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We review the problem of estimating parameters and unobserved trajectory components from
noisy time series measurements of continuous nonlinear dynamical systems. It is first shown
that in parameter estimation techniques that do not take the measurement errors explicitly
into account, like regression approaches, noisy measurements can produce inaccurate parameter
estimates. Another problem is that for chaotic systems the cost functions that have to be min-
imized to estimate states and parameters are so complex that common optimization routines
may fail. We show that the inclusion of information about the time-continuous nature of the
underlying trajectories can improve parameter estimation considerably. Two approaches, which
take into account both the errors-in-variables problem and the problem of complex cost func-
tions, are described in detail: shooting approaches and recursive estimation techniques. Both are
demonstrated on numerical examples.

Keywords : System identification; multiple shooting algorithm; unscented Kalman filter;
maximum likelihood.

1. Introduction

For a quantitative understanding and control of
time-varying phenomena from nature and technol-
ogy, it is necessary to relate the observed dynami-
cal behavior to mathematical models. These models
usually depend on a number of parameters whose
values are unknown or only known imprecisely.
Furthermore, often only a part of the system’s dy-
namics can be measured. For example, in an electro-
physiological experiment the voltage across a nerve
cell membrane may be measured but not the ionic
currents, which are not accessible but would also
be needed for modeling the observed dynamics.
As being part of a network, the neuron may also
depend on concealed and thus unobserved inputs

which need to be identified from the measured
neuron dynamics. To duly apply the powerful
principles of the theory of nonlinear dynamics in
modeling such systems, a precedent system identi-
fication is inevitable. In the nerve cell example, not
only unknown parameters have to be identified but
also time-varying unobserved states. Similar prob-
lems arise in a variety of low-dimensional nonlinear
dynamical systems, be they electronic circuits, me-
chanical devices, physiological rhythm generators,
competing biological populations, nonlinear optical
devices, chemical reactors, or even macroeconomic
systems, among others.

We consider the problem of estimating pa-
rameters and unobserved trajectory components
from noisy time series measurements of continuous
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nonlinear dynamical systems. Rather than empha-
size mathematical rigor, this tutorial aims at pro-
viding a comprehensible introduction to this field
for the applied scientist, being from physics, biology,
chemistry, or the engineering or economic sciences.

There is a vast literature on parameter estima-
tion and system identification in general, so we re-
strict ourselves to a class of problems that are often
encountered in applications: The models considered
are assumed to be deterministic but in general non-
linear with continuous time dependence, such that
their dynamics are described by systems of first-
order ordinary differential equations. These mod-
els are assumed to be known; they result in general
from first principle equations, but some or all of the
parameters involved are assumed to be unknown.
The data are assumed to be measurements on ex-
perimental setups or from the “real world”, whereby
it is assumed that the dynamical behavior of the
system is correctly described by the model if only
the correct parameter values are used. The mea-
surements may be disturbed by a certain amount of
measurement noise.

It is not assumed, however, that all system com-
ponents are indeed measured; if the model consists
of say, a D-dimensional system of first-order ordi-
nary differential equations, then only less than D
trajectory components may be experimentally ac-
cessible and measured.

Besides our interest in parameter estimation,
we also want to estimate the unobserved trajecto-
ries at all time points of interest. To make the prob-
lem even more complicated, it is not assumed that
the observed components are measured directly but
we allow for smooth nonlinear measurement func-
tions. For example, in terms of the previous example
from electrophysiology, the measurement could be
distorted by a nonlinearity in the signal amplifier.

This paper aims at solving such problems using
mainly two different approaches:

We will not only describe the “standard”
approach of parameter estimation in ordinary dif-
ferential equations based on shooting methods, but
also a less known approach based on recursive es-
timation, where parameters are estimated for each
time point recursively proceeding through the time
series. These two approaches are somewhat comple-
mentary; the former focuses on parameter estima-
tion, whereby also the trajectories can be estimated.
The latter focuses on the estimation of trajectories,
whereby also parameters can be estimated. We will
give a worked-out example to compare these two

approaches and will find that in this example the
recursive approach can compete well with the stan-
dard approach, albeit being computationally much
simpler.

The outline of this paper is as follows: In the
next section the problem of parameter and state
estimation is made more precise, and problems re-
lated to methods that are not based on the state
space concept are highlighted. In Sec. 3 the errors-
in-variables problem and its implications for param-
eter estimation is illustrated. The other main prob-
lem, complex cost functions, is described in Sec. 4.
Then, two different approaches to solve these prob-
lems are worked out on examples: The multiple
shooting approach (Sec. 5) and recursive estimation
(Sec. 6). Further nonlinear filtering approaches are
mentioned in Sec. 7. Finally, nonparametric mod-
eling and recursive estimation in spatiotemporal
systems is considered in Sec. 8.

Citations of methods are given in the text where
they are mentioned first. Although we tried to pro-
vide an up-to-date bibliography, it is by no means
complete. Nevertheless, we hope that it will provide
a useful starting point for further reading.

2. The Problem of Parameter and
Trajectory Estimation

Throughout the paper, only autonomous dynamical
systems are considered. The parameter estimation
methods further described will be straightforwardly
also applicable to nonautonomous systems, but to
keep notation simple, we suppress explicit time de-
pendence. Further, if not stated otherwise, we focus
on deterministic dynamics, and stochasticity enters
only through the measurement errors.

We start with the description of the model
system. The model is given by an autonomous sys-
tem of Dx first-order differential equations with Dλ

parameters,

ẋ1(t) = f1(x1(t), x2(t), . . . , xDx(t), λ1, . . . , λDλ
)

ẋ2(t) = f2(x1(t), x2(t), . . . , xDx(t), λ1, . . . , λDλ
)

...

ẋDx(t) = fDx(x1(t), x2(t), . . . , xDx(t), λ1, . . . , λDλ
).

(1)

In vector notation, system (1) can be written as

ẋ(t) = f(x(t),λ) . (2)
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The parameter vector λ contains all parameters
of both the system and the measurement function
which will be introduced later.

For the rest of this paper the following situ-
ation is encountered: The states x(t) cannot be
measured directly; what is observed is the quan-
tity y(t) which is related to x(t) by some trans-
formation due to a smooth measurement function
plus some independent random errors η(t). Further-
more, the state is only sampled at discrete instants
of time. For notational simplification, only uniform
sampling is encountered, that is, the measurements
are performed with a fixed sampling interval ∆t at
time t, t + ∆t, . . . , t + (N − 1)∆t.

These assumptions cover a wide range of sit-
uations; they can be expressed in a denser form
by introducing a measurement equation. It consists
of a measurement function G: RDx → RDy which
maps the state vector x(t) to a quantity of equal or
smaller dimension, and the measurement errors ηt

which are assumed to be Gaussians with zero mean.
They are independent for different times but need
not have a constant covariance matrix over time.
The measurement equation then becomes

yt = G(xt,λ) + ηt , (3)

yielding a multivariate time series yti (i =
1, . . . , N). From here on, subscripts denote discrete
values, like sampling time.

The problem that will be encountered can be
formulated as: Given a Dy-dimensional time se-
ries yti (i = 1, . . . , N) and the model functions in
Eqs. (2) and (3), we have to estimate the states
x(t) for any time t of interest and the parameters
λ. This problem is referred to as a dynamical system
identification problem.

There is one approach to solve this estimation
problem which could instantly come to mind; it is
based on embedding and least squares: Write sys-
tem (1) as a scalar differential equation of higher
order, if possible, and estimate the derivatives from
the data sample. Since it is equivalent to a differ-
ential embedding of the time series [Packard et al.,
1980; Takens, 1981], this gives access to the unob-
served system components or at least some trans-
formations of them, which can be used in a least
squares (LS) fit to estimate the parameters. There
are several variants of the LS approach [Crutch-
field & McNamara, 1987; Cremers & Hübler, 1987;
Breeden & Hübler, 1990; Gouesbet, 1991b; Kadtke
et al., 1993; Aguirre & Billings, 1995; Hegger et al.,
1998], which have been shown to work for small

amounts of noise and if the system of Eqs. (1) can be
transformed into a single equation of higher order.
Besides, this transformation may be quite involved
and not easy to find [Gouesbet, 1991a, 1992], there
are two main drawbacks:

(i) Measurement noise prevents the accurate and
even appropriate estimation of derivatives, es-
pecially of higher order. Filtering is not always
a cure since filtering introduces temporal de-
pendencies into the data and may disturb the
data distribution. For example, think of a mov-
ing average window which involves also neigh-
bored data points to smooth the data samples.
These dependencies may then pretend dynam-
ics which are not inherent in the data, leading
to wrong results for the parameters [Timmer
et al., 2000].

(ii) The errors-in-variables problem. This problem
stems from regression analysis and occurs if not
only the dependent variables have errors but
also the independent variables. If not appro-
priately taken into account, it leads to biased,
i.e. wrong, parameter estimates. Biased param-
eters usually occur in connection with the naive
application of a least squared estimation which
is not suited to this problem. The errors-in-
variables problem is unavoidable for the prob-
lem considered here, the estimation of param-
eters in dynamical systems with measurement
noise.

3. State Space Modeling and the
Errors-in-Variables Problem

The errors-in-variables problem is explained in more
detail in the following, and the failure of the least
squares approach is demonstrated. Also, the some-
times encountered cure by means of a total LS
approach is discussed.

The errors-in-variables problem is known in
statistics for a long time [Madansky, 1959]. Its sig-
nificance in the context of nonlinear time series
analysis has been introduced by [Kostelich, 1992].
To explain the problem by means of our system
identification problem, we rewrite Eqs. (2) and (3)
in discrete time [Gelb, 1974], to get the discrete non-
linear deterministic state space model

xt+∆t = F(xt,λ) , (4)

yt+∆t = G(xt+∆t,λ) + ηt+∆t . (5)
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The time step ∆t corresponds to the sampling time,
and the function F is obtained from the function f
in Eq. (2) via

F(xt,λ) = xt +

∫ t+∆t

t

f(x(T ), λ) dT . (6)

The states described by Eqs. (4) and (6) obey the
Markov condition, i.e. each state follows uniquely
from its predecessor.

In this section we consider the linear state space
model, but the errors-in-variables problem carries
over to nonlinear models as well [Carroll et al., 1995;
McSharry & Smith, 1999]. A linear state space
model has the form

xt+∆t = F (λ)xt + εt , (7)

yt+∆t = G(λ)xt+∆t + ηt+∆t . (8)

The system functions F and G are now described by
Dx ×Dx and Dy ×Dx-dimensional matrices F and
G, respectively, multiplied with the states. Linear
deterministic models have asymptotically, i.e. for
long times, only trivial dynamics generically; the
state components relax to the origin or diverge to in-
finity. Therefore, to establish this linear model with
a nontrivial albeit asymptotically finite dynamics,
the process noise εt is added in this example. It is
defined as being Gaussian with zero mean and in-
dependent over time. Its covariance matrix is not
obliged to be constant over time. The covariances
of the process and measurement noise are denoted
by Qt and Rt, respectively, i.e.

Qt := E
[

εtε
′
t

]

and Rt := E
[

ηtη
′
t

]

, (9)

where E[·] is the expectation value. Therefore,
εt ∼ N (0, Qt) and ηt ∼ N (0, Rt). The expres-
sion N (µ, B) denotes a vectorial Gaussian random
variable with mean µ and covariance matrix B.

Now a particularly simple case is considered
[Timmer, 1998]: The state space model (7), (8) in
one dimension with the trivial measurement func-
tion Gxt = xt and constant noise variances Q and
R:

xt+∆t = Fxt + εt (|F | < 1) (10)

yt+∆t = xt+∆t + ηt+∆t . (11)

First assume that there is no measurement noise.
Then the constant F can be estimated by multiply-

ing both sides of Eq. (10) with xt. Averaging yields

F̂ =

∑

t

xt+∆txt

∑

t

x2
t

=
cov (xt+∆t, xt)

var (xt)
, (12)

with “var” and “cov” being the variance and the
covariance, respectively.

This is also the least squares estimate of F
which would arise from minimizing the cost func-
tion χ2(F ):

F̂ = arg min
F

χ2(F ) (13)

= arg min
F

∑

t

(xt+∆t − Fxt)
2

Q
. (14)

It can be shown that the least squared esti-
mator here is a maximum likelihood estimator (ML
estimator). Maximum likelihood estimators of pa-
rameters are those which maximize the probability
of the observed data given the model parameters.
They are generally unbiased, i.e. they yield asymp-
totically the correct values for the parameters.

Now assume that there is a finite measure-
ment noise with constant variance R, but the least
squares estimator is used in a naive way. Proceeding
as above, this results in

F̂naive =
cov (yt+∆t, yt)

var (yt)
. (15)

Since var (yt) = var (xt) + R and cov (yt+∆t, yt) =
Fvar (xt), one gets

F̂naive = F
var (xt)

var (xt) + R
, (16)

from which it follows that

|F̂naive| < |F | . (17)

The larger the measurement variance R, the more
the naive estimator is biased. This bias is indepen-
dent of the size of the data sample and hence cannot
be compensated by measuring more data. Indepen-
dent of the true value of F , for large noise the naive
estimate asymptotically vanishes.

How can one understand this? The parameter
F was estimated using a regression approach, which
solves a problem of the form: Given a dependent
variable which can be written as a linear function
of an independent variable plus some noise, estimate
the parameters of the linear function. In this set-
ting it is assumed that only the dependent variable
is uncertain but not the independent variable. In
time series analysis problems, like Eqs. (10) and
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Figure 1: The LS approach estimates the the regression line by minimizing

the mean squared distance between the measurements yt+∆t and yt. The

latter are wrongly taken to be given exactly (a). For uncertain yt but certain

yt+∆t the LS method works only if the meaning of yt and yt+∆t is exchanged

(b), whereas for uncertain yt and yt+∆t the orthogonal distance method treats

both variables in the same way (c).
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Fig. 1. The LS approach estimates the regression line by minimizing the mean squared distance between the measurements
yt+∆t and yt. The latter are wrongly taken to be given exactly (a). For uncertain yt but certain yt+∆t the LS method works
only if the meaning of yt and yt+∆t is exchanged (b), whereas for uncertain yt and yt+∆t the orthogonal distance method
treats both variables in the same way (c).

(11), the data points are usually measurements of
both dependent variables, e.g. at time t + ∆t, and
independent variables, e.g. at time t.

Therefore, in time series analysis the indepen-
dent variables become uncertain as well, giving rise
to the errors-in-variables problem. In other words,
the reason for the bias is that the naive estimator
is not a ML estimate any more; for a proper ML es-
timate the probability of the data given the model
should also depend on the uncertainty of the inde-
pendent variables, here xt, rather than only on the
uncertainty of the dependent variables, here xt+∆t.

In this particular example, the naive estima-
tor can still be used to correctly yield F in a ML
sense; the known bias can be used to correct the
wrong estimate by using Eq. (16) and the fact that
in this model the variance of xt is known to be var
Q/(1 − F 2). However, it stands to reason that the
search for such correction formulas becomes rather
cumbersome for more general models [Fuller, 1987;
Seber & Wild, 1989; Jaeger & Kantz, 1996], and in
our nonlinear model (4), (5) it should hardly be pos-
sible generally to estimate the system functions by
correcting a least squares fit to the measurements.
Note that only the observational noise causes trou-
ble but not the system noise in Eq. (7). Therefore,
the errors-in-variables problem is also significant in
the determinsitic state space model (4), (5).

To summarize this result, we see that all prob-
lems have arisen because the values of xt are not
given but are uncertain themselves; a least squares
approach does not take the distribution of xt into
account but takes the xt to be given exactly. In
other words, in the LS approach the regression
coefficient F is determined such as to minimize the

mean squared distance between the measurements
yt+∆t and yt [Fig. 1(a)].

A tutorial of the errors-in-variables problem
with a worked-out solution for the Hénon map is
provided by Jaeger and Kantz [1996]. They also
show how this problem affects other kinds of non-
linear estimation problems like the estimation of
invariant quantities of dynamical systems.

A more general approach is the method
of total least squares (TLS) [Jeffreys, 1980, 1988;
Boggs et al., 1987; van Huffel & Vandewalle, 1991].
This method treats both yt+∆t and yt in the same
way by estimating F such as to minimize the or-
thogonal distances between the regression line and
the data [Fig. 1(c)]. This seems to be sensible, since
this is the intermediate case for certain yt and un-
certain yt+∆t on the one hand and certain yt+∆t

and uncertain yt on the other hand [Fig. 1(b)]. One
could also say that the LS method estimates the
true values of yt+∆t via xt+∆t = Fyt, and the or-
thogonal distance method estimates the true values
of yt+∆t and yt. In this sense the orthogonal distance
method copes with the errors-in-variables problem,
but it is still not optimal, and, therefore, not a ML
estimate: In its simplest form, it completely ignores
information about the distributions of yt+∆t and
yt. Furthermore, the TLS approach leads to sig-
nificantly larger estimation errors. Consequently, it
has been shown that the TLS method is of only
rather limited use for nonlinear time-discrete es-
timation problems [Kostelich, 2001; McSharry &
Smith, 1999]. For these reasons we do not adhere
to the orthogonal distance method here.

What we should keep in mind from this
lesson is the following: The TLS method works by
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estimating not only the unobserved values of xt+∆t

from the measurements, but also the values of xt.

Albeit being not optimal, this is the right direc-

tion to proceed: The errors-in-variables problem can

only be solved if the values of the independent

variables xt are also estimated from the data in

addition to the values of the dependent variables

xt+∆t. This approach will be revived later on, when

in addition to the estimation of parameters of a

dynamical system the unobserved trajectories will

also be estimated (Secs. 5 and 6).

4. The Problem of Complex Cost
Functions

The errors-in-variables problem is not the only fact
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Fig. 2. The cost function of the shift map (18) with observational noise for different numbers of measurements N . The true
initial value of the sequence is marked by an arrow.
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Figure 3: The same as Fig. 2 but with a different noise realization.
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Fig. 3. The same as Fig. 2 but with a different noise realization.

that prevents an easy nonlinear dynamical system

identification. As will be shown now, another prob-

lem arises, especially for chaotic dynamics: The cost

function may become so complex that a numeri-

cal minimization by standard optimization methods

fails. Whereas the former problem is of a genuinely

statistical nature, the latter one seems to be more

of technical nature. However, as it will turn out,

this is only part of the story, because the cost func-
tions for data from chaotic dynamical systems show
anomalous scaling behavior.

The problem of complex cost functions is
demonstrated on a simple example. Consider the
nonlinear state space model (4), (5) with the shift
map

xt+1 = f(xt) , f(xt) = 2xt mod1 , (18)
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of the Hénon map.

55

Fig. 4. Clip of the cost function of the estimate of an initial state vector of the Hénon map.

which maps the unit interval onto itself. The shift
map is chaotic and serves as a theoretic model to
understand also dynamical aspects of the more gen-
eral cases of two-dimensional maps and autonomous
vector fields of the form of Eq. (2) [Wiggins, 1990].

Rather than estimating parameters, to keep the
problem simple we treat the initial value x1 as
the quantity that should be estimated. The initial
value x1 can also be seen as a parameter controlling
the deterministic sequence of xt for t > 1. If the
states xt, including the initial state, are disturbed
by Gaussian noise ηt with constant variance R and
N measurements

yt = xt + ηt (19)

are made, the cost function for the estimation of the
initial state at time t = 1 is

χ2(x1) =

N
∑

t=1

(yt − xt)
2

R
. (20)

Two cost functions for different noise realizations
and x1 = 0.501 and R = 0.2 are shown in Figs. 2
and 3. One observes the following:

(i) The cost functions become rather complex
rapidly. Optimization methods could fail

already for as small a number of measurements
as 4, since there are many local minima with a
similar value of the cost function. Similar ob-
servations have been made by [Miller et al.,
1994] for the Lorenz oscillator.

(ii) For the two noise realizations the cost func-
tions are structurally rather different for as few
as six data points.

(iii) Still for eight measurements the cost functions
point to a wrong estimate in both cases.

(iv) One can guess from the figures that the esti-
mation error does not decrease by a 1/

√
N -

scheme, as it holds for nonlinear regression.
The reason is the strong dependency in the
data caused by the deterministic origin of the
dynamics. Similar anomalous scaling behavior
has also been reported for dimension estimates
[Theiler, 1990] and for Lyapunov exponent
estimates [Theiler & Smith, 1995].

Matters become more complicated for a cost
function that depends on more than one variable.
One could think of the estimation of a parameter in
addition to the initial state. Rather than consider-
ing this case, the problem should be illustrated by
computing the cost function for the initial vector of
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the two-dimensional Hénon map. This map is given
by

x1,t+1 = 1 − 1.4x2
1,t + x2,t

x2,t+1 = 0.3x1,t .
(21)

With the measurements

y1,t = x1,t + ε1,t

y2,t = x2,t + ε2,t ,
(22)

the cost function is defined to be

χ2(x1,1, x2,1)=
N

∑

t=1

[

(y1,t−x1,t)
2

R1

+
(y2,t−x2,t)

2

R2

]

.

(23)

The true initial value is (x1,1, x2,1) = (0.51, 0.18),
and N = 20 measurements are taken with a con-
stant noise variance of R1 = R2 = 0.2. From this ex-
ample another observation can be made (Fig. 4):

(v) There are long separated “valleys” where the
cost function locally takes on similar minimal
values. This points to the fact that the two
estimates are highly dependent on each other.
Therefore, it seems that the true trajectory can-
not be estimated only by searching for its initial
value, but in principle each of the (x1,t, x2,t)
(t = 1, . . . , N) should be estimated.

5. The Multiple Shooting Approach

The problem of local minima in the cost func-
tion will be treated by means of two different
approaches: multiple shooting and recursive estima-
tion. Multiple shooting is an ML approach and will,
therefore, also solve the errors-in-variables problem.
For weakly nonlinear systems, recursive estimation
is an ML approach as well.

If a model like Eqs. (2) and (3) is known, how-
ever, the data must not be treated as independent
over time, and one should for a ML estimation also
estimate x(t) in addition to the parameters λ. This
will be done below by utilizing the temporal de-
pendencies as induced by the model (2). In other
words, the information that the system produces a
continuous trajectory is incorporated.

5.1. The initial value approach

The system (2) together with an initial value xt1

and a known parameter vector λ constitutes an ini-
tial value problem: Find a trajectory x(t) that for

given λ solves this system for all times of inter-
est t. This is the direct problem, in contrast to the
inverse problem we are interested in; we try to cal-
culate those trajectories and parameters that are
the most likely ones, given measurements at dis-
crete times. To keep things simple, in this chapter
we restrict ourselves to scalar measurements, i.e. the
measurement function (3) becomes

yt = G(xt, λ) + ηt . (24)

In the initial value approach [Schittkowski, 1994]
initial guesses for xt1 and λ are chosen and the
dynamical equations are solved numerically. The
likelihood is given as the probability distribution
ρ of the data given the states and parameters, and
the ML estimator becomes

(x̂t1 , λ̂) = arg max
xt1

, λ
ρ[{yti}|xt1 , λ] . (25)

It is asymptotically, i.e. for an infinite number of
data samples, unbiased. In the case of indepen-
dent Gaussian measurement noise, maximizing the
likelihood amounts to the minimization of the cost
function

χ2(xt1 , λ) =
N

∑

i=1

(yti − G(xti(xt1 , λ), λ))2

Rti

. (26)

It is the sum of squared residuals between the data
and the model trajectory, weighted with the inverse
variances of the measurement noise. The parame-
ters are identified as those minimizing χ2(xt1 , λ).

Often prior knowledge about the parameters
can be formulated as equality or inequality con-
straints. For instance, “rate constants” are usually
non-negative. In the context of the multiple shoot-
ing approach described later on, the continuity of
the true trajectory is ensured by means of equality
constraints.

The initial value approach is an iterative pro-
cedure. Thus, an initial guess is updated again
and again unless some convergence criterion is
met. The update step is usually computed from
the gradient or the Hessian, leading to differ-
ent optimization methods: the steepest descent
method [Bryson & Ho, 1969], the conjugate
gradient method [Fletcher & Reeves, 1964], the
Levenberg–Marquardt algorithm [Stortelder, 1996],
and the Gauss–Newton algorithm [Schittkowski,
1995], among others. Overviews of approaches for
iterative solutions of nonlinear optimization prob-
lems are given in several textbooks [Gill et al., 1981;
Stoer & Bulirsch, 1993; Press et al., 1997]. To make
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the optimization task effective, at least first deriva-
tives of the system equations with respect to the
parameters and trajectory initial conditions, the
sensitivities, should be provided.

Simulation studies have shown that for many
types of dynamics this approach is numerically un-
stable by yielding a diverging trajectory or stopping
in a local rather than in the global minimum [Hor-
belt, 2001]. The reason is that for slightly wrong
parameters the estimated trajectory may deviate
from the true trajectory after a short time. This is
most evident in the case of chaotic dynamics, where
due to the sensitivity with respect to initial condi-
tions the estimated trajectory is expected to follow
the true trajectory of the system only for a lim-
ited amount of time [Lorenz, 1963; Ott et al., 1994;
Wiggins, 1990; Nicolis, 1995; Alligood et al., 1997].
This is related to the well-known shadowing prob-
lem of chaotic dynamics [Hammel et al., 1988;
Nusse & Yorke, 1989; Farmer & Sidorowich, 1990].
The divergence of the numerical and measured tra-
jectory introduces many local minima in the cost
function (26), as described above in Sec. 4.

5.2. Multiple shooting

A possible solution to the above mentioned prob-
lems is the multiple shooting algorithm introduced
by [van Domselaar & Hemker, 1975] in the con-
text of parameter estimation, and further devel-
oped by [Bock, 1983; Baake et al., 1992]. It has
been applied, for example, to plant physiology
[Baake & Schlöder, 1992], chemical reaction kinet-
ics [Bock, 1981], nonlinear optics [Horbelt et al.,
2001], and electronic circuits [Timmer et al., 2000;
Horbelt et al., 2002].

The motivation to use multiple shooting rather
than the initial-value approach, which is a single-
shooting method, is a more efficient minimization
of the cost function without getting lost too eas-
ily in local minima. In multiple shooting, initial
conditions are estimated at several points along
the time series, the shooting nodes, and thus the
estimated trajectory can be forced to stay closer
to the true one for a longer time. Mathemati-
cally, the task is considered as a multi-point bound-
ary value problem [Stoer & Bulirsch, 1993]. It is
based on a shooting method to solve two-point
boundary value problems [Bellman & Kalaba, 1965;
Bryson & Ho, 1969]. The fitting interval [t1, tN ] is
partitioned into m subintervals,

t1 = τ1 < τ2 < · · · < τm+1 = tN . (27)

For each subinterval [τj, τj+1], local initial values
xj = x(τj) are introduced as additional parame-
ters. The dynamical equation is integrated piecewise
(Fig. 5) and the cost function χ2(x1, . . . , xm, λ) is
evaluated and minimized as in the initial value ap-
proach. Whereas the dynamical parameters λ are
constant over the entire interval, the local initial
values are optimized separately in each subinterval.

This approach leads to an initially discontin-
uous trajectory, which is, however, close to the
true one. The final trajectory should be continu-
ous, i.e. the computed solution at the end of one
subinterval must match the local initial values of the
next one. These continuity conditions are linearized
in each iteration of the procedure and are then
taken into account as equality constraints [Stoer,
1971]. The particular structure of their linearized
form permits the continuity constraints and the ex-
tra variables xj (j = 1, . . . , m) to be eliminated
easily from the resulting large linear system. In this
way the dimension of the system of equations to
be solved in each iteration is no larger than with
the initial-value approach. This procedure, called
condensation [Bock, 1983], can be applied to many
kinds of optimization strategies. Since only the lin-
earized continuity constraints are imposed on the
update step, the iteration is allowed to proceed to
the final continuous solution through “forbidden
ground”: the iterates will generally be discontinu-
ous trajectories. This freedom allows the method to
stay close to the observed data, prevents divergence
of the numerical solution and reduces the problem
of local minima.

Here a generalized Gauss–Newton algorithm is
used [Hanson & Haskell, 1982], and both the model
nonlinearities and the continuity constraints are lin-
earized in each iteration. Their first order Taylor
expansions make up a large linear optimization
problem with linear equality constraints. For the
following reasons, in some cases it may become nec-
essary to omit the continuity constraints at some
shooting nodes: For time series of chaotic systems
it will not be possible in general to find a trajec-
tory that follows the true trajectory for arbitrary
long times. Furthermore, if the model is not cor-
rect, the Gauss–Newton method may not converge
if the whole time interval [t1, tN ] of measurement is
taken as input data [Horbelt, 2001].

After convergence, confidence intervals for the
parameters can be calculated from the curvature of
the logarithm of the likelihood [Shumway & Stof-
fer, 2000]: If the model has been specified correctly,
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Figure 5: Schematic illustration of the multiple shooting approach. Black:

true trajectory; blue dots: measurements; red: multiple shooting trajectories.
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Fig. 5. Schematic illustration of the multiple shooting approach. Black: true trajectory; blue dots: measurements; red: multiple
shooting trajectories.

the global minimum of χ2(λ) is found, and its
quadratic approximation holds in a large enough
region around the solution point, then the covari-
ance matrix of the parameter estimate is given by
the inverse Hesse matrix of the objective function:

(Σ)ij =

(

1

2

∂2χ2(λ)

∂λi∂λj

)−1

. (28)

An eigenvalue analysis of Σ reveals parameters
or linear combinations of parameters that are not
identifiable from the given data. This happens,

for instance, when parameters or states cannot be
estimated unambiguously, for example if the model
is invariant under a transformation that alters
the state vector and the parameters, but not the
measurements.

A good correspondence between the estimated
trajectory and the true trajectory has little signif-
icance if it has been achieved by adjusting a large
number of free parameters. Overfitting, i.e. when
the number of degrees of freedom is not in a
reasonable relation to the amount of information
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(a)

Fig. 6. Identification of the Lorenz model (29) with the multiple shooting approach. The states and parameters are estimated
by observing noisy data from the first component of x, x1. Measured data set (blue dots), true trajectory (black), and multiple
shooting trajectories (red). For better visibility, only the first 200 data points of the 400 data points time series are shown.
(a) after three iterations, (b) after ten iterations, (c) after 20 iterations. This is the final trajectory estimate.
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Fig. 6 (Continued )

contained in the data, can be detected by dispro-
portionately large confidence intervals.

The problem of finding useful initial guesses for
the parameters is not fully solved yet. Recently, a
hybrid approach between parametric and nonpara-
metric estimation has been proposed to solve this
task for a rather large class of continuous time mod-
els [Timmer et al., 2000]. See also Sec. 8.

5.3. An example

The multiple shooting method is applied to a noisy
time series of the chaotic Lorenz model [Lorenz,
1963]

ẋ1 = −λ1x1 + λ1x2 ,

ẋ2 = λ2x1 − x2 − x1x3 ,

ẋ3 = −λ3x3 + x1x2 ,

(29)

with the parameter vector λ = (10, 46, 2.67).
The measurements are constructed by corrupt-

ing the component x1(t) with Gaussian measure-

ment noise ηt ∼ N (0, R) at 400 equidistant (∆t =
0.02) sample times. The standard deviation of η,√

R, is 25% of the standard deviation of the x1-
component of the system. We choose the initial
parameter vector λ/2 and the initial values of the
200 multiple shooting intervals equal to 0.9 times
the true values.

The convergence of the algorithm is shown
in Figs. 6(a)–6(c). It results in χ2 = 353 and a

parameter vector estimate of λ̂ = (9.75 ± 0.26,
47.2 ± 1.0, 2.58 ± 0.07) (1σ confidence intervals).

A recent overview of other related nonrecursive
system identification approaches has been given in
[Edsberg & Wedin, 1995], citing most of the relevant
literature and providing a Matlab toolbox.

6. Recursive Parameter Estimation

In the previous chapter the information contained
in the temporal order of the data samples was
exploited by putting a global constraint onto the es-
timation procedure for the trajectories. The reason
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was to force the estimated trajectories to be con-
tinuous in time, since only then they are in com-
pliance with the model. An alternative method for
estimating underlying trajectories is to proceed re-
cursively through the data sample and to obey the
continuity constraint at each time step. The sys-
tem trajectory is then estimated recursively by a
prediction-correction method: Predict the value of
the trajectory at time t + ∆t from its value at time
t, and correct this estimate taking the new mea-
surement at time t + ∆t into account. This way,
one can proceed through the data sample until the
last data point is reached. There is a bunch of re-
cursive estimation methods which are, however, all
based on this prediction-correction scheme, and in
case of Gaussian system and measurement noise all
these amount into a recursive least squares algo-
rithm [Ljung & Söderström, 1983]. In this setup,
parameters can be estimated simultaneously by
augmenting the system’s state by the parameter
vector.

We first describe the well-known Kalman and
extended Kalman filters for stochastic systems and
will see that the covariances of the state components
are essential for the calculation of the prediction-
correction scheme. Therefore, after deriving the
Kalman filter in its familiar form for linear stochas-
tic systems, we will also state it in writing using
fully nonlinear and deterministic system functions.
In applications to nonlinear deterministic systems,
the covariance matrices have to be evaluated numer-
ically in general, as opposed to the linear case where
they can be explicitly computed from the matrices
in the state space model.

The application of Kalman filtering to non-
linear deterministic systems will be worked out
for the same system as in the previous chapter.
We will concentrate on the particular approach of
“unscented Kalman filtering”, which is nowadays
preferred more due to its superiority to the conven-
tional approach of extended Kalman filtering. See
also [Sitz et al., 2002].

A Matlab routine for parameter estimation
with the unscented Kalman filter is available from
the authors or via www.fdm.uni-freiburg.de/∼hv.

6.1. The Kalman filter

The Kalman filter (KF) [Kalman, 1960; Kalman
& Bucy, 1960] is one of the most powerful signal
analysis tools. The reason is that for linear sys-
tems given in a state space formulation the KF

is an ML estimator and thus an optimal estima-
tor for unobserved system trajectories. To be more
specific, “optimal” means that the KF yields the
most probable, but not necessarily a typical tra-
jectory, since it has some low-pass properties. For
weakly nonlinear systems the extended Kalman fil-
ter (EKF) [Anderson & Moore, 1979] can be used.
It is based on a Taylor-series expansion of the
system nonlinearities. For higher order accuracy
it may consist of rather complicated expressions.
Therefore, in most cases the EKF of first order is
chosen, which is based on a local linearization of
the system functions. In this case the Gaussian-
ity of the state variables is maintained, which is
a prerequisite for the optimal functioning of the
KF. Tutorials and textbooks about Kalman filter-
ing, including applications, are [Jazwinski, 1970;
Gelb, 1974; Bar-Shalom & Fortmann, 1988; Aoki,
1990; Hamilton, 1994; Mendel, 1995; Gershenfeld,
1999; Grewal & Andrews, 2001; Honerkamp, 2002;
Walker, 2002].

Some novel approaches of nonlinear Kalman fil-
tering are not based on a Taylor expansion of the
system functions any more but approximate the
density of the state by Gaussians, retaining thereby
the whole system nonlinearities. Since these novel
approaches are easier to implement and more accu-
rate than the EKF of first order, we will use them
in the following. However, to better understand how
nonlinear Kalman filtering works, it is necessary to
focus on the linear case first. Already for the lin-
ear case, the KF equations will also be written in
a more flexible way than usual, using nonapprox-
imated system functions. This is the basis for the
straightforward application of the novel methods to
our particular system identification problem in the
subsequent section.

The KF is a recursive estimator with a
prediction-correction structure: We start with the
nonlinear state space model (4), (5) and focus our
attention on the time point t + ∆t, the reference
time. The state estimate at time t + ∆t, given all
state estimates . . . , x̂t−∆t, x̂t and all measurements
. . . , yt, yt+∆t until then, is denoted by x̂t+∆t|t+∆t.
This is the a posteriori, or complete, estimate which
utilizes all information taking the new measurement
into account. To save indices, the a posteriori es-
timate at the reference time point t + ∆t in the
following will be written as

x̂ := x̂t+∆t|t+∆t . (30)
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Fig. 7. Timing diagram of the Kalman filter. The indices at the reference time t + ∆t are suppressed, as in the text.

Equivalently, the a priori, or preliminary, state esti-
mate at time t+∆t again utilizes all previous state
estimates but only measurements . . . , yt−∆t, yt up
to one time step before the reference time t+∆t. It
will be denoted by x̃t+∆t|t, or simply

x̃ := x̃t+∆t|t . (31)

These quantities are illustrated in Fig. 7.
The KF estimation procedure of the state at

time t + ∆t consists of two parts:

(i) an a priori estimate of the state x̃ prior to ob-
servation of the new measurement yt+∆t, and

(ii) a correction after observation of the new mea-
surement yt+∆t. It is proportional to the dif-
ference of the new measurement yt+∆t and the
predicted value of the new measurement ỹ:

x̂t+∆t|t+∆t = x̃t+∆t|t+Kt+∆t(yt+∆t−ỹt+∆t|t).

(32)

The Dx ×Dy-dimensional Kalman gain matrix
K is defined below. Dropping the time index of
the reference time t + ∆t, and using the defini-
tions above yields simply

x̂ = x̃ + K(y − ỹ) . (33)

Therefore, the Kalman estimate of the state is re-
cursively given by a prediction-correction structure.
The prediction uncertainty is given by the covari-
ance matrix of the state estimate,

P̂xx = P̃xx − KP̃ ′
xy . (34)

The apostrophe denotes the transpose of a matrix.
The Kalman gain matrix is given by

K = P̃xyP̃
−1
yy . (35)

The covariance matrices are defined as the expecta-
tion of the outer (dyadic) products of the deviation
of the states from the a priori estimates:

P̃xx = E[(x − x̃)(x − x̃)′] , (36)

P̃xy = E[(x − x̃)(y − ỹ)′] , (37)

and

P̃yy = E
[

(y − ỹ)(y − ỹ)′
]

. (38)

The vectors are understood to be column vec-
tors, and the apostrophe denotes their transpose,
i.e. making them row vectors.

In these equations it is assumed implicitly,
without indexing, that the expectation value E[·]
is conditioned on all measurements made up to
the time indicated by the covariance on the l.h.s
of the equation. For example, Eq. (36) exactly
means P̃xx,t+∆t|t = E[(xt+∆t − x̃t+∆t|t)(xt+∆t −
x̃t+∆t|t)

′| . . . , xt−∆t, xt]. The a priori state estimate
x̃ is

x̃ = E[F(x̂t|t)] . (39)

Similarly, the a priori measurement estimate is

ỹ = G(x̃) . (40)

Equations (33) to (40) will be derived in
Appendix A. They yield the optimal filter for the
case of normally distributed states in a linear state
space model and constitute approximations for the
nonlinear case.
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If a state space model is explicitly given in the
form of Eqs. (7) and (8), the KF can be expressed
also by using the system matrices F and G:

K = P̃xxG′(GP̃xxG′ + R)−1 , (41)

P̂xx = (1 − KG)P̃xx , (42)

P̃xx = F P̂xx,t|tF
′ + Qt , (43)

x̃ = F x̂t|t , (44)

ỹ = Gx̃ . (45)

These equations will also be derived in Appendix A.
The first three equations can be computed offline.

Note that the process noise ε may vanish with-
out causing problems in the expressions for the KF
[Gelb, 1974], but not the measurement noise η.
Therefore, the matrix Q may be omitted for deter-
ministic dynamics, but the matrix R should always
be retained; otherwise the KF does not make much
sense.

For the limit of infinitesimally small sampling
time steps, the time discretization cannot be per-
formed so straightforwardly as done here; rather,
one should start with the Riccati equations which
constitute the KF equations for the time-continuous
case [Sinha & Rao, 1991]. Since we are dealing with
data with a finite sampling time step, using the
model (4), (5), we adhere to this writing for the
rest of the paper.

6.2. Nonlinear Kalman filtering

The KF (41) to (45) yields the optimum recursive
ML estimates for the states in the linear state space
model (7), (8). The reason is that Gaussian random
variables remain Gaussians for all times, and due
to the Markov property the ML estimator amounts
to a recursive least squares estimator. To return to
our main problem, the estimation of states and pa-
rameters in the nonlinear system (4), (5), we need
to relax the assumption of model linearity. We dis-
cuss two different approaches to achieve an approxi-
mation for weakly nonlinear functions: The method
of extended Kalman filtering approximates the sys-
tem function by locally linear functions, and the
method of unscented Kalman filtering approximates
the density of the states by a Gaussian.

In both cases, the problem of recursive least
squares estimation boils down to the following:
Given a nonlinear relationship

xt+∆t = F(xt) (46)

and

x̄t := E[xt], Pxx,t = E[(xt − x̄t)(xt − x̄t)
′] ,

(47)

how can mean and covariance be best approximated
in the next time step? That is, find x̄t+∆t and
Pxx,t+∆t.

(i) The extended Kalman filter: In the EKF, the
nonlinearity in Eq. (46) is Taylor expanded up
to a given order, and then expectations are
taken to compute the updated mean and co-
variance; for the EKF of first order, these so
obtained mean and covariance are accurate up
to first and second orders, respectively:

x̄t+∆t ≈ F(xt) , (48)

Pxx,t+∆t ≈ ∇F(xt)Pxx,t(∇F(xt))
′ . (49)

This approximation is equivalent to a state
space model with time-varying system matrix
Ft; it is allowed to do this because the deriva-
tion of the Kalman equations (41) to (45) would
go through unchanged with a time-dependent
matrix F [Honerkamp, 2002].

(ii) The unscented Kalman filter: There are alterna-
tive approaches to the EKF of which some have
significant advantages with respect to imple-
mentation or accuracy. The unscented Kalman
filter (UKF) retains the exact nonlinearity F
but approximates the a posteriori probabil-
ity density of the state xt+∆t by a Gaussian.
It is motivated by the fact that it is easier
to approximate a distribution by a Gaussian
than to approximate an arbitrary nonlinear
function by linearization [Julier et al., 1995;
Julier et al., 2000]. The approximation of the
a posteriori density is accomplished by using a
set of characteristic points, the so-called sigma
points. They will be be used to adjust the prob-
ability density of the state after transformation
by the system function F to a Gaussian again:

A normally distributed random variable x of di-
mension Dx is completely described by its mean and
covariance matrix. This information can be stored,
with some redundancy, in 2Dx sigma points Xi of
dimension Dx each:

Xi := x̄ + (
√

DxP )i (i = 1, . . . , Dx) , (50)

Xi+Dx := x̄ − (
√

DxP )i (i = 1, . . . , Dx) . (51)
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The square root is any matrix square root of choice
[Strang, 1988], and (

√· )i denotes its ith row or col-
umn. Considered as a data sample, this set of sigma
points has the same mean and covariance as x.

A simple example may shed some light on this:
If the random variable x has zero mean and its
covariance matrix is

Pxx =

(

R1 0

0 R2

)

, (52)

then the set of sigma points is

√
2

{(√
R1

0

)

,−
(√

R1

0

)

,

(

0√
R2

)

,−
(

0√
R2

)}

,

(53)

and it follows that

PXX =









1

4
(2R1 + 2R1) 0

0
1

4
(2R2 + 2R2)









=Pxx.

(54)

It can be shown that the transformation of
sigma points,

Xi,t+∆t = F(Xi,t) , (55)

x̄t+∆t =
1

2Dx

2Dx
∑

i=1

Xi,t+∆t , (56)

Pxx,t+∆t =
1

2Dx

2Dx
∑

i=1

(Xi,t+∆t − x̄t+∆t)

× (Xi,t+∆t − x̄t+∆t)
′ , (57)

preserves statistics up to second order in a Taylor
series expansion [Julier & Uhlmann, 1996]:

x̄t+∆t ≈ F(xt) +
∇′Pxx,t∇

2
F(xt) , (58)

Pxx,t+∆t ≈ ∇F(xt)Pxx,t(∇F(xt))
′ . (59)

Compared with the EKF of first order, Eq. (48),
(49), it is more accurate for nonlinear systems,
and much simpler to computationally implement
than the extended KF. In the case of linear state
space models, both methods yield exactly the same
estimates.

The application of the unscented transforma-
tion (55) to (59) to Kalman filtering in the nonlinear
deterministic state space model (4), (5) is straight-
forward: Use the KF, Eqs. (33) to (40), with the

following mean values and covariances:

x̃ =
1

2Dx

2Dx
∑

i=1

X̃i (X̃i = F(Xi,t)) , (60)

ỹ =
1

2Dx

2Dx
∑

i=1

Ỹi (Ỹi = G(X̃i)) , (61)

P̃xx =
1

2Dx

2Dx
∑

i=1

(X̃i − x̃)(X̃i − x̃)′ , (62)

P̃xy =
1

2Dx

2Dx
∑

i=1

(X̃i − x̃)(Ỹi − ỹ)′ , (63)

P̃yy =
1

2Dx

2Dx
∑

i=1

(Ỹi − ỹ)(Ỹi − ỹ)′ + Rt+∆t . (64)

Equations (33) to (35) together with (60) to
(64) provide the complete UKF. Its computational
implementation is rather easy, since the system
function F is used as it is; for example, if the
numerical solution of the system requires a partic-
ular integration scheme, this routine can be used
unmodified for estimation also; the only difference
is that rather than computing a single trajectory,
now 2Dx trajectories have to be integrated, one for
each sigma point.

The approximations imposed by the UKF are
to neglect cumulants of order higher than two in
the densities of states. If higher order cumulants
become significant, e.g. for heavy-tailed or mul-
timodal distributions, the estimates can become
biased. However, it often turns out that the UKF
gives excellent results for even higher order nonlin-
earities. The reason is that the nonlinearities that
arise from the temporal discretization of the dy-
namics of a time continuous system are only weakly
nonlinear, unless the time steps are too large; each
numerical integration scheme is based on a decom-
position of the dynamics into an identity mapping
to which a comparably small correction is added.

One of the main advantages of this approach is
that there is no need for a computation of deriva-
tives with respect to the state. This allows the
straightforward use of state space models that con-
tain nondifferentiable terms or models where the
Jacobian cannot be computed easily. This is of-
ten the case for high-dimensional systems occurring
with partial differential equations.

If it is not necessary to work recursively or in
real-time, the estimates can be improved by using
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the Kalman smoother rather than the Kalman filter.
In the Kalman smoother, after a forward sweep over
the time series, a backward sweep is performed, such
that the estimate at time t depends not only on
past but also on future times. The combination of
forward and backward filter yields, at least in the
linear case, the optimal smoother [Fraser & Pot-
ter, 1969]. Equivalent concepts for the UKF are not
known so far to our knowledge.

6.3. Parameter estimation with the

nonlinear Kalman filter

There are different possibilities to estimate param-
eters using the nonlinear Kalman filter based on
Eqs. (33) to (35) and (60) to (64). We will concen-
trate on the so-called augmented state vector ap-
proach, since it can be implemented without hardly
any modification of the filtering equations as they
stand now. Other approaches are mentioned below.

In the augmented state vector approach, the
dynamical system (4), (5) is rewritten in the fol-
lowing way:

λt+∆t = λt ,

xt+∆t = F(xt,λ) ,

yt+∆t = G(xt+∆t,λ) + ηt+∆t ,

(65)

i.e. the state vector is augmented by the constant
parameter vector. Also without a stochastic term in
the parameter equation, the estimate of the parame-
ter can still vary in time due to the Kalman update
(33), which influences also the estimate of λt+∆t.
But if the dynamics is stationary, the covariance of
λ̂t should decrease steadily whilst recursively pro-
ceeding through the time series and approaching the
true value. This behavior is illustrated in the follow-
ing example.

For a further discussion of this way of
parameter estimation, including the problem of es-
timation biases due to the approximate nature of
recursive estimation and possible solutions, see e.g.
[Bar-Shalom et al., 2001].

6.4. An example

We again consider the Lorenz system (29), where
only disturbed values of the x1 component are mea-
sured and all three parameters are unknown. The
data used are the same as in Sec. 5.3.

For parameter estimation, the augmented state
vector approach is used, i.e. the three parameters
of the Lorenz system are extended to the state of

the system to Dx = 6 dimensions. The complete
nonlinear state space model is

λi,t+∆t = λi,t (i = 1, 2, 3) ,

xi,t+∆t = xi,t + Ii (i = 1, 2, 3) ,

yt = x1,t + ηt

(66)

with





I1

I2

I3



 =

∫ t+∆t

t





−λ1,T x1,T + λ1,T x2,T

λ2,T x1,T − x2,T − x1,Tx3,T

−λ3,Tx3,T + x1,T x2,T



 dT .

(67)

The application of the UKF is shown in
Figs. 8(a) to 8(c). The matrix square root used
for calculating the sigma points is taken as one
factor of the Cholesky decomposition of the covari-
ance matrix [Press et al., 1997]. The whole pro-
cedure is used in an iterative way, i.e. in addi-
tion to the recursive structure of the algorithm,
it is applied iteratively to obtain several “sweeps”
over the data set. This method can significantly re-
duce that part of estimation error which is caused
by the nonlinearities of the system [Gelb, 1974;
Ljung & Söderström, 1983]. In the first sweep over
the data [Fig. 8(a)] the parameter estimates start
with rather large uncertainties, which where speci-
fied initially to be large. In this case the trajectory
adjusts to the true trajectory quickly, thus has low
bias, but for the price of a large variance. The initial
guesses for the second sweep are set in the follow-
ing way: The initial unobserved state components
are retained from the first sweep, and the initial
parameter estimates are set to their final values at
t = 400 from the first sweep. The covariance matrix
Pxx is taken as the final value of the first sweep, but
with entries related to a cross-covariance between
states and parameters removed.

This procedure results in χ2 = 321 and a
parameter vector estimate of λ̂ = (9.97 ± 0.11,
46.47 ± 0.31, 2.68 ± 0.02) (1σ confidence inter-
vals). The parameter vector estimate is obtained by
averaging the estimates over all times; its error is
obtained by taking the standard deviation of these
parameter estimates.

The comparison of the recursive estimation re-
sult [Fig. 8(c)] with the multiple shooting result
[Fig. 6(c)] reveals the following:

(i) The recursively estimated trajectory is not as
smooth as the one estimated with multiple
shooting. On the other hand, its χ2 value is
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smaller, namely 321 versus 353, respectively.
The reason may be that there are no continu-
ity constraints in recursive estimation, and the
trajectory can follow the noisy measurements
more closely due to the prediction-correction
structure of the estimator. Both χ2 are statisti-
cally compatible, and one cannot say that one
method outperforms the other.

(ii) In this example, the parameter estimates are
less biased and more accurate for recursive es-
timation. Although we believe that this result
should not be generalized to other cases too
early, the reason may be that the recursive pa-
rameter estimate is taken as the mean value
over all estimates over time. The price one has
to pay for the better parameter estimate is the
diminished accuracy of the state estimate.

Which of these two approaches should be pre-
ferred in applications depends on many factors and
cannot be said across the board. Up to now there
are no studies about a performance comparison of
recursive and shooting approaches for deterministic
nonlinear systems.

Some other recent numerical examples and
applications of these approaches are given in
e.g. [Sitz et al., 2002; Sitz et al., 2003; Horbelt et al.,
2000; Horbelt et al., 2001; Timmer et al., 2000;
Horbelt et al., 2002; Müller & Timmer, 2002].

6.5. Parameter tracking with the

nonlinear Kalman filter

If the parameter vector is not constant but slowly
varying in time, instead of a parameter estimation
problem one has the problem of parameter tracking.
The difference to the state estimation problem is
that there is no model needed to describe the vari-
ation of the parameter over time; rather, as long
as the parameter varies slowly as compared to the
state dynamics, it can behave in an arbitrary way.
This problem can be tackled using Kalman filters
in the following way:

In the augmented state vector approach, the
dynamical system (4), (5) is rewritten as

λt+∆t = λt + εt ,

xt+∆t = F(xt, λ) , (68)

yt+∆t = G(xt+∆t, λ) + ηt+∆t ,

i.e. the state vector is augmented by a stochasti-
cally varying parameter vector. There are now dif-
ferent ways to incorporate the information about

this variability, given by the covariance matrix Qt

of εt, into the estimation procedure [Gelb, 1974;
Bar-Shalom et al., 2001]. Note that the estimation
procedure still always yields a unique result; the
term εt is just an auxiliary term, and only Qt and
not εt enters the estimation procedure. This will
become clear in the following example.

6.6. An example

As an example, we consider the FitzHugh–Nagumo
system [FitzHugh, 1961] which is in widespread use
as a simplified model of the Hodgkin–Huxley system
[Hodgkin & Huxley, 1952] for the excitable dynam-
ics in certain nerve cells. It is given by the two-
dimensional system

ẋ1 = c

(

x2 + x1 −
x3

1

3
+ z(t)

)

ẋ2 = −x1 − a + bx2

c
.

(69)

The parameters are a = 0.7, b = 0.8, and c = 3.
The variable x1 is a membrane voltage which can be
measured, and x2 is a usually unobserved lumped
variable that describes the combined effect of dif-
ferent kinds of ionic currents. The external voltage
z(t) influences the dynamics. Here we assume that
z(t) is varying slowly in comparison with the other
two variables; it is treated here as the parameter
λt to be tracked. Similar setups have been used to
describe bursting in this system [Honerkamp et al.,
1985].

Our aim is to track the variation of z(t) over
time from the measurement of only x1, disturbed
by a significant amount of measurement noise as it
is usually the case in experiments of this kind. In
this example no parameters are estimated.

The measurements are constructed by corrupt-
ing the component x1, t with Gaussian noise ηt ∼
N (0, R) at 800 equidistant (∆t = 0.2) sample
times. The standard deviation of η,

√
R, is 20% of

the standard deviation of the x1-component of the
system. The external variable z(t) is constructed
as a cosine-halfwave, up to an additive constant,
as shown in Fig. 9(b). The initial guesses of z and
x2 are set to zero, the initial guess of x1 is set to
the measured value. For parameter tracking, the
augmented state vector approach (68) is used with
a constant covariance matrix Q = 0.015. In each
estimation step, the component of the covariance
matrix Pxx which corresponds to the variance of z
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Figure 8: Recursive parameter estimation in the Lorenz model (29) with

the UKF approach. Like in Fig. 6, the states and parameters are estimated

by observing noisy data from the first component of x. Measured data set

(blue dots), true trajectory (black), estimated trajectory (red), and estimated

parameters with confidence intervals (pink). (a) The result after the first

iteration of the process. (b) After the second iteration of the process. (c)

The first 200 data points, and the true and estimated trajectories of (b)

to facilitate a comparison with the results of multiple shooting parameter

estimation in Fig. 6c.
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Fig. 8. Recursive parameter estimation in the Lorenz model (29) with the UKF approach. Like in Fig. 6, the states and
parameters are estimated by observing noisy data from the first component of x. Measured data set (blue dots), true trajectory
(black), estimated trajectory (red), and estimated parameters with confidence intervals (pink). (a) The result after the first
iteration of the process. (b) After the second iteration of the process. (c) The first 200 data points, and the true and estimated
trajectories of (b) to facilitate a comparison with the results of multiple shooting parameter estimation in Fig. 6(c).
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Figure 9: Recursive parameter tracking in the FitzHugh-Nagumo model (69)

with the UKF approach. Like in the previous examples, the states and

the external parameter are estimated by observing noisy data from the first

component of x. (a) Measured data set (blue dots) and the true trajectory

of x1 (black). (b) The unobserved external variable z (black), its tracked

estimate (pink, shown with 1σ confidence intervals), the true trajectory of

the unobserved component x2 (black), and its estimate (red).

60

(a)

100 200 300 400 500 600 700 800

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

x
1
, 
y

100 200 300 400 500 600 700 800

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

z
, 
e
s
ti
m

a
te

d
 z

, 
x

2
, 
e
s
ti
m

a
te

d
 x

2

Figure 9: Recursive parameter tracking in the FitzHugh-Nagumo model (69)

with the UKF approach. Like in the previous examples, the states and

the external parameter are estimated by observing noisy data from the first

component of x. (a) Measured data set (blue dots) and the true trajectory
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Fig. 9. Recursive parameter tracking in the FitzHugh–Nagumo model (69) with the UKF approach. Like in the previous
examples, the states and the external parameter are estimated by observing noisy data from the first component of x.
(a) Measured data set (blue dots) and the true trajectory of x1 (black). (b) The unobserved external variable z (black), its
tracked estimate (pink, shown with 1σ confidence intervals), the true trajectory of the unobserved component x2 (black), and
its estimate (red).

is set to the constant value Q to mimic the uncer-
tainty of the variable to be tracked.

The application of the UKF is shown in Fig. 9.
Since the parameters of the model were given, the
variable z, corresponding to λ in Eq. (68), is tracked
quite accurately, along with a very precise esti-

mate of the unobserved component of the state vec-
tor. Note that this example constitutes an appli-
cation which cannot be treated with nonrecursive
approaches like multiple shooting.

A Matlab routine reproducing this example is
available via www.fdm.uni-freiburg.de/∼hv.



June 23, 2004 17:5 01034

Nonlinear Dynamical System Identification from Uncertain and Indirect Measurements 1925

7. Further Nonlinear Recursive
Approaches

We have seen that the basis of all recursive non-
linear filters is to reproduce as best as it gets the
temporal evolution of the probability densities to
maximize the likelihood. Here only the first two
moments, mean and covariance, were taken into ac-
count. Recently, there evolved several other meth-
ods related to this task, some of them being more
general. However, this is not an exhausting overview
of all these methods, but can be used as a starting
point for further reading, reflecting many of the ac-
tual main developments:

Methods to treat estimation in deterministic
state space models recursively rather than with di-
rect nonlinear optimization as in the initial value
approach or multiple shooting go back to [Pearson,
1967]. In these methods, sometimes denoted by non-
linear least squares methods [Gelb, 1974], the prob-
ability density of the state x is unknown, like in our
case.

The ideas of unscented Kalman filtering go
back to the more general idea of stochastic approx-
imation [Robbins & Munroe, 1951; Phaneuf, 1968;
Sunahara, 1969; Mahalanabis & Farooq, 1971] and
are put forward in [Norgaard et al., 2000].

An alternative approach to the augmented state
vector for parameter estimation with the KF is dual
estimation. In dual estimation, the parameter sys-
tem is treated as a system of its own, and the esti-
mation procedure alternates between the parameter
state and the system state [Wan et al., 2000].

Related to dual estimation again is the Ex-
pectation Maximization (EM) algorithm [Dempster
et al., 1977; Shumway & Stoffer, 1982; Honerkamp,
2002] applied to nonlinear dynamical system iden-
tification [Ghahramani & Roweis, 1999]. In the EM
algorithm, the parameter vector is not treated as
evolving in time but estimated by the following iter-
ative algorithm: In each iteration, the expectation of
the state given the current parameter estimate and
the data is calculated (E-step), then the parameter
is updated by maximizing the conditional likelihood
(M-step). The E-step is computed again with a KF,
and the M-step usually with a gradient based algo-
rithm, unless an analytic form as in linear models
can be found. For hidden Markov models, which
are based on a discrete state space, there exists also
a recursive estimator based on the EM algorithm
[Radons & Stiller, 1999].

Closely related to the estimation of unobserved
states are model based nonlinear noise reduction
methods which take the errors-in-variables problem
into account [Farmer & Sidorowich, 1990; Hammel,
1990; Davies, 1992]. The problem of convergence
of constrained minimization approaches for nonlin-
ear noise reduction, which was not covered in this
tutorial, has been investigated recently by [Bröcker
& Parlitz, 2001].

The case of varying parameters in recursive
estimation, i.e. nonstationary problems, has been
investigated for a long time now by Young [Young,
1970, 1981, 1984]. Newer results allow even for re-
cursive nonparametric model estimation [Young,
2000].

Filtering in uncertain models, where the ex-
plicit form of the state space model is known only
up to some disturbances, has been recently studied
in [Sayed & Subramanian, 2002]. This is related to
the framework of adaptive filtering [Xie et al., 1994;
Petersen & Savkin, 1999].

The prediction-correction structure of the KF
reminds one on coupled synchronizing dynamical
systems and the observer problem in engineering
science [Nijmeijer, 2001]. Indeed, recent methods
appeared which use the principle of synchroniza-
tion in coupled dynamical systems to estimate
parameters [Stojanovski et al., 1996; Maybhate &
Amritkar, 1999; Sakaguchi, 2002].

In the UKF approach, only mean and covari-
ance of the posterior probability are calculated
exactly, hence it is valid only approximately if
this assumption is violated. For strong nonlinear-
ities, i.e. of more than second order if given by a
polynomial, this approximation may cause a bias
in the estimates. A filter that can cope with ar-
bitrary nonlinearities in an exact way, however,
has to be infinite dimensional, because it cannot
be given in closed form [Hazewinkel et al., 1983;
Arulampalam et al., 2002]. This is true at least up
to some exceptions especially designed to yield a
finite dimensional filter [Beněs, 1981; Daum, 1986;
Schmidt, 1993]. The UKF used an optimally chosen
set of sampling points, the sigma points, to repre-
sent the posterior density under the assumption of
Gaussianity.

There are other novel methods based on Monte
Carlo sampling [Müller, 1991] which allow to loosen
this assumption by using more general densities and
(sequential) importance sampling [Tanizaki, 1993],
bootstrapping [Gordon et al., 1993; Kitagawa, 1996],
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particle filters [Arulampalam et al., 2002], or con-
densation (from “conditional density estimation”)
[MacCormick & Blake, 1999]. The general idea of
Monte Carlo sampling is to represent the densities
by finite samples and to use them in the Kalman
recursion. Thereby the samples are drawn in a ran-
dom manner, unlike the sigma points which are
computed uniquely. It is especially useful if the
probability densities deviate strongly from a Gaus-
sian, e.g. by being multimodal. Of course, this may
be frequently the case for chaotic systems, but we
are not aware of an application of particle filters to
chaotic systems.

Importance sampling belongs to the indepen-
dent sampling family. If the sample at time t + ∆t
is configured such as to depend on the sample at
time t, the samples are not independent any longer.
This can be exploited to design highly efficient
sampling strategies, known as Markov chain Monte
Carlo estimations [Carlin et al., 1992; Davies, 1998;
Bremer & Kaplan, 2001], with the burden of a much
higher computational load and difficult problems of
slow convergence [Frühwirth-Schnatter, 1994; Shep-
hard, 1994] and convergence diagnosis. However,
these approaches are promising for distinguishing
between process and measurement noise, a problem
not encountered here at all, because in nonlinear
system estimation this problem is in its general form
unsolved yet.

The latter approaches are all rather new and
research is proceeding rapidly.

8. Nonparametric Estimation and
Spatiotemporal Systems

Nonparametric model estimation is a suitable tool
for modeling in the case that explicit model equa-
tions are unknown; for sufficiently clean data, often
a model or at least an initial guess of a model can
be derived nonparametrically from time series of
dynamical systems [Voss & Kurths, 1997; Timmer
et al., 2000; Peifer et al., 2003] or from spatiotem-
poral data [Voss et al., 1998; Voss et al., 1999a;
Andersen et al., 2002]. The statistical measure of
maximal correlation [Hirschfeld, 1935; Gebelein,
1941; Rényi, 1959; Csaki & Fischer, 1963] serves
as a quantitative criterion for the goodness of
the nonparametric model fits [Voss et al., 1999b].
The herein often used ACE-algorithm [Breiman
& Friedman, 1985; Frank & Lanteri, 1988; Buja,
1990; Härdle, 1990; Schimek, 2000] is accessible
via www.fdm.uni-freiburg.de/∼hv. For nonparamet-

ric modeling, see also [Abel, 2004; Wessel et al.,
2004].

At an even more fundamental level, e.g. if one is
not interested primarily in the model equations but
in the dimension of the dynamical system, meth-
ods based on time-delay embeddings have been
developed and applied to many physical and phys-
iological systems [Kantz & Schreiber, 1995, 1997;
Hegger et al., 1999]. A method that gives more
reliable results of the phase space dimension for
noisy data than a precise estimation of correla-
tion dimensions [Grassberger & Procaccia, 1983a,
1983b; Grassberger et al., 1991; Albano et al.,
1988] is based on the false nearest-neighbor ap-
proach [Kennel et al., 1992; Abarbanel et al., 1993;
Abarbanel, 1996; Hegger & Kantz, 1999]. This may
be used as a tool to explore if one has to cope with
a low-dimensional system or a higher dimensional
one.

The latter case is true for spatially extended
systems whose phase space dimension is infinite.
Fortunately, many systems have only a limited
range of scales for the spatial components of the dy-
namics. In these systems numerical simulations can
still be performed in an approximate sense. There-
fore, it should be possible also to perform some kind
of parameter estimation for such systems. The gen-
eralization of methods mentioned in Secs. 5 and 6
to these systems is not straightforward though, be-
cause of the continued high-dimensionality which
causes computational difficulties that cannot be
compensated by large computer power alone; as an
example, consider a two-dimensional system with
measurements on a 100 × 100 spatial grid, and as-
sume that the number of state components is 5. The
dynamics of this system can then be imagined as
a 5 · 104-dimensional state vector evolving in time,
leading to covariance matrices with 25·108 entries in
the UKF. This problem is only tractable if approxi-
mated somehow [Sitz et al., 2003; Müller & Timmer,
2002]. See also [Busch & Hütt, 2004; Mandelj et al.,
2004].

9. Summary and Discussion

The problem of identifying parameters and un-
observed state components from samples of
continuous-time nonlinear dynamical systems faces
two main difficulties: The errors-in-variables prob-
lem and the problem of complex cost functions.
Whereas the former one can be overcome by taking
the smooth dependence of the states properly into
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account, the latter can be managed by splitting the
optimization procedure to minimize the cost func-
tion into several parts. This methodology results
in two somehow orthogonal approaches: multiple
shooting methods and recursive filtering methods.
Both turn out to be useful especially for the analysis
of chaotic processes. Although the recursive meth-
ods can only yield approximate results, it has been
shown that they may compete well with the mul-
tiple shooting approach. An advantage is that the
implementation is much simpler than for methods
based on global, nonrecursive, optimization.

Some words are in order why we consider only
deterministic systems, although e.g. recursive es-
timation was developed historically in stochastic
systems. The reason is twofold: Parameter esti-
mation in nonlinear stochastic differential equa-
tions, as opposed to time-discrete models, suffers
from the fact that the integration time steps must
usually be orders of magnitude smaller than the
sampling time steps, unless the data are highly sam-
pled [Dacunha-Castelle & Florens-Zmirou, 1986;
Florens-Zmirou, 1989], and there must be no mea-
surement noise. These situations do hardly oc-
cur in real applications. Whether the proposed
quasi-maximum-likelihood approaches of [Bibby &
Sørensen, 1995; Timmer, 2000] can be extended
to data with measurement noise still needs to be
investigated. The other reason is that estimation
approaches based on the smoothness of trajecto-
ries cannot rely on this assumption any more,
because on small scales the trajectories cannot be
approximated by smooth ones [Kloeden & Platen,
1995]. The problem of identification of stochas-
tic dynamical systems provides much room for
future research. See also [Lotosky & Rozovskii,
1998; Siegert et al., 1998] and [Siefert & Peinke,
2004].

Before being applied to experimental data, both
multiple shooting and recursive estimation should
be validated first on numerical simulations for the
following reason: We did not encounter the prob-
lem of identifiability of system parameters and
trajectories. For example, even if the state space
formulation of the system is linear, it may hap-
pen that a solution cannot be determined in an
unambiguous way. In other words, it may be im-
possible to uniquely estimate the complete state
from the indirect measurements. This is not a ques-
tion of the amount of noise but of the system’s
structure. For linear systems, criteria can be for-
mulated that allow to test for so-called observ-

ability [Gelb, 1974; Conti, 1976; Barnett, 1983;
Anderson & Deistler, 1984; Chui & Chen, 1989;
Söderström et al., 2002], but there is no concise the-
ory up to now for nonlinear systems.

In recent years nonlinear system identification
has made much progress, but developed along two
different branches. Both branches already found
a lot of applications; the recursive estimation ap-
proach predominantly in the engineering sciences,
and shooting approaches in the natural sciences.
We expect that both could profit from each other
if combined, and many novel solutions for the still
open challenges could be found.
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Frühwirth-Schnatter, S. [1994] “Data augmentation and
dynamic linear models,” J. Time Series Anal. 15,
183–202.

Fuller, W. A. [1987] Measurement Error Models (John
Wiley, NY).

Gebelein, H. [1941] “Das statistische Problem der



June 23, 2004 17:5 01034

Nonlinear Dynamical System Identification from Uncertain and Indirect Measurements 1929

Korrelation als Variations- und Eigenwertproblem
und sein Zusammenhang mit der Ausgleichsrech-
nung,” Zeitschrift für angew. Math. und Mech. 21,
364–379.

Gelb, A. [1974] Applied Optimal Estimation (The M.I.T.
Press, Cambridge, MA).

Gershenfeld, N. [1999] The Nature of Mathematical Mod-
eling (Cambridge University Press, Cambridge).

Ghahramani, Z. & Roweis, S. T. [1999] “Learning non-
linear dynamical systems using an EM algorithm,”
Advances in Neural Information Processing Systems,
Vol. 11, eds. Kearns, M. J., Solla, S. A. & Cohn, D.
A. (MIT Press).

Gill, P. E., Murray, W. & Wright, M. H. [1981] Practical
Optimization (Academic Press, London).

Gordon, N. J., Salmond, D. J. & Smith, A. F. M. [1993]
“Novel approach to nonlinear/non-Gaussian Bayesian
state estimation,” Comm. Radar Sign. Process. 140,
107–113.

Gouesbet, G. [1991a] “Reconstruction of standard and
inverse vector fields equivalent to a Rössler system,”
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Appendix A
Derivation of the Filtering Equations
(33) to (40) and (41) to (45)

We derive the KF putting more emphasis on a
heuristic understanding rather than a more fun-
damental derivation based on the theorem of
Bayes. For the latter approach, see for example
[Honerkamp, 2002; Gershenfeld, 1999]. Another in-
troduction into Kalman filtering from a more statis-
tical viewpoint is given in [Meinhold & Singpuwalla,
1983].

First consider the linear state space model (7),
(8) with parameter dependence neglected. To esti-
mate the state xt from a time series of measure-
ments yt recursively, we first note that

x̃ = x̃t+∆t|t = E
[

xt+∆t|t

]

= E[Fxt|t + εt] = F x̂t|t .

(A.1)

Thereby it was taken that E[εt] = 0 and that the
previous state xt has to be estimated again from
the states up to time t−∆t and the measurements
up to time t. Similarly,

ỹ = ỹt+∆t|t = Gx̃t+∆t|t = Gx̃ . (A.2)

The Kalman gain is now derived as follows: We
try to estimate x̂ = x̂t+∆t|t+∆t in Eq. (32) as accu-
rately as possible, i.e. with the lowest estimation er-
ror. Any random variable that results from a linear
transformation of a Gaussian random variable again
is a Gaussian random variable. Therefore, xt+∆t is,
like εt, normally distributed, and completely de-
scribed by its mean and covariance. The estimation
error is thus given by the covariance matrix

P̂xx,t+∆t|t+∆t = E[(xt+∆t − x̂t+∆t|t+∆t)

× (xt+∆t − x̂t+∆t|t+∆t)
′] , (A.3)

or in our shorthand notation by

P̂xx = E[(x − x̂)(x − x̂)′] . (A.4)

The Kalman gain K should be chosen such that the
trace of this matrix is minimized, because the trace
is the sum over the squared errors of the compo-
nents of x̂. Here it is assumed that variances are ad-
ditive. It is not necessary to think about a minimiza-
tion of the cross-diagonal elements of P̂xx, since P̂xx

is symmetric and can thus be diagonalized; the trace
is invariant under this transformation. To perform
this minimization explicitly, we rewrite Eq. (A.4):
From

x− x̂ = x− x̃− K(y − ỹ) (A.5)

and

y − ỹ = Gx + η − Gx̃ (A.6)

one gets

x − x̂ = x − x̃− KG(x − x̃) − Kη

= (1 − KG)(x − x̃) − Kη . (A.7)

Therefore, using definition (9), we obtain

P̂xx = (1 − KG)E[(x − x̃)(x − x̃)′]

× (1 − KG)′ + KRK ′

= (1 − KG)P̃xx(1 − KG)′ + KRK ′

= P̃xx − KGP̃xx − P̃xxG′K ′

+K(GP̃xxG′ + R)K ′ . (A.8)

Now choose K such that

tr P̂xx
!
= min , (A.9)

using the relations

d

dA
tr (AB) = B ′ (AB square) , (A.10)

d

dA
tr (ACA′) = 2AC (C symmetric) , (A.11)

(

df

dA

)

ij

:=
df

dAij

, (A.12)

and

tr A = trA′ : (A.13)

d tr P̂xx

dK
= −2P̃xxG′ + 2K(GP̃xxG′ + R) = 0 .

(A.14)
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Solving this for the Kalman gain yields a minimum
of (A.9) at

K = P̃xxG′(GP̃xxG′ + R)−1 . (A.15)

It can be checked that this is indeed a minimum.
Inserting this into Eq. (A.8) one obtains

P̂xx = P̃xx − P̃xxG′(GP̃xxG′ + R)GP̃xx

= (1 − KG)P̃xx . (A.16)

It remains to compute P̃xx:

P̃xx = E[(xt+∆t − x̃)(xt+∆t − x̃)′]

= E[(Fxt + εt − F x̂t|t)(Fxt + εt − F x̂t|t)
′]

= E[(F (xt − x̂t|t) + εt)(F (xt − x̂t|t) + εt)
′]

= E[F (xt − x̂t|t)(xt − x̂t|t)
′F ′] + Qt

= F P̂xx,t|tF
′ + Qt . (A.17)

Therefore, P̃xx can be computed recursively from
P̂xx one time step before. This proves Eqs. (41)
to (45).

Finally, we come to the proof of the filtering
equations (33) to (40), which hold also for deter-
ministic but nonlinear state space models, our main
goal: A Gaussian random variable x ∼ N (x̄, Pxx)
transforms into the Gaussian y = Gx + η via

y ∼ N (Gx̄, GPxxG′+R) (R = E
[

ηη′
]

) . (A.18)

Therefore,

P̃yy = GP̃xxG′ + R (A.19)

and

P̃xy = P̃xxG′ . (A.20)

Inserting Eqs. (A.19) and (A.20) into Eq. (A.15)
proves Eq. (35). Equation (34) follows immediately.


