fixed at some low value, and behind the wave, w is fixed at higher value. A
schematic diagram of such a wavefront is presented in Fig. 2. Such a wave is called
traveling front.16

The observations show that the whole layer of somitic cells can be divided along
the axis into three parts. The first one is a layer behind the traveling front, where
the polarization has a higher steady state value. The second is a layer of traveling
front of polarization drop value. The third is a layer in front of the drop, where
the polarization has lower steady state value. The fact that relatively synchronous
regions of two steady states are realized, means these states are stable, as otherwise
they would not appear. So if we consider a somitic cells polarization as synchronous

O

1

w

x

c

Fig. 2. Traveling wavefront of somatic cells polarization.
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Fig. 3. Graphical presentation of steady state points of (1).

process, i.e. without diffusion, the corresponding dynamical system of ordinary
differential equation should have two stable steady state solutions. We call such a
system bistable equation.

One of the most well-known forms of a bistable equation is

dw

dt
= −αw(w − 1)(w − β), (1)

where 0 < α, 0 < β � 1. This equation can be applied to describe the polarization
of a single somitic cell with number i between its neighbors numbered i − 1 and
i + 1. The right hand side of (1) describes qualitatively the dynamical function
of intracellular system for regulating polarization. In Fig. 3, the well-known “ -
shaped” curve of the right side of (1) is presented. The points w0 = 0 and w2 = 1
correspond to two stable steady state values of polarization — lower and higher
ones. The intermediate point w0 = β presents the unstable steady state. The type
of the steady states, w0, w1, and w2, follows directly from the signs of function
f(w) = −αw(w − 1)(w − β) as shown in Fig. 3.

The corresponding variation equations centered at the steady state values
w0, w1, and w2 have the forms

dω

dt
= −αβ · ω, for w0 = 0 (stable), (2)

dω

dt
= αβ(1 − β) · ω, for w1 = β (unstable), (3)

dω

dt
= −α(1 − β) · ω, for w2 = 1 (stable), (4)

here the variation ω is an infinitesimal virtual deviation of the polarization variable
w from the corresponding steady state value.

4. Bistable Equation with a Diffusion Term

We assume the contact polarization between neighbor cells of PSM is realized by
the diffusion law of intracellular interactions from the higher to lower polarizations.
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In one-dimensional case when the diffusion of interactions occurs along axial coor-
dinate, the differential equation by accounting the diffusive term can be written in
the form

∂w

∂t
= f(w) + Q(x), (5)

where the function Q(x) defines dependence of the cross polarization w on the
axial coordinate x, and the nonlinear function f(w) = −αw(w − 1)(w − β) in
the right-hand side of (5) corresponds to a “point” model, i.e. the synchronous
process considered in the previous section. The spatial distribution in the cell layer
is presented by polarization–diffusion process of interaction between cells.

Let us assume that the solution of (5) has the form

w = w(t, x). (6)

In order to find in explicit form the function Q(x) we consider the competent part
of PSM as having the form of long narrow tube with a length L and cross section
S (Fig. 4). Competent means capability of PSM cells to be determined as polar-
ized ones. Certainly, when somitogenesis finishes, cells at the end of PSM are not
competent, because they remain nonpolarized.

In the tube we separate an elementary volume ∆V with limiting coordinates
x and x + ∆x. Thus we have ∆V = S∆x. The quantity ∆Mx of the polarization
moving through the tube section with coordinate x is proportional to the gradient
of polarization ∆w

∆x in direction x and to the time interval [t, t + ∆t] when the
interactive diffusion occurs

∆Mx = −D
∆w(x, t)

∆x
S∆t, (7)

where D is a diffusion coefficient, defined by the ability of cells to transmit polar-
ization by contacting each the other.

Through the other limit of the volume with coordinate x + ∆x, in the opposite
direction and during the same time interval it diffuses a mass

∆Mx+∆x = D
∆w(x + ∆x, t)

∆x
S∆t. (8)

In this way, the total variation of polarization in the elementary volume ∆V at the
expend of diffusion is

∆M = ∆Mx+∆x + ∆Mx =
DS∆t

∆x
[−∆w(x, t) + ∆w(x + ∆x, t)], (9)

xx ∆+x

S A P

Fig. 4. Scheme of spatial volume in PSM (A — anterior of PSM, P — posterior of PSM).
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and the variation of polarization w is presented by

∆ci =
∆M

∆V
=

∆M

S∆x
=

D∆t

∆x

[
∆w(x + ∆x, t)

∆x
− ∆w(x, t)

∆x

]
. (10)

By limit transition to ∆x → 0 we obtain

∆w = D∆t
∂2w(x, t)

∂x2
. (11)

By definition, in the absence of cell polarization in correspondence with (1) we
have Q = lim ∆w

∆t , when the limit transition ∆t → 0 takes place. Thus, at the same
transition we can write

Q = D
∂2w(x, t)

∂x2
, (12)

where the quantities Q have the same physical meaning as in Eq. (5). Therefore,
the distributed system (5) in case of one-dimensional diffusion has the form

∂w

∂t
= f(w) + D

∂2w(x, t)
∂x2

, (13)

where the nonlinear function f(w) = −αw(w − 1)(w − β) corresponds as before to
the point (synchronous) model and D ∂2w(x,t)

∂x2 corresponds to the diffusion transport
between the neighbor cells volumes.

5. Polarization–Diffusion Model with Elastic Tension

Following Belintsev et al.,12 we take into account the inhibition of the elastic tension
generated by the polarization on its propagation. By analogy with the well-known
activator–inhibitor interaction in the biochemical kinetics we just add a term pro-
portional to elastic tension with negative sign to the right-hand side of (13). As a
result we obtain

∂w

∂t
= −αw(w − 1)(w − β) + D

∂2w(x, t)
∂x2

− κσ, (14)

where σ is an axial elastic tension and κ is a coefficient of proportionality. When
σ > 0, we say it is an axial stretch tension. For σ < 0 it is an axial compression.
We use also the terms positive cross polarization when w > 0 and negative one for
w < 0 (Fig. 5).

As we already mentioned, the axial stretch tension σ not only inhibits the posi-
tive cross polarization w, but also depends on the polarization. The corresponding
dependence is given by the equilibrium condition

ε
∂w

∂x
+

∂σ

∂x
= 0. (15)
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Fig. 5. Graphical presentation of polarization w and tension σ.

We call ε in (15) a phenomenological coefficient of proportionality. To complete the
consideration we also need to introduce the well-known Hook’s law in the form

σ = E
∂u

∂x
, (16)

where u is an axial displacement as a result of the deformation.
Equations (14) and (15) present a system of nonlinear partial differential equa-

tions for the unknown functions w(t, x) and σ(t, x) with partial derivatives. In order
to analyze qualitatively these equations, it is necessary to fix some boundary con-
ditions for the unknown cross polarization w at the tube ends x = 0 and x = L,
i.e.

∂w

∂x

∣∣∣∣
x=0,L

= 0, u(0) = u(L). (17)

Further we integrate Eq. (15) by taking into account (16) and (17). We substitute
the obtained result for σ in (14) and as a result the following governing equation
of polarization wavefront can be written:

∂w

∂t
= −αw(w − 1)(w − β) + D

∂2w(x, t)
∂x2

− κε(w − w̄), (18)

where

w̄ =
1
L

∫ L

0

w(t, x)dx = w̄(t)

is an average (with respect to x) value of w, depending only on t.
Further we extend our consideration by introducing a second equation for the

average polarization validating for arbitrary values of time in the form

dw̄

dt
= δf(w, w̄), (19)

where f(w, w̄) is unknown function, and δ is a small coefficient presenting the fact
that the average polarization w̄ is slow-varying with respect to the fast-varying w.
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6. On the Robustness of Polarization Wavefront Propagation
in PSM Bistability Window

In this section we apply the qualitative and computational theory of differential
equations to the dynamical system

∂w

∂t
= −αw(w − 1)(w − β) − κε(w − w̄) + D

∂2w(x, t)
∂x2

, (20)

dw̄

dt
= δf(w, w̄) = δ(w − w̄). (21)

First of all we apply such named Quasi-steady-state-approximation (QSSA), Petrov
et al., 2007. The essence of QSSA claims that the character of the solution for (20)
and (21) does not change when the small parameter δ converges to zero. Thus
we can assume δ = 0 in (21) and instead of differential equation to consider w̄ is
constant.

In this way the complete system of two equations (20) and (21) can be reduced
to the degenerate system of one equation (21). Then the stationary values of the
fast variable w depend only on the current values of the slow variable w̄, but not
on final stationary values. In this sense the variable w̄ plays a role of driver of
the subordinated variable w. The corresponding investigation of the dependence of
Eq. (20) solution behavior on the parameter w̄, i.e. such named structural stability
analysis,10 can be considered as a control analysis. Also in terms of QSSA, in the
right-hand side of (21) we can replace w, by its zero solution from (20), when w̄

is considered as a constant. Moreover the experimental observations suggest that
for sufficiently large time, w̄ evidently tends to the stable steady state value of w,
taken at fixed x. The simplest approximation of similar tending dynamics can be
described by the differential equation (21) with linear function f(w, w̄) = δ(w − w̄)
in its right-hand side. In this case at fixed x, the variable w approaches its steady
state value very fast and then w̄ (not depending of x) tends very slow to this value.
If κ and ε are sufficiently small, in correspondence with QSSA the system (20) and
(21) can be written in the form

∂w

∂t
= −α(w − w0)(w − w1)(w − w2) + D

∂2w(x, t)
∂x2

, (22)

dw̄

dt
= δ(w − w̄), (23)

where w0, w1, and w2 are positive roots of the cubic polynomial

ϕ(w) = −αw(w − 1)(w − β) − κε(w − w̄) (24)

in the right-hand side of (20). If δ = 0 we have zero approximation w̄ = const. and
polynomial (24) being a right-hand side of (20). Then the zero approximation for
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w can be found as a traveling front solution of (22) at boundary conditions

∂w

∂x

∣∣∣∣
x=0,L

= 0. (25)

That means we search for solution in the form w(x, t) = w(x ± ct) = w(η), where
η = x ± ct. In the new variables Eq. (22) takes the form

dw

dη
= v, (26)

D
dv

dη
= ±cv + α(w − w0)(w − w1)(w − w2). (27)

The boundary conditions (25) take the form

v(0) = v(L) = 0. (28)

In this way (25)–(28) present an eigenvalue problem for the stationary traveling
front.

In the phase plane v, w for the two-dimensional dynamical system (26) and (27)
we obtain the qualitative picture (phase portrait) of possible phase trajectories
(Fig. 6).

The fixed points 0, 1, and 2 correspond to the roots w0, w1, and w2, respectively,
of the function ϕ(w). The separatrix going from saddle point 0 to saddle point 2
defines the form of traveling front and the stationary velocity c.

To find traveling front solutions we look for a solution of (26) and (27) that
connects the fixed points 0 and 2 in the v, w phase plane. Such a trajectory connects
two different steady states and is called a heteroclinic trajectory. In our case it
is parametrized by η. The heteroclinic trajectory approaches the point 0 when
η → −∞, and approaches 2 when η → +∞. The fixed points 0 and 2 are saddle
ones. Our purpose is to define whether or not the velocity ccan be chosen such that
the trajectory leaving 0 for η = −∞ can be made to connect with the saddle point
1 for η = +∞.

1 2O w

v
d

dw =
η

Fig. 6. Phase portrait of system (28) and (29).
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As it is shown in the book of Keener and Sneyd,16 a unique velocity c of traveling
front propagation exists. The corresponding analytical expression for the velocity c

has the form

c = ±
√

Dα/2[w0 + w2 − 2w1]. (29)

The profile of the traveling front is defined by the formula

w(η) =
w0 + w1

2
− w2 − w0

2
th

η − η0

l0
, (30)

where l0 = ±2
√

2/α (w2−w0) and η0 is an arbitrary constant defined by the initial
conditions.

The qualitative analysis shows that, if a traveling wave solution exists, then the
sign of cis the same as the sign of the area under the curve ϕ(w) between the points
0 and 2. If this area is positive, then the traveling front propagates from the point 0
to 2, and the second point is called dominant. It is clear for sufficiently small β the
fixed point 2 is dominant. Thus in our case the polarization front propagates from
the point 0 to 2. In this way we can consider solved the problem of determining
zero approximation (δ = 0) of the polarization wavefront w(x + ct).

The first approximation (0 < δ � 1) can be qualitatively investigated by anal-
ogy with the above proposed phase analysis. For this purpose we transform the
system (20) in the form

dv

dη
=

α

D
(w − w0)(w − w1)(w − w2) +

kε

D
· w̄ +

c

D
· v,

dw

dη
= v ,

dw̄

dη
= δ

c .(w − w̄) ,

(31)

by accepting the specific form of solution w = w(η), w̄ = w̄(η), v = v(η), and
η = x+ ct. It is easy to show that for small κ, ε, the system (31) has three unstable
fixed points in the three-dimensional phase space. The projections of these points
in the phase plane v, w are positioned near the fixed points of the two-dimensional
system (26) and (27) presented in Fig. 6. The projections of the phase trajectories
have similar behaviors as those in Fig. 6. So we can assert that the fixed point
(w2, 0, w2) being analogous to point 2 plays role of dominant saddle point. Thus in
this case the traveling front also propagates from the saddle point (w0, 0, w0) to the
dominant one (w2, 0, w2).

The main conclusion we can derive from the above considerations is the
following:

Despite the structural change of our model from the two-dimensional form (26)
and (27) to the three-dimensional (31), the second saddle point with the higher
value of polarization remains dominant. Moreover, the direction of traveling front
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propagation conserves the same too, i.e. from anterior to posterior of the PSM.
That means the model we constructed is structurally stable in sense analogous to
the robustness property Beloussov9 introduced. We can consider the leading process
of polarization in somitogenesis, being robust could play role of a scaffold of large
number of other properties specifying different kinds of somitogenesis. In this way
our mathematical analysis supports the basic idea of Beloussov that somitogenesis
is a robust process based upon the mechanical relationship between a long-range
tension forces stretching the axial mesoderm and short-range forces of presomitic
cell cohesion. Indeed, this relationship postulated as a basis of the wavefront polar-
ization model, presented here, leads to the above shown structurally stable or robust
behavior.

In accordance with somitogenesis robustness, the very dynamical process of the
polarization front propagation is also stable in Lyapunov’s sense, i.e. with respect to
small disturbances of the initial conditions. As it is proved by Fife and McLeod,17

the traveling wave solution of the bistable equation is stable in an asymptotic (i.e.
very strong) way. Starting from arbitrary initial values lying between 0 and β in the
limit x → −∞ and between β and 1 in the limit x → ∞, the solution approaches
infinitesimally near to some phase displacement of the traveling front solution when
time tends to infinity.

However, there is an essential exception of both structural and dynamical sta-
bility of the model, which is of crucial importance for its validation. Aronson and
Weinberger18 proved that the initial value w = β is a threshold point for the bistable
equation. It means, if the initial values are sufficiently small, then the solution of
the bistable equation approaches zero, when t → ∞. But for initial values lying
between 0 and 1, the solution approaches 1 for t → ∞. In this case we say that
the initial values are super-threshold. In the threshold point the model is struc-
turally and dynamically unstable, or non-robust. This threshold type exception
from the robustness assures essential qualitative validation of the model, in sense
that sufficiently large initial polarization near the rostral end of the PSM is neces-
sary in order to excite the propagation of a traveling front. For initial polarization
smaller than β a traveling front does not appear, thus somitogenesis process does not
start too.

7. Conclusion

We obtained realistic qualitative picture of polarization wavefront propagation in
PSM window, in terms of dynamical model with distributed variables — functions
of time and space coordinates, showing robust behavior. In order to confirm or
reject quantitatively this robust model we could experimentally verify the relatively
simple velocity formula

c = ±
√

Dα/2[w0 + w2 − 2w1], (32)
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where every parameter both in the right- and left-hand side of (32) could be in
principle measured. In case of approximate validity of (32) we will be able to con-
clude that model “seems to be” realistic. Certainly other versions of the model, for
example, with two space coordinates, would be of use to develop too. It depends
on the results of experimental verification how this theory could be improved.

As it was noted in Sec. 2, the velocity should depend on the stable value M0 of
fgf8 mRNA concentration in PSM. Looking at (32) it seems that the most appropri-
ate candidate for depending on MG is the dominant saddle point 2 with polarization
value w2. The dependence would be such that for large values of MG, the dominant
polarization value would be small and vice versa. Then, formula (32) would be in
accordance with the dependence shown in Fig. 1, and taken from the bistability
theory of RA and FGF concurrence in PSM, developed by Goldbeter et al.14
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