
International Journal of Bifurcation and Chaos, Vol. 10, No. 11 (2000) 2595–2610
c© World Scientific Publishing Company

CROSS-SPECTRAL ANALYSIS OF
TREMOR TIME SERIES

J. TIMMER∗, M. LAUK, S. HÄUßLER† and V. RADT
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We discuss cross-spectral analysis and report applications for the investigation of human
tremors. For the physiological tremor in healthy subjects, the analysis enables to determine
the resonant contribution to the oscillation and allows to test for a contribution of reflexes
to this tremor. Comparing the analysis of the relation between the tremor of both hands in
normal subjects and subjects with a rare abnormal organization of certain neural pathways
proves the involvement of central structures in enhanced physiological tremor. The relation
between the left and the right side of the body in pathological tremor shows a specific differ-
ence between orthostatic and all other forms of tremor. An investigation of EEG and tremor
in patients suffering from Parkinson’s disease reveals the tremor-correlated cortical activity.
Finally, the general issue of interpreting the results of methods designed for the analysis of
bivariate processes when applied to multivariate processes is considered. We discuss and apply
partial cross-spectral analysis in the frame of graphical models as an extention of bivariate
cross-spectral analysis for the multivariate case.

1. Introduction

Since many decades the electrophysiological and
mathematical analysis of human tremor has been
a subject of numerous studies. Tremor is defined
as the involuntary, oscillatory movement of parts of
the body, mainly the upper limbs [Deuschl et al.,
1998]. There are different kinds of tremor, dif-
ferentiated by clinical criteria. The better under-

standing of the generating mechanisms of the differ-
ent human tremors could lead to an improvement
of diagnosis and therapy of tremor diseases. Al-
though the most common types of tremor, phys-
iological tremor, enhanced physiological tremor,
essential tremor and Parkinsonian tremor, were
subject to numerous studies, their mechanisms and
origins are still unknown, for reviews see, e.g. [Elble
& Koller, 1990; Elble, 1996; Deuschl et al., 1996].
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Shortly, the physiological tremor denotes a fine,
low-amplitude mostly invisible oscillatory move-
ment of the outstretched hand and is present more
or less intensely in all humans. Its origin is still
under discussion. It was supposed to have origi-
nated from reflex loops [Lippold, 1970; Young &
Hagbarth, 1980; Allum, 1984], by random synchro-
nization [Christakos, 1982] or from a central os-
cillator [Llinás & Paré, 1995; Köster et al., 1998;
Timmer et al., 1998b]. The frequency of physiologi-
cal tremor usually ranges from 7 Hz up to 11 Hz and
depends on the weight of the hand, i.e. its frequency
decreases if the outstretched hand is loaded with
weights [Deuschl, 1996]. The so-called enhanced
physiological tremor denotes a tremor whose fre-
quency also often depends on the load of the hand
but with a clearly visible tremor amplitude. Promi-
nent examples are the tremor caused by drug abuse,
by excitement or by fear.

Essential tremor is a hereditary form of tremor
and the most common pathological tremor. Its fre-
quency usually ranges from 4.5 Hz up to 10 Hz
[Deuschl et al., 1996]. Parkinsonian tremor is the
second most common form of all pathological
tremors. Its frequency usually ranges from 4 Hz
up to 8 Hz [Deuschl et al., 1996]. It is one of
the prominent symptoms of Parkinson’s Disease.
The so-called orthostatic tremor was supposed to
be a special kind of essential tremor [Wee et al.,
1986; Cleeves et al., 1987; Papa & Gershanik, 1988;
Britton et al., 1992] that only occurs during stand-
ing and shows an unusual high frequency around
15 Hz. However, recent observations suggest that
orthostatic tremor is a separate form of tremor
[Köster et al., 1999; Lauk et al., 1999]. Although
frequencies and amplitudes can differ substantially,
they are not sufficient criteria for a reliable diagno-
sis of different pathological forms of tremor [Elble &
Koller, 1990; Deuschl, 1996; Lücking et al., 1999].

Cross-spectral methods provide a powerful tool
to investigate the relation between simultaneously
recorded signals. These methods have been used
in tremor research to study the relation between
muscle activity (electromyogram (EMG)) and mag-
netoencephalogram (MEG) [Volkmann et al., 1996;
Tass et al., 1998], between EMG and electroen-
cephalogramm (EEG) [Jasper & Andrews, 1938;
Schwab & Cobb, 1939; Hellwig et al., 2000], be-
tween EMGs and mechanical measurements [Fox
& Randall, 1970; Pashda & Stein, 1973; Elble &
Randall, 1976; Stiles, 1980, 1983; Allum, 1984;
Iaizzo & Pozos, 1992; Pozos & Iaizzo, 1991;

Timmer et al., 1998a, Timmer et al., 1998b], be-
tween EMGs [Elble, 1986; Boose et al., 1996; Lauk
et al., 1999] and between single units and EMGs
[Elble & Randall, 1976; Lenz et al., 1988; Lenz
et al., 1994].

In this paper we describe the benefits and limits
of cross-spectral analysis in different “real-world”
problems in tremor research. Section 2 describes
the data recordings and gives a brief overview of the
mathematical fundamentals of cross-spectral analy-
sis, estimation procedures and partial cross-spectral
analysis. In Sec. 3.1 we address the contribution
of reflexes to physiological tremor, in Sec. 3.2 we
discuss the involvement of central structures in the
generation of physiological tremor. Section 3.3 de-
velops a diagnosis criterion for orthostatic tremor
by the use of cross-spectral methods. Section 3.4
describes the cross-spectral analysis of EEG and
tremor time series in Parkinsonian patients detect-
ing the tremor correlated cortical activity. Fur-
thermore, cortical signal transmission pathways in
a healthy subject are identified by partial cross-
spectral analysis.

2. Methods

2.1. Recording techniques

In the application section below we analyze three
different kinds of time series: (1) Accelerometer
signals representing the mechanical movements of
the hand, (2) surface electromyogram (EMG) repre-
senting the muscle activity as a difference of poten-
tial between two electrodes placed on the skin over
the respective muscle and (3) electroencephalogram
(EEG) representing the cortical activity as poten-
tial measured over the scalp of a subject. To give
an impression Fig. 1 shows three arbitrary clippings
of a patient suffering from Parkinson’s disease.

During the recording, subjects were made to
sit in a comfortable, heavy chair with their arms
supported. The forearms were fixed proximal of
the wrist with a strap. To measure the postural
tremor, subjects were asked to hold their hands
outstretched in pronated position and to avoid any
voluntary movement. For the resting tremor mea-
surements, subjects were asked to avoid any volun-
tary muscle contraction or movement of their hands.
The duration of each record was 30 sec. Hand accel-
eration (ACC) was recorded by light weight piezore-
sistive accelerometers attached to the belly of the
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Fig. 1. Examples for the recorded data. (a) Accelerometer, (b) raw EMG and (c) EEG for a patient suffering from Parkinson’s
Disease.

right and left hands [Deuschl et al., 1991; Timmer
et al., 1996]. Surface EMGs were recorded from the
wrist flexor and extensor muscles of the left and
right forearms.

ACCs and EMGs were bandpass filtered to
avoid aliasing effects and undesired slow drifts
(ACC: 0.5 Hz–50 Hz, EMG: 80 Hz–500 Hz). All
data were simultaneously sampled at 1000 Hz and
stored on computer using a special software [Lauk
et al., 1999]. The mean was subtracted from
each time series. Finally, the series were tapered

with a Bartlett–Window to reduce spectral leakage
[Brockwell & Davis, 1991] and normalized to unit
variance. In addition, EMGs were digitally full
wave rectified for spectral and cross-spectral anal-
ysis [Journée, 1983; Elble & Koller, 1990]. The
rectification yields a time series which reflects the
muscle activity that is encoded in the envelope of
the originally measured signal.

EEG recordings were performed using a 64-
channel EEG system. The potential field measured
over the scalp was transformed into the reference
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free current density distribution which reflects the
underlying cortical activity by calculating second
spatial derivatives [Hjorth, 1975, 1991].

2.2. Cross-spectral analysis

The power spectrum Sx(ω) of a zero-mean process
X(t) is defined as the Fourier transform of the auto-
covariance function ACF(t′) = 〈X(t)X(t − t′)〉:

Sx(ω) =
1

2π

∑
t

ACF(t) exp(−iωt) , ω ∈ (−π, π] ,

(1)

where 〈·〉 denotes expectation [Brockwell & Davis,
1991]. The estimation of the power spectrum is per-
formed by a direct spectral estimation [Brockwell
& Davis, 1991; Priestley, 1989; Bloomfield, 1976],
based on the Fourier transform FTx(ω) of the mea-
sured data x(t)

FTx(ωk) =
1√
N

N∑
t=1

x(t) exp(−iωkt) ,

k =
−N + 1

2
, · · · , N

2
.

(2)

The periodogram Perx(ωk) is defined as the
squared modulus of FTx(ωk). Whenever the auto-
covariance function ACF(t) is decaying fast enough
for larger lags, the Fourier transform FTx(ωk)
is asymptotically Gaussian distributed with vari-
ance given by Sx(ω). Therefore, the periodogram
Perx(ωk) is distributed as χ22, a random variable
which does not represent a consistent estimator
for the spectrum because its variance is equal to
its mean. Note, that this holds for deterministic
chaotic as well as for (nonlinear) stochastic pro-
cesses as long the auto-covariance function ACF(t)
is decaying sufficiently fast. To obtain a consistent
estimator of the spectrum, the periodogram has to
be smoothed by a window function Wj

Ŝx(ωk) =
1

2π

h∑
j=−h

Wj Perx(ωk+j) . (3)

The simplest example for the weight function
Wj is an equal weighted “square” window, the so-
called Daniell estimator. We choose a triangular
window (i.e. a Bartlett estimator) with an adaptive,
frequency dependent width [Timmer et al., 1996] for
the auto-spectral estimations.

Similar to the univariate case, the cross-
spectrum CS(ω) of two zero-mean processes X(t)

and Y (t) is defined as the Fourier transform
(FT) of the cross-correlation function CCF(t′) =
〈X(t)Y (t − t′)〉. Again, the estimation is based on
smoothing of the cross-periodogram. The coherence
spectrum Coh(ω) is given by the modulus of the
cross-spectrum CS(ω) normalized by the respective
auto-spectra Sx(ω) and Sy(ω) [Brockwell & Davis,
1991; Priestley, 1989; Brillinger, 1981; Timmer
et al., 1998a]

Coh(ω) =
|CS(ω)|√
Sx(ω)Sy(ω)

. (4)

The phase spectrum Φ(ω) is defined by

CS(ω) = |CS(ω)| exp(iΦ(ω)) . (5)

The coherence and phase spectra were estimated by
replacing the cross- and auto-spectra in Eq. (4) by
their respective estimated quantities.

The coherence can be interpreted as a measure
of linear predictability [Brockwell & Davis, 1991;
Priestley, 1989] — it equals one whenever X(t) is
obtained from Y (t) by a linear operator L(·). It
is important to note, that the interpretation of the
coherence does not rely on the linearity of the pro-
cesses X(t) and Y (t). The only condition Y (t) has
to fulfill is that the spectrum must be broad band.
It can for example, also be chaotic or nonstationary.
Besides the simple case where Y (t) and X(t) are in-
deed uncorrelated, at least the following reasons can
result in a coherence unequal one:

• A nonlinear relationship between X(t) and Y (t)
• Additional influences on X(t) apart from Y (t)
• Estimation bias due to misalignment [Hannan &

Thomson, 1971]
• Observational noise

With respect to a possible nonlinear relation-
ship between X(t) and Y (t) it should be mentioned
that the coherence is equal to zero if the relation-
ship between the processes is a quadratic one. If
it is a cubic one, the coherence will still be able
to detect the relation since a linear approximation
will explain a part of the variance. In our applica-
tions the observational noise turned out to be the
most prominent reason for observing a reduced co-
herence. If Y (t) is a linear function of X(t) but
the measurements of Y (t) and X(t) are covered by
white observational noise of variance σ2y and σ2x,
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the resulting coherency is given by [Timmer et al.,
1998b]

Coh(ω) =

√√√√1−
σ2xSy + Sxσ2y + σ2xσ

2
y

(Sx + σ2x)(Sy + σ2y)
, (6)

where the argument ω was suppressed on the right
hand for ease of notation and σ2x and σ2y denote the
constant power spectra of the observational noise.
Thus, the coherency is a function of the frequency
dependent signal-to-noise ratio.

The interpretation of the phase spectrum is
more difficult. For the following cases the phase
spectrum can be calculated analytically:

• If the process X(t) is a time delayed version of
process Y (t), i.e. X(t) = Y (t − ∆t), the phase
spectrum is given by a straight line with its slope
determined by ∆t:

Φ(ω) = ∆t ω . (7)

• If X(t) is the derivative of Y (t), i.e. X(t) = Ẏ (t)
a constant phase spectrum of −(π/2) results.

Φ(ω) = −π/2 . (8)

• In the case of a linear autoregressive (AR) process
of order 2 (AR[2])

X(t) = a1X(t− 1) + a2X(t− 2) + ε(t) ,

ε(t) ∼ N(0, σ2)
(9)

the phase spectrum between the driving noise ε(t)
and the resulting process is given by

Φ(ω) = arctan

(
a1 sin ω + a2 sin 2ω

1− a1 cos ω − a2 cos 2ω

)
.

(10)

Since an AR[2] process represents a stochastically
driven damped linear oscillator, Eq. (10) is the dis-
crete time version of the well-known sigmoidal be-
havior of the phase spectrum for the corresponding
time-continuous resonant system. This relation is
discussed in detail in [Timmer et al., 1998a]. Note,
that the parameters of an AR[2] process can be re-
lated to the period T and the relaxation time τ of
the damped oscillator by

a1 = 2 cos

(
2π

T

)
exp

(
−1

τ

)
(11)

a2 = − exp

(
−2

τ

)
. (12)

If one of the theoretical functional behaviors of
the phase spectrum is observed in measured data,
it may allow for an identification of the system.

For the application to measured data, the first
question is if there is a significant coherence. The
critical value s for the null hypothesis of zero coher-
ence for a significance level α is given by [Brockwell
& Davis, 1991]

s =

√
1− α

2
ν−2 , (13)

where ν is the so-called equivalent number of de-
grees of freedom, determined by the window func-
tion W (j) used and the tapering [Bloomfield, 1976;
Brillinger, 1981]. Confidence intervals for the coher-
ence are given in [Bloomfield, 1976]. The variance

of the estimator for the phase spectrum Φ̂(ω) de-
pends on the coherence [Priestley, 1989]

var(Φ̂(ω)) =
1

ν

(
1

Coh2(ω)
− 1

)
. (14)

Equation (14) holds if the coherence is sig-
nificantly larger than zero. For a coherence to-
wards zero, the distribution of the estimated phase
approaches the uniform distribution in [−π, π].
Therefore, the phase spectrum cannot be estimated
reliably in the case of small coherence. This poses
an important limitation for the applicability of the
phase spectrum to infer the functional form of the
relationship between the processes. If the confi-
dence regions of the phase spectrum are small only
in a narrow frequency band it is not possible to de-
cide whether for example, Eq. (7) or Eq. (10) is the
true underlying phase spectrum.

It is important to note that the statistical prop-
erties of the coherence and phase spectrum are
known and easily calculated. This does not hold
for the statistical properties of the estimated cross-
correlation function. Here, the estimation errors
are, in general, not independent for different lags.
These correlations may lead to effects that are in the
same order as the true cross-correlations. There-
fore, the cross-correlation function cannot be used
to gain information about the relation between the
processes [Timmer et al., 1998a]. Note, that this
situation carries over to more general nonlinear
measures of dependence as the trans information
[Vastano & Swinney, 1988] or phase synchroniza-
tion [Tass et al., 1998].
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2.3. Analyzing multivariate
time series

In extending cross-spectral analysis to the multi-
variate case, one faces a problem which is common
to all methods that are designed to analyze bivariate
data when applied to multivariate data: If a bivari-
ate method detects a relation between two signals,
it cannot be decided if there is an underlying direct
or indirect connection. The correlation between the
number of babies and the numbers of storks in in-
dustrially developed countries serves as a popular
example.

To detect spurious correlations and identify
true relations in multivariate data sets, the no-
tion of conditional independence has been intro-
duced in the frame of graphical models [Whittaker,
1995; Lauritzen, 1996; Cox & Wermuth, 1996]. If a
bivariate subset of data is independent when the
information of the remaining data is taken into
account the two variables are called conditionally
independent. For linear regression this leads to the
notion of partial correlation. These procedures have
been generalized to point processes and time se-
ries [Brillinger et al., 1976; Rosenberg et al., 1989;
Halliday et al., 1995; Brillinger, 1996; Dahlhaus
et al., 1997; Dahlhaus, 2000]. Instead of the cross-
spectrum introduced in Sec. 2.2 one considers the
partial cross-spectrum. The partial cross-spectrum
PCSX1X2|Y (ω) between the processes X1 and X2
given the information of the remaining processes de-
noted by Y can be calculated by [Brillinger, 1981]

PCSX1X2|Y (ω) = CSX1X2(ω)

−CSX1Y (ω)SY (ω)−1CSY X2(ω) .

(15)

Based on the partial cross-spectrum, partial co-
herence and partial phase spectra are obtained anal-
ogously to Eqs. (4) and (5). The critical value s
for the null hypothesis of zero partial coherence de-
pends on the dimension L of the partialized pro-
cesses Y . For a significance level α, in generaliza-
tion of Eq. (13) it is given by [Halliday et al., 1995]

s =

√
1− α

2
ν−2L−2 . (16)

The variance of the partial phase spectrum is by
given Eq. (14), applying the partial coherence in-
stead of the conventional coherence.

The notion of “graphical model” for this kind
of analysis is due to the fact that the consideration

of all the significant pairwise partial coherences for
a multivariate time series leads to a graph where
the edges in the graph represent direct coupling be-
tween the corresponding components of the time
series [Dahlhaus et al., 1997; Dahlhaus, 2000].

3. Applications

In this section we give various applications for cross-
spectral analysis of tremor time-series.

3.1. The contribution of reflexes to
physiological tremor

The physiological tremor of healthy subjects can be
subclassified with respect to the presence of spec-
tral peaks in the EMG time series. Figure 2 gives
an example for ACC and EMG data for a typical
physiological hand tremor where the EMG does not
exhibit peaks. The left column of Fig. 3 shows the
spectrum, coherence and phase spectra for the data
shown in Fig. 2. The single broad peak of the ACC
spectrum suggests a linear second-order process for
the data [Gantert et al., 1992; Timmer, 1998]

EMG(t) = η(t) (17)

x(t) = a1x(t− 1) + a2x(t− 2) + EMG(t) (18)

ACC(t) = ẍ(t) (19)

where η(t) denotes white noise and x(t) the po-
sition of the hand. It should be noted that the
measured data contain white additive observational
noise. The parameters a1 and a2 are related to the
resonant frequency of the hand and the damping
of the process due to the muscles and tissue by
Eqs. (11) and (12). Since the model is linear the
parameter can be fitted from the data. The right
column of Fig. 3 shows the results for a realiza-
tion of the fitted model analogous to the left col-
umn of Fig. 3 for the measured data. Confidence
regions of the auto- and coherence-spectra are not
given for ease of clarity. The only statistically sig-
nificant differences in the results appear for low fre-
quencies. Here the coherence for the data of the
model is larger than for the measured data and,
consequently, the errors of the phase spectrum are
larger. The reason for this is the so-called cardio-
ballistic effect [Elble & Randall, 1978]. The heart-
beat excites the hand at a frequency around 1 Hz.
Since this additional influence is not captured by
our model, the model overestimates the coherence.
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Fig. 2. (a) Acceleration of the hand and (b) rectified EMG of physiological tremor.

Apart from that the phase spectrum of the data
and the model show the expected sigmoidal behav-
ior of a resonant oscillator, Eq. (10), with the char-
acteristic jump at the resonant frequency. The fact
that the phase spectrum values range from −π to
0 and not as could have been expected from 0 to
π is explained by the circumstance that the accel-
eration, not the position of the hand is measured,
see Eq. (8). In terms of physics and physiology the
result shows that this kind of tremor represents a
resonant oscillation of the hand that is driven by
uncorrelated firing motoneurons and that the mea-
sured EMG represents a Newtonian force by which
the muscle acts on the hand [Timmer et al., 1998a].
Comparable results were obtained for 58 subjects
with physiological tremor and a flat EMG spectrum.

In the case of peaks in the EMG spectra there
are two possible reasons. First, there can be an
oscillator in the central nervous system that drives
the hand. Second, reflex loops can serve for an os-
cillatory EMG activity. To capture both possible

effects we use the following model

c(t) = b1c(t− 1) + b2c(t− 2) + ε(t) (20)

r(t) = αf(x(t− δt)) (21)

EMG(t) = c(t) + r(t) + η(t) (22)

x(t) = a1x(t− 1) + a2x(t− 2) + EMG(t) (23)

ACC(t) = ẍ(t) (24)

where c(t) denotes the central input, r(t) the reflex
contribution and f(·) the nonlinearity of the reflex
modeled by the tangens hyperbolicus. The central
input is described by an AR[2] process. This model
presents a nonlinear, stochastic, inhomogeneous de-
lay differential equation [Timmer et al., 1998b]. To
test for the contribution of the reflex in this model,
it would be necessary to test whether the coef-
ficient α is consistent with zero. Unfortunately,
no techniques are known to the authors to esti-
mate parameters of the above equations from noisy
data.
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Fig. 3. Results for a physiological tremor. (a) Power spectra (EMG: dashed line in units of (µV )2, ACC: solid line, in
units of (mm/sec2)2), (b) coherence spectrum, the straight line represents the 5% significance level for the hypothesis of zero
coherence, (c) phase spectrum with 95% confidence intervals. Confidence intervals for the power spectra and the coherence
are not displayed for reasons of clarity. (d)–(f) display the results for a linear model fitted to the data.

In order to identify the role of reflexes in
the generation of physiological tremor, we investi-
gated in model simulations phase spectra and auto-
spectra under the two hypothesis that (1) reflexes
contribute significantly (α 6= 0) and (2) that they
do not play a significant role (α = 0) [Timmer et al.,
1998b].

For the nonreflex case the phase spectrum can
be calculated analytically [Timmer et al., 1998a].
The shape of the phase spectrum only depends on
the properties of the mechanical, resonant oscillator
and is independent of the driving force. In the reflex
case the feedback does not modify the phase spec-
trum. But the apparent resonance frequency in the
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auto-spectrum of the mechanical oscillator (i.e. the
ACC in case of tremor time series) moves depend-
ing on the chosen feedback delay. Thus, a signifi-
cant difference between the resonance frequency in
the phase spectrum and the peak frequency in the
auto-spectrum points to a significant contribution
of reflexes in physiological tremor [Timmer et al.,
1998b].

To identify the contribution of reflexes in
tremor data the following steps were performed.
First, the peak frequency in the auto-spectrum of
the ACC was estimated. Confidence intervals were
given by a bootstrap procedure described in detail
in [Timmer et al., 1997, 1999]. Secondly, the res-
onance frequency in the phase spectrum was esti-
mated by fitting Eq. (10) to the estimated phase
spectrum. Since the confidence regions for the esti-
mated phase spectrum were available, a confidence
region for the resonance frequency could be ob-
tained. Figure 4 gives an example in which two
respective frequency estimates are statistically dif-
ferent. An example where no reflex could be de-
tected is given in [Timmer et al., 1998b]. In 35 time
series recorded from 19 subjects with the respective
type of physiological tremor, we clearly found that
reflexes contribute to the tremor [Timmer et al.,
1998b].

In simulation studies based on Eqs. (20)–(24)
using a delay time of 35 ms corresponding to a
possible segmental stretch reflex, we found a shift
of the ACC peak frequency to higher values. For
longer delay times corresponding to central loops,
we found shifts to lower frequencies [Timmer et al.,
1998b]. In the measured time series, in the major-
ity of cases we observed shifts to lower frequencies.
This indicates that more complex structures than
the segmental stretch reflex are involved in the pro-
cess, perhaps a combination of different reflex loops.

However, there is no evidence in the data that
reflex loops primarily cause the tremor. They alter
the frequency, relaxation time and amplitude of ex-
isting oscillations in a limited range. The primary
cause of this type of physiological tremor is the reso-
nant behavior of the hand and a synchronized EMG
activity that is generated centrally. Evidence for the
central component is given in the following section.

3.2. Physiological tremor and
mirror-movements

Apart from the resonant component, a component
around 8–12 Hz is often present in physiological
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Fig. 4. Analysis of an enhanced physiological tremor.
(a) Power spectra (EMG: dashed line in units of (µV )2, ACC:
solid line, in units of (mm/sec2)2), (b) coherence, (c) phase
spectrum. The mechanical peak frequency estimated from
the phase spectrum is 7.4 ± 0.2 is not consistent with that
estimated from the ACC power spectrum of 6.2± 0.1.

tremor [Elble & Randall, 1976]. While the fre-
quency of the resonant component can be altered
by loading following the ωpeak ∝

√
1/m law for a

resonance frequency, the 8–12 Hz component does
not change under loading. This has lead to the
hypothesis that this component is generated cen-
trally. To reveal whether the motor cortex is in-
volved in this process we compared coherences of
EMG time series recorded from the right and the
left hand of subjects with the motor abnormality
of persistent mirror movement to those of control
subjects. Neurophysiological studies have shown
that mirror movements are caused by abnormal
transmitting pathways that project from the motor
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Fig. 5. Coherency spectra between the EMG time series recorded from the left and right sides of the body. The horizontal
line displays the confidence level s of Eq. (13). (A) Three control subjects, (B) subjects with persistent mirror movements
(PMM). The confidence level for zero coherence at the level of 5% is marked.

cortex to both sides of the body [Cohen et al., 1991;
Hermsdörfer et al., 1995]. In normal subjects the
projections are only to the contralateral side. As-
suming a central mechanism or driving force that
involves the motor cortex in the generation of phys-
iological tremor, EMG activity should be coherent
between the right and left sides of the body for sub-
jects with mirror movements.

Figure 5 displays the results for three subjects
with mirror movements and healthy controls. All
subjects with mirror movements exhibit a signif-
icant coherence [Lauk et al., 1999; Köster et al.,
1998]. In contrast, controls do not show a coherent
activity. These results suggest the presence of bi-
lateral and independent central generators of the
8–12 Hz component in physiological tremor and
completes the results of the first application dis-
cussed in Sec. 3.1.

3.3. Side-to-side coherence
of muscle activity in
pathological tremors

In this section we address the question if different
pathological tremors are side-to-side coherent, sim-
ilar to the discussion in Sec. 3.2 for physiological
tremor.

Seven patients with orthostatic tremor, 76 es-
sential tremors and 70 Parkinsonian tremors were
investigated. The results show a clear-cut differ-
ence between Parkinsonian and essential tremor on
the one hand and the orthostatic tremor on the
other hand. All investigated orthostatic tremor
patients exhibited a significant side-to-side coher-
ence with surprisingly high values (up to 0.98),
while only as many as statistically expected essen-
tial and Parkinsonian patients showed a significant
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coherence, despite corresponding tremor ampli-
tudes and similar signal-to-noise ratios in ortho-
static tremor and Parkinsonian, respectively es-
sential tremor. This points to a single central
oscillator generating orthostatic tremor, while dif-
ferent oscillators are responsible for the tremor of

different limbs in essential and Parkinsonian tremor
[Lauk et al., 1999; Raethjen et al., 2000].

It is still under discussion whether orthostatic
tremor is a variant within the spectrum of essen-
tial tremor or a separate entity [Wee et al., 1986;
Cleeves et al., 1987; Papa & Gershanik, 1988;

Fig. 6. (a) Schematic layout of the 42 EEG electrodes were analyzed. (b)–(f) Isocoherence maps for patients with an unilateral
Parkinsonian tremor for the peak frequency of the tremor. The respective region showing the highest coherence is always
contralateral to the trembling limb. The peak frequencies are (b) 4.9 Hz, (c) 4.6 Hz, (d) 4.8 Hz, (e) 5.6 Hz, (f) 4 Hz.



2606 J. Timmer et al.

Britton et al., 1992]. Our results clearly separate
orthostatic tremor and essential tremor as different
forms of tremor. Furthermore, this method could
serve as an objective and low-cost tool for the diag-
nosis of orthostatic tremor.

3.4. EEG and EMG coherence

Parkinsonian tremor is thought to be generated by
central nervous structures. Using the magnetoen-
cephalogram, it has been shown that cerebral cor-
tex is involved [Volkmann et al., 1996; Tass et al.,
1998]. In this study we investigated whether corti-
cal activity related to Parkinsonian tremor can be
detected by EEG [Hellwig et al., 2000]. Similar ap-
proaches were unsuccessful in the past [Jasper &
Andrews, 1938; Schwab & Cobb, 1939].

Five patients with unilateral Parkinsonian
tremor were included in this study. In all patients
we found highly significant coherence between the
EEG and EMG time series at the tremor frequency
and its higher harmonics. Figure 6 displays iso-
coherence maps for the tremor frequency over the
scalp of five subjects. In all cases the maximum co-
herence was located over the cortical motor area of
the contralateral side of the tremor affected hand.

For patients whose results are displayed in
Figs. 6(e) and 6(f) the coherence was highest for
the frequency of the first harmonics which is lo-
cated at twice the tremor frequency. This can be
explained by the fact that the cortical areas in the
motor cortex that drive the extensor and the flexor
muscles of the hand are only a few millimeters apart
which leads to a superposition of their signals at the
EEG electrodes. Since these patients exhibit an al-
ternating activation of flexor and extensor muscles
this results in a component of the EEG signal with
twice the frequency of the tremor oscillation. This
component is coherent with the first harmonics of
the EMG signal. This result is consistent with the
finding by Tass et al. [1998] who reported a 2:1 syn-
chronization between MEG and EMG.

Of special importance is the result displayed
in Fig. 6(c). Here, a high coherence to the EMG
is also found at electrode P4 which represents the
sensomotor cortex. Furthermore, there is a signifi-
cant coherence between the electrodes P4 and C2a
which is located above the motor cortex. There
are two different possible explanations for this find-
ing. First, all observed coherences correspond to
true relations between the investigated processes,
i.e. there is a closed signal transmission loop. Sec-

ond, the coherence between the sensomotor and the
motor cortex is spurious, meaning that there is no
underlying direct connection but that the coherence
is caused only by propriorezeptive afferences. It is
a fundamental limitation of methods designed to
analyze bivariate processes when applied to multi-
variate processes that these alternatives cannot be
decided. We calculated the partial coherence intro-
duced in Sec. 2.3 between the two EEG channels
given the information of the EMG. The partial co-
herence is smaller than the coherence between the
two channels but does not fall below the level of sig-
nificance. Thus, unfortunately, no conclusion can
be drawn in this case.

In another experiment, we measured EEG and
left hand extensor-EMG in a healthy subject during
an externally enforced oscillation of the hand with
1.9 Hz. Figure 7 shows the resulting isocoherence
maps between left hand extensor-EMG and EEG at
the frequency of the oscillation. A significant coher-
ence is found for the channels P1 and C2P. These
results were reproduced in nine repetitions of the
experiment.

Figure 8 displays the spectra of the time series
on the diagonal, the conventional and the partial
coherence spectra between the respective time se-
ries on the subdiagonal. The nonlinearity of the
processes is apparent from the higher harmonics in
the spectra.

The confidence levels for zero coherence and
zero partial coherence, differ due to the dimension
L of the partialized processes Y , see Eqs. (13) and

Fig. 7. Isocoherence maps for a healthy subject during en-
forced oscillation of the left hand. For the color scale and the
assignment of the electrodes, see Fig. 6.
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(16). For the results displayed in Fig. 8 this dimen-
sion is one. Therefore, the two confidence levels
are virtually the same and we plotted only those
for zero partial coherence (at the 5% level). They
are conservative bounds for the conventional coher-
ence. Moreover, we chose simultaneous confidence
levels. This solves the problem of multiple test-
ing in a statistically conservative way [Sachs, 1984].
This procedure ensures that every time the level is
exceeded this represents a significant coherence at
the nominal level of significance. A significant co-
herence is found at the tremor frequency and its
higher harmonic between all three channels. The
partial coherence between the left hand extensor-
EMG and the EEG channel P1 falls below the level
of significance. This suggests that the coherence
between P1 and the EMG signal does not represent
a direct connection, but that the signal transfer is
mediated via C2P.

4. Discussion

We discussed bivariate cross-spectral analysis and
its generalization to the multivariate case in the
frame of graphical models, and present numer-
ous applications to tremor data. Although cross-
spectral analysis initially was developed in the
frame of linear stochastic processes its applicabil-
ity is not limited to this class of processes. It
may also allow for insights into nonlinear processes
as long as the relation between the processes is
linear. We demonstrated this for time series of
pathological tremors that represent nonlinear pro-
cesses [Gantert et al., 1992; Timmer et al., 1993;
Timmer et al., 2000]. For example, the high coher-
ence between left and right sided tremor time series
in orthostatic tremor led to the conclusion of a sin-
gle oscillator driving this tremor in all muscles of the
body, whereas in Parkinsonian and essential tremor
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different oscillators for different limbs must be hy-
pothesized. Some physiological tremors exhibit a
reflex contribution. Formally, such systems have to
be described by a nonlinear, stochastic, inhomoge-
neous delay differential equation. Even for this sys-
tem (linear) cross-spectral analysis could success-
fully be applied by means of testing for the presence
of the reflex contribution. Here, we took advantage
of the fact that in absence of the reflex loop the
system is well described by a second-order linear
stochastic process reflecting the resonant nature of
this tremor.

Stationarity is a crucial issue for the applica-
bility of many time series analysis methods and
tremor is not a stationary process in a strict math-
ematical sense. However, for cross-spectral anal-
ysis it is not required that the involved processes
are stationary but only that the relation between
the processes is time independent. For the tremor
processes under investigation this relation is de-
termined by quantities like the mass of the hand
and the stiffness of muscles and tissue for the in-
vestigations in Sec. 3.1 and neural connectivity in
Secs. 3.2–3.4. These quantities can be considered
as constant for 30 sec of measurement. Moreover,
analyses reported in [Timmer, 1998] and [Timmer
et al., 2000] show that physiological, essential and
Parkinsonian tremor time series are consistent with
stationary second-order stochastic processes, linear
in the first case, nonlinear in the two latter cases.
This consistency does not prove stationarity but
claims that these processes are statistically indis-
tiguishable from stationary processes.

Apart from the insights into the mechanisms
underlying the different forms of tremor, cross-
spectral methods might be helpful in a daily clin-
ical routine as a diagnostic tool, for example, for
discriminating orthostatic from essential tremor.

The successful applications of cross-spectral
analysis to the measured time series rely heavily
on the fact that the statistical properties of the es-
timates are known which is, unfortunately, not the
case for many methods in nonlinear dynamics to
investigate corresponding relations.

Whenever multivariate time series have to be
analyzed by means of methods that were developed
to analyze bivariate data, the problem occurs that
it is impossible to decide by these methods whether
a significant relation between two time series corre-
sponds to a direct coupling or is only a result of an
indirect connection. Cross-spectral analysis can be
generalized to deal with this problem in the frame of

graphical models. Therefore, partial cross-spectra
are estimated in which the relation between two
time series is investigated taking the information of
the remaining data into account. For simultaneous
measurements of EEG and enforced tremor activ-
ity, we showed that this method may reveal cortical
transmission pathways.
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