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Increasingly complex applications involve large
datasets in combination with nonlinear and high-
dimensional mathematical models. In this context,
statistical inference is a challenging issue that
calls for pragmatic approaches that take advantage
of both Bayesian and frequentist methods. The
elegance of Bayesian methodology is founded in
the propagation of information content provided
by experimental data and prior assumptions to the
posterior probability distribution of model predictions.
However, for complex applications, experimental
data and prior assumptions potentially constrain
the posterior probability distribution insufficiently.
In these situations, Bayesian Markov chain Monte
Carlo sampling can be infeasible. From a frequentist
point of view, insufficient experimental data and prior
assumptions can be interpreted as non-identifiability.
The profile-likelihood approach offers to detect and
to resolve non-identifiability by experimental design
iteratively. Therefore, it allows one to better constrain
the posterior probability distribution until Markov
chain Monte Carlo sampling can be used securely.
Using an application from cell biology, we compare
both methods and show that a successive application
of the two methods facilitates a realistic assessment of
uncertainty in model predictions.

c© 2012 The Author(s) Published by the Royal Society. All rights reserved.
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1. Introduction
In many scientific situations, mathematical models are used to predict the properties of a
system under study using explicitly formulated assumptions and hypotheses. This is especially
important for complex applications that do not allow for an intuitive understanding of the
processes involved. Applications range from analyses in particle physics [1] or in climate research
[2,3] to quantifying dynamical processes in cell biology [4]. Often, these mathematical models
contain parameters that are unknown or known only with large uncertainty. For example, in
the biochemical models that are used in cell biology, parameters such as reaction rate constants,
amount of molecular compounds, detection sensitivities or measurement backgrounds are often
unknown. Before a model can be used for prediction reliably, the unknown parameters have to
be estimated by comparing model output to experimental data.

For a realistic assessment of the accuracy of model predictions, it is important that uncertainties
in the experimental data and in prior assumptions are propagated correctly via the parameters
to the desired predictions. Bayesian Markov chain Monte Carlo (MCMC) sampling facilitates
this propagation of uncertainties by sampling from the posterior probability distribution [5].
However, if experimental data are limited and the mathematical models are nonlinear and
contain many unknown parameters, the posterior probability distribution can be insufficiently
constrained. For such an insufficiently constrained posterior, the probability mass can be
distributed widely in a high-dimensional parameter space. Consequently, MCMC sampling can
quickly become infeasible.

Alternatively, one can resort to frequentist methods in this situation. Here, insufficient
experimental data and prior assumptions can be interpreted as non-identifiability of the model
parameters [6]. We applied a generic approach that uses the profile likelihood to detect both
structural and practical non-identifiability [7]. Furthermore, this approach allows one to design
new experiments that resolve non-identifiability. Therefore, it is beneficial to further constrain the
posterior probability distribution until MCMC sampling can be applied reliably and efficiently.

We compared the results of both MCMC sampling and profile-likelihood methods. In the
absence of non-identifiability, the results of both methods are in good agreement. However, in the
presence of non-identifiability their results can be substantially different. Our results imply that
MCMC sampling in the presence of non-identifiability can be misleading. Therefore, we suggest
a successive application of the two methods that ensures a realistic assessment of uncertainty in
model predictions.

(a) Frequentist methods
Maximum-likelihood estimation of model parameters is a theoretically well-developed area [8].
Based on an assumption on the distribution of the measurement noise, the likelihood function
L(y|θ) of the data y given the parameters θ describes the agreement of model output and
experimental data. In the case of normally distributed measurement noise ε ∼ N(0, σ 2), the
likelihood reads as

L(y|θ) =
m∏

k=1

dk∏
l=1

1√
2πσ 2

kl

exp

(
−1

2

(
ykl − yk(tl, θ)

σkl

)2
)

, (1.1)

where m model outputs yk(tl, θ) and dk data instances for each model output, such as time points
tl, can be considered. The maximum of L(y|θ), i.e. the best fit of the model to the data, provides
a point estimate θ̂ of the parameters. This maximum-likelihood estimate (MLE) can be calculated
for nonlinear models by numerical optimization methods; see e.g. the trust region algorithm in [9]
and the general introductions in [10,11]. The uncertainty of the estimate θ̂ is buried in the shape
of the likelihood function. Figure 1 shows an illustration of the likelihood for three typical cases.

If the amount of model quantities that can be accessed by experiments is limited, a subset
of parameters can be structurally non-identifiable. This indicates that the parametrization of the
model is such that two or more parameters can compensate their effects and yield exactly the
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Figure 1. Identifiability analysis using likelihood profiles: the upper panels show as illustration the shape of the likelihood
L(y|θ) in two dimensions for three typical cases. The traces of the profiles in parameter space are indicated as full red lines. The
lower panels show the respective profile likelihood PL(y|θ1) for the dimension of parameter θ1 as full red lines. In all panels,
the asterisks denote theMLE in caseswhere a unique solution exists and the dashed lines denote the thresholdΔα that yields a
likelihood-based confidence region [10,12]. Three typical cases can arise: (a) A flat profile indicates structural non-identifiability.
In this case, no unique solution for MLE exists. (b) A profile that decreases but tails out to a plateau to one or both sides indicates
practical non-identifiability. (c) A profile that tails out to zero on both sides quickly enough, i.e. at least exponentially fast,
indicates structural and practical identifiability. The confidence interval of θ1 for (a) is infinite, for (b) has only a lower bound,
and for (c) has a finite range. (Online version in colour.)

same model outputs yk(tl, θ). This in turn results in a constant likelihood value on a sub-manifold
(figure 1a). Consequently, the MLE for the parameters cannot be determined uniquely. The
parameter relations that cause the structural non-identifiability are akin to gauge invariances
in physical theories. However, for complex models, it can be difficult to detect structural non-
identifiability. For example, if models can only be evaluated by numerical simulation, such as in
the case of detector models used in particle physics [13] or dynamical models that are used
in cell biology [4], structural non-identifiability cannot be detected directly. In the latter case,
methods for a priori structural non-identifiability analysis exist that analyse the structure of the
ordinary differential equations (ODEs) without having an analytical solution. A comparison of
these methods can be found in Chis et al. [14]. However, a priori methods are often limited to
linear ODE systems or are impracticable for models containing many parameters [15]. Arguably
one of the most practicable a priori methods that has also been proved to work for larger models
applies a probabilistic algorithm [16,17].

In addition to structural non-identifiability, model parameters can be practically non-
identifiable [7]. This type of non-identifiability arises if the amount and quality of experimental
data are limited. It cannot be detected by a priori methods. However, practical non-identifiability
is of equal importance. A generic approach that allows one to detect both structural and practical
non-identifiability at the same time uses the concept of the profile likelihood [7,18]. The profile
likelihood (PL) can be calculated for each parameter θi individually by

PL(y|θi) = max
θj �=i

[L(y|θ)]. (1.2)
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The equation indicates that for each value of θi all of the remaining parameters θj are re-
optimized; see figure 1 for illustration. The profiles PL(y|θi) break down the uncertainty contained
in the high-dimensional likelihood L(y|θ) to a footprint in one dimension. It allows for reliable
conclusions about whether a parameter can be inferred from the experimental data. Three typical
cases arise and can be detected from the profiles. A flat profile with a constant value indicates
structural non-identifiability (cf. figure 1a). A profile that decreases but tails out to a plateau to
one or both sides indicates practical non-identifiability (cf. figure 1b). A profile that tails out
to zero on both sides quickly enough, i.e. at least exponentially fast, indicates structural and
practical identifiability (cf. figure 1c). Experimental design and model reduction strategies based
on the profile likelihood allow one to resolve parameter non-identifiabilities iteratively; for an
application see [19].

Furthermore, the profile likelihood allows one to assess likelihood-based confidence intervals
[20–22]. A confidence interval [σ−

i , σ+
i ] to a confidence level α = 0.95 signifies that the true value

of the parameter θ∗
i is expected to be inside the interval with 95% probability. Using a threshold

Δα = Q(χ2
d.f., α), which is the α quantile of the χ2-distribution with d.f. degrees of freedom [10],

confidence intervals can be determined from the profiles by {θi | − 2 log(PL(y|θi)/L(y|θ̂ )) < Δα}.

(b) Bayesian methods
By applying Bayes’ theorem, the likelihood function (1.1) is extended by the prior probability
density function (PDF) of the parameters P(θ) and normalized by a factor c, yielding the posterior
PDF of the parameters,

P(θ |y) = c L(y|θ) P(θ). (1.3)

In analogy to the MLE, the maximum a posteriori (MAP) estimate is defined by maximizing P(θ |y).
The only decisive difference to frequentist methodology is the choice of the prior P(θ). The direct
computation of the normalization factor c is not feasible for a high-dimensional parameter space.
However, extensive MCMC sampling offers a way to evaluate P(θ |y) despite the unknown c.
This intriguing feature opens the prospect of considering the full high-dimensional posterior PDF
for statistical inference. Most prominently, the Metropolis–Hastings algorithm [23,24] defines a
Markov process where transitions θ → θ ′ are generated using a proposal function q(θ |θ ′) that
eventually produces a series of samples of the posterior PDF P(θ |y). The transitions are accepted
with probability

α(θ , θ ′) = min
[

1,
(

L(y|θ ′)
L(y|θ)

)(
q(θ |θ ′)
q(θ ′|θ)

)]
. (1.4)

For efficiency of the sampling, the choice of the proposal function q(θ |θ ′) is important. Often,
proposals drawn from a multivariate normal distribution are convenient. One of the most simple
implementations uses q(θ |θ ′) ∼ N(0, s · I) where s · I is a scaled identity matrix (SIM). Too small a
choice of s in relation to the actual shape of the posterior PDF will cause the process to converge
slowly and to produce correlated samples. Too large a choice of s will lead to rejection of too many
proposals θ ′ yielding a slow sampling. Assuming that the posterior PDF is a multivariate normal
distribution, the optimal acceptance rate of proposals is ≈ 0.23 [25]. Nevertheless, in the light of
complex and nonlinear models with possibly limited amount and accuracy of experimental data,
this assumption is problematic because the shape of the posterior PDF can be far from the PDF
of a normal distribution. For a high-dimensional parameter space, computational efficiency also
becomes an important issue. In these cases, the Markov chain may have to move along complex
structures [12, fig. 8.2.2]. To increase efficiency, more sophisticated methods take into account the
natural geometry of the posterior PDF, e.g. the manifold Metropolis adjusted Langevin algorithm
(MMALA) takes into account the local gradient and curvature information [26].

Before applying an MCMC sampling method, the prior PDF of the parameters needs to be
specified. Given that empirical evidence exists about the distribution of a parameter, such as a
previous measurement or estimation, P(θ) should incorporate this prior knowledge accordingly
[27]. If no empirical evidence about the parameter value is available, the prior should be chosen
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as uninformative [12]. This requires a flat metric in parameter space, i.e. one that does not
artificially favour certain parameter values. Depending on the parametrization of the model, it
can in practice be difficult to obtain a flat metric and hence to specify an uninformative prior [27].

The most crucial problem that MCMC sampling faces is to ensure that the samples obtained
realistically represent the actual posterior PDF. One instance where the convergence of the
Markov chain fails is if the posterior PDF is not proper [28]. Posterior PDFs are called proper
if they are integrable [12]. This means that it has to tail out to zero sufficiently fast over the
appreciable range of the parameters such that its integral can be normalized to one. Non-
identifiable parameters cause the posterior PDF to be non-proper [28]. This indicates that neither
the prior assumptions nor the likelihood that represents the experimental data constrain the
posterior PDF sufficiently. A practical consequence is that the Markov chain cannot converge
and hence gives inaccurate results [29]. For convergence, it is required that the Markov chain is
positive recurrent, which is not given in the case of non-identifiability [30]. The user must ensure
parameter identifiability before an MCMC technique can be used securely. If models contain
many unknown parameters and the posterior PDF is not sufficiently constrained, the convergence
of the Markov chain can be impracticably slow even for a proper posterior PDF.

2. Results
For reliable inference in the presence of non-identifiability, we propose a joint approach that take
advantage of both profiling and MCMC sampling methods. The profile likelihood is suitable to
detect parameter non-identifiability [7]. Furthermore, it allows for experimental design that helps
to resolve parameter non-identifiability [19]. This ensures that the posterior PDF is proper and
well constrained. Subsequently, efficient MCMC sampling [26] can be used reliably to generate
samples of the posterior PDF. Finally, the uncertainty in model predictions can be assessed
realistically. The workflow of this joint approach is displayed in figure 2a.

Both profiling and MCMC sampling methods separately are used for inference in various
fields, e.g. in particle physics [1,31] or in climate research [2,3]. Here, we present results of using
the joint approach that take advantage of both methods for an application from cell biology [32].
An ODE model was used to describe the concentration dynamics of six molecular compounds
involved in the interplay of the hormone erythropoietin (Epo) and its corresponding membrane
receptor (EpoR) (figure 2b). Epo is an important factor in the differentiation of blood cells. The
dynamics of the molecular compounds are formulated as

dx(t, θ)

dt
= f (x(t, θ), θ), (2.1)

and a mapping of the dynamics to experimentally accessible quantities by the model
output function

y(t, θ) = g(x(t, θ), θ) (2.2)

that enters the likelihood function (1.1) was used. The model comprises six ODEs and 10
unknown parameters, including one nuisance parameter; for details about the model equations
see the electronic supplementary material. All parameters are positive by definition, hence the
logarithmic space yields a flat metric [12]. Since no empirical evidence about the values of the
nine parameters of interest was available, the prior was chosen uninformative.

Radioactively labelled Epo facilitated the measurement of Epo concentration in the
extracellular medium and of Epo bound to the cell membrane; see electronic supplementary
material, table S1. The MAP estimates of the model parameters were obtained by numerical
optimization; see electronic supplementary material, table S2. The agreement of model outputs
and experimental data for this initial experimental set-up is shown in figure 2c. In accordance
with the experimental data, the model describes the binding of Epo to the Epo receptor on the
membrane, internalization and recycling of the Epo–EpoR complex. As first step of the proposed
joint approach, the posterior PDF was screened for non-identifiability using the profiling method.
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Figure 2. (a) Workflow of the joint approach that combines profile likelihood and MCMC sampling methods: the first step is
setting up an appropriate mathematical model (b) that contains the available prior knowledge and explains the experimental
data sufficientlywell (c). The profile-likelihood approach allows one to detect and to resolve non-identifiability by experimental
design. Therefore, it helps to ensure that the posterior PDF is proper and sufficiently well constrained. Subsequently, MCMC
sampling can be applied securely. Finally, the uncertainty in model predictions can be assessed realistically using the obtained
samples. (b) The structure of the ODEmodel describing Epo and EpoR interactions. The dashed line indicates the cell membrane;
the part above is the outside, the part below is the inside of the cell. (c) The agreement of experimental data andmodel output
for MAP parameter values for both experimental set-ups is displayed. The extended set-up was derived by experimental design
considerations, see [19].

(a) Identifiability analysis using posterior profiles
The profile-likelihood approach for identifiability analysis [7] can be translated into a profile
posterior approach. In analogy to equation (1.2), profiling can be applied to the unnormalized
posterior PDF by defining the profile posterior

PP(θi|y) = max
θj �=i

[P(θ |y)] (2.3)

(cf. figure 1). Technical details on the implementation of the methods are given in the electronic
supplementary material notes. For the initial experimental set-up, the profiles of the posterior PDF
reveal four structurally non-identifiable, two practically non-identifiable and three identifiable
parameters. One of each case is displayed as full red lines in figure 3a; the remaining profiles are
shown in the electronic supplementary material, figure S1.

(b) Markov chain Monte Carlo sampling
The results of the posterior profiling approach indicate that the posterior PDF for the initial
experimental set-up is not proper, i.e. the posterior PDF cannot be normalized to one and is
therefore not a valid PDF. In this situation, an MCMC sampling cannot converge and hence
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Figure 3. Comparison of profiling and sampling results. (a) For the initial experimental set-up, the posterior profiles indicated
by full red lines reveal that parameter kon is structurally non-identifiable, parameter kt is practically non-identifiable and
parameter kde is identifiable. The histograms display the marginalized MCMC samples obtained by the MMALA algorithm. For
the identifiable parameter kde, results of both profiling and sampling agree quite well. Also for the structurally non-identifiable
parameter kon the agreement is acceptable. For the practically non-identifiable parameter kt, the results are substantially
different. The profile shows that the MAP point is located at log10(kt) ≈ −1.8. However, the lion’s share of the marginalized
MCMC samples propose log10(kt) to be > 0. (b) Taking into account more experimental data, the posterior profiles for the
extended experimental set-up indicate that all parameters are now identifiable. The results ofMCMC sampling and profiling are
in good agreement. Interestingly, the MCMC samples for parameter kt for the extended set-up are localized close to the MAP
point of the initial set-up; note the different scales on the x-axis for (a) and (b). The dashed red lines indicates the threshold
Δα that can be used to assess likelihood-based confidence intervals. (Online version in colour.)

gives inaccurate results [29]. In order to allow for a comparison between profiling and MCMC
sampling, the prior PDF was restricted artificially to a uniform distribution with support from
10−5 to 10+5. The resulting posterior PDF is now proper and the Markov chain can in principle
converge. It is important to note that the results of MCMC sampling can potentially be biased
due to the artificial specification of this prior PDF. The new posterior PDF, though proper, still
exhibits a complicated structure. The probability mass is distributed widely in the 10-dimensional
parameter space; see the posterior profiles in figure 3a. In this situation, the SIM sampling
algorithm, which uses a scale identity matrix for generating proposals, was too inefficient and did
not yield reasonable results within an acceptable time; see the electronic supplementary material,
figures S1–S3.

To improve efficiency, the MMALA algorithm, which takes into account the local geometry
of P(θ |y), was used [26]. Figure 3a shows the histograms of marginalized MCMC samples.
The remaining results are displayed in the electronic supplementary material, figures S4–S6. For
the identifiable parameter kde and for the structural non-identifiable parameter kon, the results of
the MCMC sampling are in good agreement with the results of the profiling. For the practically
non-identifiable parameter kt, the results are substantially different. The profile shows that the
MAP point is located at log10(kt) ≈ −1.8. However, the lion’s share of the marginalized MCMC
samples propose log10(kt) to be >0. In this region, the posterior profile reveals a plateau.
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(c) Taking into account additional experimental data
The results of both posterior profiling and MCMC sampling indicate substantial uncertainty
in the parameter estimates for the initial experimental set-up. Based on the results of the
profiling approach, additional experiments were suggested; see [19] for details. The target of
the experimental design was to resolve non-identifiabilities. The additional experimental data
were included in the estimation procedure, yielding an extended experimental set-up (figure 2c).
Figure 3b shows the recomputed posterior profiles. They indicate, by tailing out to zero, that the
identifiability problems were resolved for all parameters. The remaining profiles are shown in the
electronic supplementary material, figure S7.

As a consequence, the posterior PDF is now proper without artificial assumptions on the
prior PDF. In this situation, the SIM sampling algorithm was still too inefficient and did not
yield reasonable results within an acceptable time; see the electronic supplementary material,
figures S7–S9. To improve efficiency, the MMALA algorithm, which takes into account the local
geometry of P(θ |y), was used again [26]. Figure 3b shows the histograms of marginalized MCMC
samples. The results for the remaining parameters are shown in the electronic supplementary
material, figures S10–S12. For all parameters, the results of the MCMC sampling and posterior
profiling are now in good agreement. The MCMC samples for parameter kt that showed
substantial difference between profiles and MCMC samples for the initial set-up are now in good
agreement as well. Interestingly, the MCMC samples for parameter kt for the extended set-up are
localized close to the MAP point of the initial set-up. This suggests that the large probability mass
of MCMC samples for values of log10(kt) > 0 obtained for the initial set-up was misleading.

MCMC sampling results are now reliable and allow one to consider the full high-dimensional
posterior PDF for inference; see e.g. the nonlinear correlation between parameter kdi and kde
shown in the electronic supplementary material, figure S13. Using the generated MCMC samples,
the parameter uncertainties contained in the posterior PDF can be propagated accurately to
the prediction of the dynamics of molecular compounds that are not accessible by experiments
directly (figure 4).

3. Summary
We introduced a joint approach that combines frequentist profiling and efficient Bayesian
MCMC sampling methods. The proposed approach uses the analysis of posterior profiles that
helps to determine the identifiability of the model parameters. Non-identifiability results in
a posterior distribution that is not proper, i.e. that cannot be normalized to one. However, a
proper posterior distribution is required for convergence of the MCMC sampling. The results of
the posterior profiling can be used for experimental design that helps resolve non-identifiabilities
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iteratively. Consequently, this ensures that the posterior distribution is proper. Having ensured
identifiability of the parameters, the MCMC sampling results are reliable and can be used to
propagate the uncertainty of parameter estimates to model predictions. Using an application from
cell biology, we showed that this approach enables one to obtain accurate results.

We compared the results of posterior profiling and marginalizing over the MCMC samples
for two stages of experimental set-up: an initial set-up that contains non-identifiabilities and
an extended set-up where all parameters are identifiable. A uniform prior distribution ensured
that the posterior is proper despite non-identifiability for the initial set-up. For the extended set-
up, the results of posterior profiling and marginalizing over the MCMC samples are in good
agreement. For the initial set-up, substantial differences between profiles and MCMC samples are
observed. Interestingly, the profiles for the initial set-up reflect the posterior distribution for the
extended set-up much better than the MCMC samples of the initial set-up. This indicates that
MCMC sampling results in the presence of non-identifiability can be inaccurate despite a proper
posterior distribution.

This work was supported by the German Federal Ministry of Education and Research (Virtual Liver
(grant no. 0315766), LungSys (grant no. 0315415E) and FRISYS (grant no. 0313921)), the European Union
(CancerSys (grant no. EU-FP7 HEALTH-F4-2008-223188)), the Initiative and Networking Fund of the
Helmholtz Association within the Helmholtz Alliance on Systems Biology (CoReNe HMGU), and the
Excellence Initiative of the German Federal and State Governments (EXC 294).
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