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Abstract

We discuss the problem of parameter estimation in nonlinear stochastic di�erential equations (SDEs) based on sampled time series.

A central message from the theory of integrating SDEs is that there exist in general two time scales, i.e. that of integrating these

equations and that of sampling. We argue that therefore, maximum likelihood estimation is computationally extremely expensive. We

discuss the relation between maximum likelihood and quasi maximum likelihood estimation. In a simulation study, we compare the

quasi maximum likelihood method with an approach for parameter estimation in nonlinear SDEs that disregards the existence of the

two time scales. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The analysis of complex systems by nonlinear deterministic di�erential equations has attracted much
attention in recent years. Given a parameterized di�erential equation, best-®t parameters can be obtained
by a least-squares minimization, see e.g. [2,3,5,14,27].

Often, however, the dynamics does not follow a strict deterministic law. In dissipative systems, due to
¯uctuation±dissipation theorems, thermal noise might have to be taken into account [17]. Furthermore, in
open nonequilibrium systems like in biology and economy, the dynamics is often also exposed to high-
dimensional, e�ectively random, in¯uences, see [27] for an example. This calls for a description by nonlinear
stochastic di�erential equations (SDEs), or their corresponding Fokker±Planck equations, respectively
[12,16,30]. While parameter estimation in linear stochastic and nonlinear deterministic di�erential equa-
tions even for data covered by additive observational noise is well known, see [27] for a review, the esti-
mation of parameters in nonlinear SDEs is still under development. In this paper, we discuss three
approaches for parameter estimation in nonlinear SDEs. The results carry over to modeling by Fokker±
Planck equations.

The organization of this paper is as follows: in the next section, we brie¯y summarize the theory of
integrating SDEs and exemplify its practice for the van der Pol oscillator undergoing stochastic forcing. In
Section 3, we discuss three approaches for parameter estimation in nonlinear SDE. In Section 4, we
compare two of these approaches in a simulation study using the stochastic van der Pol oscillator.
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2. Integrating nonlinear SDEs

2.1. Theory

A SDE with parameter vector ~h is given by

_~x �~a�~h;~x� � b�~h;~x�~�; �1�
where~� denotes uncorrelated Gaussian noise or in mathematical terms, the increment of Brownian motion.
This general form includes additive and multiplicative dynamical noise. ~a�~h;~x� is usually denoted as (de-
terministic) drift term, b�~h;~x� is called the di�usion term.

The integration of an SDE is not straightforward. This is due to the mathematical problems of evalu-
ating integrals which involves the dynamical noise~�, see [19] for a brief introduction and [18] for a detailed
discussion. Applying the same ideas underlying higher-order integration schemes for deterministic di�er-
ential equation like Runge±Kutta [23] to SDEs leads to hardly treatable stochastic integrals given in [16].
Thus, only low-order integration schemes can be used. The lowest-order so-called Euler-scheme for Eq. (1)
is given by

~x�t � dt� �~x�t� � dt~a�~h;~x�t�� �
����
dt
p

b�~h;~x�t��~��t�; �2�
which is of order 1=2 for multiplicative noise and of order 1 for additive noise. The characteristic of in-
tegration schemes for SDEs is the

����
dt
p

term which results from the integration rules for white noise [18].
For the task of parameter estimation, we assume that the system under observation can be adequately

described by Eq. (1) with unknown parameter vector~h. The process is observed at discrete time points given
by the sampling interval Dt. For nonlinear deterministic di�erential equations it is usually possible to
choose identical time steps for the integration and the sampling. The necessity of using a low-order scheme
for SDEs means that the integration step size dt is usually much smaller than the sampling interval Dt by
which the time series is recorded. Thus, while Eq. (2) can be written as

~x�t � dt� �~h�~x�t�� � m�t�; �3�
with~h�~x�t�� a function that can be related back to the parameter vector~h of~a�~h;~x�t�� and m�t� uncorrelated
Gaussian noise, on the time scale Dt of sampling the relationships are more intricate. While it is still possible
to formulate the dependence between present and future states as

~x�t � Dt� �~g�~x�t�� � g�t�; �4�
the parameter vector~h of~a�~h;~x�t�� in general, cannot be inferred from~g�~x�t��. Furthermore, g�t�, while still
uncorrelated with zero mean, in general, does not represent Gaussian noise. In other words, in nonlinear
SDEs the relation between the mean of the conditional density p�~x�t � Dt�j~x�t�� and the drift-term~a�~h;~x�t��
is not explicitly known (the analogous problem is given for modeling such systems by their corresponding
Fokker±Planck equation). Furthermore, the conditional density p�~x�t � Dt�j~x�t�� is, in general, not
Gaussian although~��t� in Eqs. (1) and (2) is Gaussian. For these reasons, parameter estimation in SDEs is a
nontrivial task.

2.2. An example

To exemplify the practical issues of integrating SDEs, we choose the van der Pol oscillator [29]

�x � l�1ÿ x2� _xÿ x; l > 0: �5�
This system exhibits a limit cycle due to the amplitude-dependent change of the sign of the damping term.
We expose it to a random force of unit variance, leading to

_x1 � x2; �6�
_x2 � l�1ÿ x2

1�x2 ÿ x1 � �; �7�
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where x1 denotes the location and x2 the velocity. The Euler integration scheme for Eqs. (6) and (7) is given
by

x1�t � dt� � x1�t� � dt x2�t�; �8�
x2�t � dt� � x2�t� � dt �l�1ÿ x2

1�t��x2�t� ÿ x1�t�� �
����
dt
p

��t�: �9�

In the following we choose l � 3. To obtain a sampled time series of the system, one has to decide on dt and
Dt. Dt should be chosen so that the process is reasonably sampled. Characteristics of the stochastic van der
Pol oscillator and related perturbed limit cycles have been investigated in [20,22]. These authors have shown
that the mean period of this system is slightly smaller than the period of the corresponding deterministic
system which is approximately 9 s. By choosing Dt � 0:5 s, we obtain approximately 18 data points per
mean period.

The choice of the integration step size dt is more di�cult. For deterministic systems adaptive algorithms
are well established that guarantee an upper bound for the deviation from the true trajectory [23]. No
corresponding straightforward procedure is available for SDEs. For SDEs the characteristic quantities are
the conditional densities p�~x�t � Dt�j~x�t��. To obtain a sampled trajectory that can be regarded as a real-
ization of the SDE, dt has to be chosen so small such that the conditional densities become independent of
dt for smaller values. Figs. 1 and 2 show this procedure for the ®rst component of~x�t � Dt� of the stochastic
van der Pol oscillator denoted by x1�t � Dt� for the two state vectors ~x�t� � �ÿ0:0935;ÿ4:284� and
~x�t� � �1:021;ÿ0:9375�. The conditional densities p�x1�t � Dt�j~xi�t�� were estimated by triangular kernel
estimators [26] based on 5000 integrations of the SDE. The quality of these estimated densities with respect
to bias and variance depends on the width of the kernel. By visual inspection, the width of the kernel was
chosen equal to 0.02 in Fig. 1 and equal to 0.1 in Fig. 2. In Fig. 1, the estimated conditional density changes
drastically between dt � 0:1 s and dt � 0:01 s. It becomes independent from dt for dt � 0:001 s. In Fig. 2,
this already happens for dt � 0:01 s. The reason for the di�erent behavior is that the time evolution in the
®rst case experiences more of the nonlinearity of the system. By investigating numerous analogous simu-
lations, we regarded dt � 0:001 s as an appropriate integration time step. The two state-space vectors~x�t�
used for the above simulation were realizations of the trajectory obtained with dt � 0:001 s. Thus, the
procedure for determining dt is an interactive one that has to be self-consistent.

Fig. 3 shows a realization of the stochastic van der Pol oscillator with l � 3, dt � 0:001 and Dt � 0:5 s.
The two data points marked by arrows at time 28 and 28.5 s, respectively were used for the estimation of
the conditional densities shown in Figs. 1 and 2.

Fig. 1. Estimated conditional densities p�x1�t � Dt�j~x�t�� for the stochastic van der Pol oscillator for l � 3,~x�t� � �ÿ0:0935;ÿ4:284�,
integration time steps dt � 0:1; 0:01; 0:001; and 0:0001 s and sampling interval Dt � 0:5 s.

Fig. 2. Estimated conditional densities p�x1�t � Dt�j~x�t�� for the stochastic van der Pol oscillator for l � 3, ~x�t� � �1:021;ÿ0:9375�,
integration time steps dt � 0:1; 0:01; 0:001; and 0:0001 s and sampling interval Dt � 0:5 s.
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2.3. A consequence

The above considerations also have consequences for mathematical models used in simulation studies
and proposed for analyzing time series in the frame of nonlinear stochastic systems by di�erence equation
of the type

x�t � 1� � f �~p; x�t�; x�t ÿ 1�; . . . ; x�t ÿ m�� � ��t�: �10�
Here the sampling interval is set to unity, ��t� denotes uncorrelated Gaussian noise,~p the parameters and m
the order of the model, see e.g. [28]. For these models the conditional distribution of x�t � 1� given the
history is Gaussian. Due to the Gaussianity, least-squares optimization leads to a maximum likelihood
estimation of the parameters which is asymptotically unbiased and e�cient [1,21]. Figs. 1 and 2 show that
for di�erence equations that are thought to be discretized versions of SDEs, the dynamical noise should be
non-Gaussian, see the skewed distribution in Fig. 2, and state-dependent heteroscadistic. It might even be
multimodal.

3. Parameter estimation

In this section, we discuss three methods to estimate parameters in SDEs. Due to its superior statistical
properties, the most desirable method would be a maximum likelihood estimation [1,21]. We argue that this
approach is not feasible. Then we discuss recently suggested quasi maximum likelihood approaches [4]. The
third approach applies the integration scheme, Eq. (2), for the whole sampling interval by using ``Dt � dt''.
With respect to the identi®cation of the two time scales this last approach is similar to a procedure to
estimate parameters in SDEs proposed in [6,7,25]. In the simulation studies presented in these publications
the time series were sampled at the time step of integration.

To simplify the exposition, we consider a scalar dynamics and a single parameter h in the following.

3.1. Maximum likelihood estimation

Denoting the stationary distribution of the SDE for a given parameter h by p�xjh�, the likelihood for a
sampled time series of length N reads

L�x�t1�; x�t2�; . . . ; x�tN �; h� � p�x�t1�jh�
YNÿ1

i�1

p�x�ti�1�jx�ti�; h�: �11�

Maximizing L�:; h� leads to an estimator ĥ that is asymptotically unbiased and has least conservative
con®dence regions. Note that a biased estimator can lead to erroneous interpretations of results, while
suboptimal con®dence regions `only' lower the power to reject simpler models in favor of more complex
ones, but does not lead to statistically false positive results.

Usually, the logarithm of the likelihood is considered and the term p�x�t1�jh� whose in¯uence vanishes
asymptotically is neglected

L�x�t2�; x�t3�; . . . ; x�tN �jh� �
XNÿ1

i�1

ln p�x�ti�1�jx�ti�; h�: �12�

The maximum likelihood estimator ĥmle is de®ned by

d

dh
L�x�t2�; x�t3�; . . . ; x�tN�; h� � 0: �13�

To obtain ĥmle an iterative optimization strategy has to be applied. Starting from an initial guess for the
parameter, the conditional densities p�x�ti�1�jx�ti�; h� in Eq. (12) have to be estimated and evaluated. This
can be achieved by solving the corresponding Fokker±Planck equation or by applying the integration
scheme, Eq. (2), with the actual guess of the parameters several times on the intervals �ti; ti�1� starting from
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the observed x�ti� to estimate the conditional density, e.g. by kernel estimation [26]. Then, the log-likelihood
can be calculated. Based on this procedure, the parameter is changed until the log-likelihood is extremal by
applying some optimization algorithm [23]. The performance of this procedure depends heavily on the
quality of the density estimation. Thus, for the procedure based on integrating the SDE, thousands of
trajectories in each interval �ti1 ; ti� have to be realized. Note that the densities shown in Figs. 1 and 2 that
were based on 5000 realizations are not smooth enough to enable a numerically stable estimation of the
parameters. Furthermore, this procedure involves the choice of a parameter determining the bandwidth of
the density estimator. This parameter has to be chosen data-driven and state-dependent, e.g. by a com-
puter-intensive cross-validation procedure [9,13,26]. Therefore, the desirable method of maximum likeli-
hood is hardly applicable.

3.2. Quasi maximum likelihood estimation

Bibby and Sùrensen [4] suggested to use a quasi maximum likelihood estimator instead of the infeasible
maximum likelihood estimator, Eq. (13). The key idea of this procedure is that Eq. (13) can formally be
read as a search for a root

G�h� � 0; �14�
de®ning an estimator ĥ. By virtue of choosing G�h�, the resulting computationally feasible estimator can be
forced to be unbiased by paying the price that the resulting con®dence regions are no longer optimal.
Experience shows that the loss in optimality is often rather small [15]. Eq. (14) is called estimation equation,
and the resulting estimator is called quasi maximum likelihood estimator.

Bibby and Sorensen [4] have shown that in the case of SDEs one possible choice for G�h� is given by

G�h� �
XNÿ1

i�1

gi����x�ti�1� ÿ E�x�ti�1�jx�ti�; h��; �15�

where gi��� is a function that is derived from the SDE and E�x�ti�1�jx�ti�; h� denotes the expected value of
x�ti�1� conditioned on the observed x�ti� for a given h. Di�erent possible procedures for deriving gi��� given
the SDE are discussed in [4].

In opposite to the conditional density necessary for the maximum likelihood case, the conditional ex-
pectation in Eq. (15) can the estimated reliably with a comparable small number of integrations in the
intervals �ti; ti�1� starting from the observed x�ti�.

3.3. Dt � dt approach

In the third approach we use the discretization scheme, Eq. (2), on the interval of the whole sampling
time step Dt by setting Dt � dt in Eq. (2). This yields an estimate bx��ti�1�jx�ti�; h�. The parameters are
adjusted until the mean square errorXNÿ1

i�1

�x�ti�1� ÿ bx��ti�1�jx�ti�; h��2 �16�

is minimized. This method neglects the existence of the two time scales for integrating and sampling SDEs.
Furthermore, it implicitly assumes that the variance of the conditional density is state-space-independent
and Gaussian.

4. Simulation study

We investigate the behavior of the quasi maximum likelihood and the Dt � dt approach in a simulation
study using the stochastic van der Pol oscillator introduced in Section 2.2. We integrated the process with
dt � 0:001 s. The smaller the sampling time, the smaller the di�erences between ~h��� in Eq. (3) and ~g��� in
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Eq. (4) will be. Thus, the less severe the e�ects of ignoring the two time scales by the Dt � dt approach will
be [10,11,24]. Therefore, we investigate the behavior of the two approaches described above for di�erent
sampling times between Dt � 0:005 s and Dt � 0:5 s. As in the simulation study presented in [25], we assume
that the whole state-space vector is observed.

For the quasi maximum likelihood approach, Section 3.2, we chose the term gi��� in Eq. (15) to be

gi�~x�ti�� � �1ÿ x2
1�x2; �17�

generalizing the line of argument of [4]. The term ``�x�ti�1� ÿ E�x�ti�1�jx�ti�; h�'' in Eq. (15) is read as
�x1�ti�1� ÿ E�x1�ti�1�j~x�ti�; h�. Thus, we predict the observed location x1�ti�1� based on the whole state-space
vector at the present time step ti. The expected value of x1�ti�1� is estimated based on 50 integrations.
Finding the zero of Eq. (15) is performed by routines from [23].

For the Dt � dt approach, Section 3.3, we use the information from the whole state-space from the
history and from the present state. The minimization is performed by routines from [23].

Fig. 4 displays the results of the simulation study for sampling time steps Dt ranging from 0:005 to 0:5 s.
The 2r con®dence intervals were calculated from 50 repetitions. The length of the time series for di�erent

Fig. 3. Realization of the stochastic van der Pol oscillator for l � 3, integration time step dt � 0:001 s and sampling interval Dt � 0:5 s.

The two data points marked by arrows at time 28 and 28.5 s, respectively were used for the estimation of the conditional densities

shown in Figs. 1 and 2.

Fig. 4. Dependence of the estimated parameter l̂ of the stochastic van der Pol oscillator on the sampling interval. The integration time

step dt was 0:001 s. The 95% con®dence intervals were calculated based on 50 repetitions. +: quasi maximum likelihood approach,

�: Dt � dt approach. For sake of clarity the results are slightly scattered around the applied sampling time steps

Dt � 0:005; 0:01; 0:025; 0:05; 0:1 and 0:5 s. The true value of the parameter l � 3 is marked by the solid line.

Fig. 5. Analogous to Fig. 4 for l � 5.
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sampling times was chosen such that 1000 data points enter the estimation. The quasi maximum likelihood
approach yields unbiased results independent of the sampling interval. For realistic sampling intervals the
Dt � dt approach gives strongly biased results. Only for a sampling time of Dt6 0:025 its estimate is
consistent with the true parameter. This would require sampling the process with approximately 360 points
per period. Note that classical time series like the sunspot data and the Canadian lynx data are sampled
with 11 and 10 points per period, respectively see e.g. [8].

Fig. 5 shows the results analogous to Fig. 4 for nonlinearity parameter l � 5. The relative bias of the
Dt � dt approach for sampling intervals dt � 0:05; 0:1 and 0:5 s is larger than for l � 3 due to the higher
degree of nonlinearity. Thus, in general, a su�cient sampling for the linearly approximating Dt � dt
approach to work depends on the degree of nonlinearity.

5. Discussion

Modeling time series of open nonequilibrium systems by nonlinear SDEs allows to take into account the
e�ects of the huge number of degrees of freedom that might be active in such systems. A fundamental
problem in estimating parameters in SDEs is taught by the theory of integrating nonlinear SDEs. A central
message from this theory is that there are in general two time scales: that of integration and that of
sampling. As a consequence, the mean and the distributional characteristics of conditional densities on the
time scale of sampling, in general, cannot be related back to the parameters of the SDE.

We discussed three approaches for parameter estimation in SDEs based on sampled time series. Un-
fortunately, the desirable maximum likelihood approach is not feasible in the present context due to its
extreme computational burden to estimate the conditional distributions. It might become tractable with the
advent of more powerful massive parallel computers. In the presented simulation study, the quasi maxi-
mum likelihood approach yielded unbiased estimates for the parameter. Disregarding the existence of the
two time scales of integration and of sampling in SDEs and using the discretization scheme of the SDE itself
on the time scale of the sampling led to results that are unbiased only for the case of heavy oversampling,
but biased for conventional sampling rates.

Thus, methods that require the sampling time interval to be an admissable integration time step, like
suggested in [6,7], are applicable to measured time series only for su�ciently sampled data. The same holds
for the desirable approach to nonparametrically estimate the complete functional form of the deterministic
drift term of a SDE based on the discretization of the corresponding Fokker±Planck equation proposed in
[25] where formally even the limit ``sampling interval ! 0'' is required.

The approaches discussed in this paper require to observe the complete state-space vector which is
usually not possible. Our future work will concentrate on the generalization to the case of parameter es-
timation in nonlinear SDEs based on scalar observations as it is already possible in linear stochastic and
nonlinear deterministic systems [27].
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