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Fourier surrogate data are artificially generated time series, that — based on a resampling
scheme — share the linear properties with an observed time series. In this paper we study
a statistical surrogate hypothesis test to detect deviations from a linear Gaussian process with
respect to asymmetry in time (Q-statistic). We apply this test to a Fourier representable function
and obtain a representation of the asymmetry in time of the sample data, a characteristic for
nonlinear processes, and the significance in terms of the Fourier coefficients. The main outcome is
that we calculate the expected value of the mean and the standard deviation of the asymmetries
of the surrogate data analytically and hence, no surrogates have to be generated. To illustrate
the results we apply our method to the saw tooth function, the Lorenz system and to measured
X-ray data of Cygnus X-1.
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1. Introduction

The theory of nonlinear dynamical systems offers
notions to characterize processes beyond linearity.
Different quantities are used therefore, among them
the correlation dimension, Lyapunov exponent and
nonlinear forecasting errors [Kantz & Schreiber,
1999]. To investigate the reliability of the esti-
mates of these characteristics, the method of sur-
rogate data has been invented [Theiler et al., 1992;
Theiler & Prichard, 1996, 1997; Kurths & Herzel,
1987; Schrieber & Schmitz, 2000]. The general idea
is to simulate time series whose statistical prop-
erties are constrained to the null hypothesis one
wants to test for [Schreiber, 1998]. The Fourier sur-
rogates which were introduced to test for such a
constraint null hypothesis have become very popu-
lar [Theiler et al., 1992; Theiler & Prichard, 1996;
Schreiber & Schmitz, 2000]. The basic idea of
generating Fourier surrogates is that the linear

properties of the time series are specified by the
squared amplitudes of the (discrete) Fourier trans-
form. Surrogate time series are readily created by
multiplying the Fourier transform of the data by
random phases and then transforming back to the
time domain. So testing for a linear Gaussian pro-
cess Xn one takes the Fourier transform of the data
{xn}N

n=1

x̃k =
1√
N

N
∑

n=1

xne−i2πnk/N (1)

Then the complex components x̃k, 1 < k < N are
multiplied by random independently and uniformly
in [0, 2π) distributed phases ϕk, x̃s

k = x̃ke
iϕk , with

the constraint ϕN−k = −ϕk. Then one computes
the inverse Fourier transform

xs
n =

1√
N

N
∑

k=1

x̃s
ke

i2πnk/N (2)
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and takes xs
n as a surrogate of the data. Different re-

alizations of the phases ϕk generate new surrogates.
This process of phase randomization preserves the
periodogram and the Gaussian distribution (at least
asymptotically for large N) [Schreiber & Schmitz,
2000].

If the time series {yn} is not Gaussian dis-
tributed one uses Amplitude Adjusted Fourier
(AAFT) surrogates. One assumes that {yn} comes
from a linear Gaussian process with a nonlin-
ear, monotonic (invertible) observation function S
(e.g. yn = s(xn) = exp(xn) where {xn} comes
from a linear Gaussian process). Transforming it
to Gaussian marginal distribution the original lin-
ear Gaussian process (i.e. s−1(yn) = ln(exp(xn)) =
xn) can be recovered. Then one generates surro-
gates xs

n and transforms them using the function
s, i.e. ys

n = s(xs
n). One then yields surrogates that

are constraint with the null hypothesis of the lin-
ear Gaussian process with a monotonic observa-
tion function. Alternatives to this approach are dis-
cussed in the literature [Schreiber & Schmitz, 1996;
Kugiumtzis, 2000].

We are interested in the test and not in generat-
ing optimal surrogates. Hence, we can apply the test
to the Gaussian marginal distribution transformed
observed data, i.e. xn = s−1(yn). If this transformed
data set is rejected by the hypothesis test, then the
original data cannot be described sufficiently by a
linear Gaussian process with a monotonic observa-
tion function. If it is not rejected, the test failed to
recognize any significant deviation for the null hy-
pothesis. Hence, it is sufficient to apply the test to
the transformed time series (where the transforma-
tion is supposed to be monotonic). This approach
can be used to apply the method presented in this
paper to data that is not Gaussian distributed.

Note, that especially if the underlying process
is the nonlinear process x′

n = exp(xn) where {xn}
again comes from a linear Gaussian process and
the observation function is the identity s(x′

n) = x′

n,
then the transform to Gaussian marginal distribu-
tion ln(x′

n) = xn will remove the nonlinearity from
{x′

n}. In this case the observed time series, though
nonlinear, can be described by a linear Gaussian
process with an nonlinear monotone observation
function.

The test statistic we focus our attention on is
the asymmetry Q(m) in time — a characteristic of
many nonlinear processes

Q(m) =
〈[xn − xn+m]3〉n
〈[xn − xn+m]2〉n

(3)

where the time series is given by xn. We call the
hypothesis test based on the Fourier surrogates
and the asymmetry as test statistic Q-statistic-test
(QST). It results in a function S(m) that is usually
called “significance” and that is given by

S(m) =
|Q(m) − 〈Qs(m)〉s|

σQs(m)
(4)

where s means “surrogates”, and 〈Qs(m)〉 is the
ensemble mean of the asymmetries of the surro-
gates at lag m, and σQs(m) is the corresponding
standard deviation. S(m) gives the significance of
the asymmetry under the null hypothesis of a lin-
ear Gaussian process [Theiler et al., 1992]. To cal-
culate the quantile of the ensemble {Qs(m)}, one
usually assumes that it is Gaussian distributed for
all times m. Simulations indicate that mixing pro-
cesses fulfill this condition, though there is no proof
for this assumption. Then one rejects the null hy-
pothesis at an α-level of 1% if S(τ) > 2.6 (the
value 2.6 corresponds to the 1% quantile of the nor-
mal distribution). If the null hypothesis is not re-
jected it does not mean conclusively that the time
series can be properly described by a linear Gaus-
sian process. The test only failed to reject the null
hypothesis then. If it is rejected on the other hand
one cannot conclude that the time series is nonlin-
ear (e.g. it could be nonstationary) [Timmer, 2000;
Paluš, 1995].

This paper is structured as follows: in Sec. 2
we express the method of the QST in terms of
the Fourier-coefficients of the measured time series.
This enables us to calculate the expected value of
the mean and the standard deviation of the asym-
metries of the surrogates, and hence makes it un-
necessary to generate surrogates which is the main
result of this paper. To illustrate the results we ap-
ply the improved method in Sec. 3 to a saw tooth
function, to the Lorenz system and to observed
X-ray data of the black hole candidate Cygnus X-1.

2. Method

We start by applying the QST to a general function
f(t) with the Fourier representation

f(t) =
a0

2
+

∞
∑

i=1

{ai cos(iωt) + bi sin(iωt)} (5)

where t, ai, bi, ω are real numbers. Substituting
ai, bi by the coefficients obtained from a Fourier
transform, we can examine measured time series.
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Analogously to the asymmetry Q(m) given by

Eq. (3) we compute

Q(τ) =
〈[f(t) − f(t + τ)]3〉t
〈[f(t) − f(t + τ)]2〉t

(6)

where t and τ now are continuous variables (whereas

n and m are discrete variables). To evaluate the

nominator of Eq. (6), we first calculate

〈[f(t) − f(t + τ)]3〉

=
1

T

∫ T

0

{

∞
∑

i=1

[

ãi sin
(

iω
(

t +
τ

2

))

+ b̃i cos
(

iω
(

t +
τ

2

))]

}3

dt (7)

where

ãi = 2ai sin

(

iωτ

2

)

b̃i = −2bi sin

(

iωτ

2

)

and T is the length of the defining interval of f(t).
Evaluating the integrand of Eq. (7), we only ob-
tain terms that contain products of three Fourier
components. Using the orthogonality relations for
the triple products of sine and cosine functions it is
clear that only terms of the forms ãiãj b̃i+j, ãib̃j ãi+j

or b̃ib̃j b̃i+j contribute to the asymmetry (these re-
lations can be derived based on the representation
of the products as a sum of four sine and cosine
functions). The denominator can be treated anal-
ogously. Assuming a uniform convergence of the
Fourier-series,1 so that we can change the order of
the sum and the integral, we find

Q(τ) =

3
∞

∑

i=1

∞
∑

j=1

{aiajbi+j − 2ai+jaibj − bibjbi+j} sin

(

iωτ

2

)

sin

(

jωτ

2

)

sin

(

(i + j)ωτ

2

)

∞
∑

i=1

(a2
i + b2

i ) sin2

(

iωτ

2

)

(8)

Hence, we can express the asymmetry only in terms
of the Fourier coefficients. Next, we proceed analo-
gously to calculate the significance S(τ)

S(τ) =
|Q(τ) − 〈Qs(τ)〉s|

√

σ2
Qs(τ)

(9)

of the asymmetry Q(τ). Hereby, we generate sur-
rogates f s(t) of f(t), by adding random phases ϕs

i
that are independently and identically distributed
in [0, 2π), i.e.

f s(t) =
a0

2
+

∞
∑

i=1

{ai cos(iωt + ϕs
i )

+ bi sin(iωt + ϕs
i )}

=
a0

2
+

∞
∑

i=1

{αs
i cos(iωt) + βs

i sin(iωt)} (10)

where

αs
i = ai cos(ϕs

i ) + bi sin(ϕs
i ) (11)

βs
i = −ai sin(ϕs

i ) + bi cos(ϕs
i ) (12)

Here s is the index of the sth surrogate and ϕs
i

are with respect to i uniformly distributed random
numbers.

It is interesting to note that the surrogates can
differ in the time domain very much from the origi-
nal function. To illustrate this we apply this “phase
randomization” to a saw tooth function (Fig. 1)

f(t) =

∞
∑

i=1

1

i
sin[i(ωt − π)]

As we use only the first 50 coefficients of its Fourier
representation we see small fluctuations, especially
at the peaks of its graph. Note that by construction
the periodogram of all these functions is the same.

To estimate S(τ) numerically, we have to use a
finite number of surrogates. But here our approach
enables also to calculate analytically the expected
value for both 〈Qs(τ)〉s and σ2

Qs(τ), i.e. “all real-
izations of surrogates” are taken into account this
way. Equation (10) allows to compute the asymme-
try Qs(τ) of a surrogate that is given by substitu-
tion of ai → αs

i and bi → βs
i in Eq. (6). Then we

1For example, if ∃ L ≥ 0 so that al, bl = 0 ∀ l > L the series converges uniformly.
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(a)

(b)

(c)

Fig. 1. The representation of the first 50 terms of the saw tooth function with ω = 2π/100. (b) and (c) Two of its surrogates
obtained by phase randomization. The surrogates differ rather much from the saw tooth function but show the same period.

can compute the expected value for the mean by the (infinite) integrations

〈Qs(τ)〉s =

∫

2π

0

· · ·
∫

2π

0

∞
∑

i,j=1

3{αs
i α

s
jβ

s
i+j − 2αs

i+jα
s
iβ

s
j − βs

i β
s
jβ

s
i+j} sin

(

iωτ

2

)

sin

(

jωτ

2

)

sin

(

(i + j)ωτ

2

)

∞
∑

i=1

((αs
i )

2 + (βs
i )

2) sin2

(

iωτ

2

)

· dϕ1

2π
· · · dϕ∞

2π
(13)

Note that αi and βi depend on ϕi. Substituting Eqs. (11) and (12) we find that the denominator is
independent of ϕi. This integral can be solved due to the independence of the phases ϕi. This independence
reflects the linearity of the surrogates. Then, we change the summation with the integration, which is
possible due to the assumed uniform convergence of the sum, and find that

〈Qs(τ)〉s ≡ 0 (14)

The standard deviation can be calculated analogously.

σ2
Qs(τ) =

ΣI(τ) + ΣII(τ)

{ΣIII(τ)}2
(15)
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where

ΣI(τ) =
27

4

∞
∑

i=1

∞
∑

j=1

{a2
i a

2
jb

2
i+j + a2

i a
2
ja

2
i+j

+ a2
i b

2
jb

2
i+j + a2

jb
2
i b

2
i+j + b2

i b
2
jb

2
i+j

+ b2
i b

2
ja

2
i+j + b2

i a
2
ja

2
i+j + a2

i b
2
ja

2
i+j}

· sin2

(

iωτ

2

)

sin2

(

jωτ

2

)

· sin2

(

(i + j)ωτ

2

)

(16)

ΣII(τ) = −9

4

∞
∑

i=1

{2b2
i b

2
2ia

2
i + b4

i a
2
2i + a4

i a
2
2i

+ a4
i b

2
2i + 2b2

i a
2
i a

2
2i + b4

i b
2
2i}

· sin4

(

iωτ

2

)

sin2(iωτ) (17)

ΣIII(τ) =

∞
∑

i=1

(a2
i + b2

i ) sin2

(

iωτ

2

)

(18)

Using Eqs. (6), (14) and (15) we have an analytical
representation of the significance S(τ), cf. Eq. (9),
only in terms of the Fourier-coefficients.

Equations (6), (9) and (15) comprise the entire
procedure of the QST. From now on we will call
the method introduced by Theiler “Q-statistic-test”
(QST) meaning the recipe to calculate the asymme-
try Eq. (3) and the significance Eq. (4) including
the generation of surrogates. On the other hand we
will name the formulas Eqs. (6), (9), (15) — the
distillate of the procedure of the Q-statistic-test —
“Q-formula-test” (QFT).

3. Comparison of the Methods

We now compare the well-known QST and our QFT
to three cases: the saw tooth function, the Lorenz
system in a chaotic regime and observed X-ray data
from the black hole candidate Cygnus X-1.

We consider the saw tooth function only to il-
lustrate the behavior of the functions Q, σQs

and S
for an easily manageable set of Fourier coefficients.
Hence, this example is not thought to be an hypoth-
esis test.

Then, we apply both methods to the Lorenz
system because it is a well-studied reference sys-

tem. As it is a nonlinear system both are supposed
to reject the null-hypothesis.

The last case concerns the observed X-ray flux
of Cygnus X-1. It is still under debate whether the
dynamics can be appropriately described by linear
models [Timmer et al., 2000; Viklinin et al., 1994;
Belloni & Hasinger, 1990].

QST and so the QFT depend on the phases
and hence make it possible to detect three point
correlations (third order statistics) that the power
spectrum cannot distinguish. Besides, we do not
simply accept or reject the null hypothesis but we
also consider the structure of S(τ). This structure
yields a further criterion to model the process under
consideration.

3.1. Saw tooth function

First we discuss is the truncated saw tooth func-
tion. “Truncated” means that we used in this ex-
ample the first 50 coefficients of the Fourier series
only [see Fig. 1(a)]. This time series can be consid-
ered as the Fourier decomposition of a time series
of 100 data points.

The saw tooth function is asymmetric in time.
The sum Eq. (5) converges uniformly due to the
finiteness of the sum, and so the Q-formulas hold.
Hence, Eqs. (8), (15) and (9) yield the asymmetry
Q(τ), the standard deviation of the asymmetries of
the surrogates σQs(τ) and the significance S(τ) re-
spectively. The graphs of these functions are shown
in Fig. 2. σQs has zeros at the same points as Q(τ)
and also in the middle of the period of the saw func-
tion. S(τ) has peaks only at the beginning and end
of the period [Fig. 2(c)]. This means that the divi-
sion of the zeros of Q(τ) and σQs in the middle of
the period, is in the limit finite.

We compare the results of the QFT and QST
using 100 surrogates. Due to the finite number of
surrogate files the QST uses, the mean is now not
equal to zero (Fig. 3). The significance [Fig. 3(c)]
differs from the one calculated with the QFT. The
peaks of the significance computed by QST are only
about 65% as high as the peaks calculated by the
QFT. Further we observe split peaks in the QST.
This is mainly due to the nonvanishing mean of
the asymmetries of the surrogates [see Fig. 3(b)]
and numerical errors. At m = 100 one finds that
S(100) = “0”/“0” and hence small numerical er-
rors yield large errors in the estimation of S. The
smaller the number of surrogates one uses for the
test the more pronounced is the effect.
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(a)

(b)

(c)

Fig. 2. Results of the QFT for the truncated saw tooth function. (a) Asymmetry Q(τ ). (b) Standard deviation σQs (τ ) of the
asymmetries of the “surrogates”. (c) Significance S(τ ).

(a)

(b)

(c)

Fig. 3. Results of the QST for the truncated saw tooth function using 100 surrogates. (a) Asymmetry Q(m). (b) Standard
deviation σQs (m) of the asymmetries (solid) and mean (dashed) of the “surrogates”. (c) Significance S(m) calculated with
the QST (solid) and QFT (dashed).
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Fig. 4. z-component of the Lorenz system transformed to
Gaussian distribution in absolute units of time.

Fig. 5. Significance calculated by the QST (solid line) using
100 surrogates and calculated by the QFT (dashed line) for
5, 000 data points of the z-component of the Lorenz system.
(Dashed–dotted) Level of 1% significance.

QFT avoids these finite size problems. This is
one important advantage to use QFT rather than
QST.

3.2. The Lorenz system

Next we analyze the z-component of the Lorenz sys-
tem in a chaotic regime [Lorenz, 1963]. We use the
standard parameters σ = 10, r = 28 and b = 8/3
and integrate the equations with a Runge–Kutta al-
gorithm of fourth order. The step-size for the inte-
gration is h = 0.01 and we use every tenth data
point, i.e. ∆t = 0.1. The absolute time of inte-
gration is 500 time units. Both methods are now
applied to the z-component (Fig. 4). As expected
both the QST and QFT clearly reject the null
hypothesis of a linear Gaussian process (Fig. 5).
Finite size effects and numerical errors cause — as
in the case of the saw tooth function — slightly
lower values of significance for the QST. The oscil-
lating structure of S(τ) is due to the oscillations of
sample time series.

3.3. Results for Cygnus X-1

Next we compare the QST and QFT for an observed
time series. We apply them to Kalman filtered

X-ray flux data of Cygnus X-1, one of the best inves-
tigated black hole candidates. Mass accretion from
its primary HDE 226868 leads to X-ray emission
which exhibits a variability in time scales from mil-
liseconds up to months. The spectral features allow
to distinguish five states that are called quiescent,
low, intermediate, high and very high states. They
are believed to correspond to increasing mass accre-
tion rate. This data has been recently investigated
by Timmer et al. [2000] by means of the QST. They
have found a rejection of the null hypothesis of a lin-
ear Gaussian process for the X-ray flux. The nature
of variability of the flux is still an open question in
astrophysics [Belloni & Hasinger, 1990; Pottschmitt
et al., 1998]. Its analysis by the QST/QFT helps to
learn whether a linear state space model is sufficient
to describe the statistical properties of the data as
suggested by Pottschmitt et al. [1998].

The data is recorded with the Proportional
Counter Array (PCA) aboard the Rossi X-ray Tim-
ing Explorer (RXTE). The energy range is 2.0–
14.1 keV and the sampling frequency is 256 Hz.

Fig. 6. Sample data of the X-ray flux of Cygnus X-1. The
bin width is 1

256
ms ∼ 4 ms.

Fig. 7. Significance S(τ ) calculated by the QST (solid) us-
ing 100 surrogates and calculated by the QFT (dashed) for
20,000 data points from the sample series. (Dashed–dotted)
Level of 1% significance.
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There are many data sets of the X-ray flux available
that consist of 100,000–800,000 points.

We present an analysis of observations from
24 October, 1996 when Cygnus X-1 was in a low
state. The measured X-ray flux looks rather er-
ratic (Fig. 6). Applying the QST (using 100 sur-
rogates) and QFT to the Kalman filtered X-ray
flux, we find for both approaches a significant de-
viation of the observed time series from a typical
realization of a linear Gaussian process (Fig. 7).
The greatest deviation can be localized at lags of
about τ = 30 ∼ 30(1/256 Hz) ∼ 120 ms. Timmer
et al. [2000] have found a similar deviation for an
intermediate state of the black hole candidate. We
now show the same behavior for a low state.

4. Conclusions and Outlook

We have shown in this paper, that the QST can be
expressed in terms of the Fourier coefficients of the
underlying time series. This representation allows
to compute analytically the expected value of the
mean and the standard deviation of the asymme-
tries without generating surrogates. Our approach
eliminates effects that are due to the finite number
of surrogates and hence reduces the errors of the
second kind (false negatives).

The analytical solution for the asymmetry and
the significance can reveal dependencies of higher
than second order of the Fourier coefficients. The
analytical expressions help to yield a deeper under-
standing of the difference between linear and non-
linear dynamics and how it is formed in terms of
certain components of the time series.

One important point for the modeling of time
series is that the structure of S(τ) gives a fur-
ther piece of information about (nonlinear) depen-
dencies. One way to reproduce these structures is
to generate stochastic processes with nonlinearities
[Tsay, 1973].

We also have extended the results of Timmer
et al. [2000] but for a low state. Furthermore,
the new representation of the QST, i.e. the QFT,
will help to reveal the relations of the Fourier-
coefficients that lead to the deviation from the lin-
ear process in the case of Cygnus X-1.
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