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Abstract

Background: High-quality quantitative data is a major limitation in systems biology. The experimental data used in
systems biology can be assigned to one of the following categories: assays yielding average data of a cell
population, high-content single cell measurements and high-throughput techniques generating single cell data for
large cell populations. For modeling purposes, a combination of data from different categories is highly desirable
in order to increase the number of observable species and processes and thereby maximize the identifiability of
parameters.

Results: In this article we present a method that combines the power of high-content single cell measurements
with the efficiency of high-throughput techniques. A calibration on the basis of identical cell populations measured
by both approaches connects the two techniques. We develop a mathematical model to relate quantities
exclusively observable by high-content single cell techniques to those measurable with high-content as well as
high-throughput methods. The latter are defined as free variables, while the variables measurable with only one
technique are described in dependence of those. It is the combination of data calibration and model into a single
method that makes it possible to determine quantities only accessible by single cell assays but using high-
throughput techniques. As an example, we apply our approach to the nucleocytoplasmic transport of STAT5B in
eukaryotic cells.

Conclusions: The presented procedure can be generally applied to systems that allow for dividing observables
into sets of free quantities, which are easily measurable, and variables dependent on those. Hence, it extends the
information content of high-throughput methods by incorporating data from high-content measurements.

Background
In systems biology, a wide range of experimental data is
used for mathematical modeling. Qualitative data mostly
serves as a basis for determining network structures,
whereas dynamic pathway modeling relies on high-quality
quantitative data. In general, experimental data describ-
ing biological systems can be divided into three groups.
Firstly, data generated from large cell populations yields
an average information of the whole population behavior.
However, cell population assays such as biochemical
measurements or microarray studies can be misleading
as large cell-to-cell variations are often observed, even in
seemingly uniform populations. This stochasticity can be

caused by asynchronous cell cycles, differences in cell
sizes and varying protein states or expression levels
[1-3]. Secondly, single cell data with high-content infor-
mation from a limited number of cells result in a sto-
chastic distribution of measured quantities. Many single
cell approaches are based on microscopy, but other tech-
nologies are under development to investigate for exam-
ple gene expression or proteins in single cells [4-6]. The
third group covers a small range of experimental techni-
ques that generate single cell data from large cell popula-
tions in a high-throughput format. Most common among
those is flow cytometry, which however is limited to
measurements from cells in suspension. Moreover, in
contrast to microscopy, standard flow cytometry can
only detect average whole cell fluorescence intensities
lacking spatially resolved information. Currently, high-
throughput imaging techniques as well as imaging flow
cytometers digitally imaging cells directly in flow are
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being developed, with the goal to gather high-content
information from a large number of single cells [7,8].
This will increase the number of parameters that can be
determined in parallel by high-throughput and high-
content techniques.
For modeling purposes it is essential to link data from

different types of experiments in order to include as
many details of the system as possible in the modeling
process and to avoid non-identifiabilities during the
parameter estimation. However, some of the compo-
nents can only be measured by time consuming high-
content techniques. For models describing entire cell
populations, high-content data for large cell numbers is
necessary but often impossible to provide. In contrast,
high-throughput techniques can generate these large
data sets, despite a lack in detailed single cell
information.
A signaling pathway that has been extensively investi-

gated by dynamic pathway modeling is the JAK-STAT
pathway [9]. Upon binding of an extracellular ligand to
the respective receptor latent signal transducers and
activators of transcription (STATs) are activated by
Janus kinases (JAK) leading to rapid nucleocytoplasmic
cycling of STATs. In addition, constitutive nucleocyto-
plasmic cycling of unphosphorylated STAT has been
shown for several STAT proteins by biochemical and
microscopic experiments [10-15]. It has been proposed
that import of STAT is enhanced upon activation [16],
while export of activated STAT is slowed down either
through retention in the nucleus by DNA binding [17]
or possibly a different export mechanism [15]. Pre-
viously, rapid nucleocytoplasmic cycling of activated
STAT5 has been identified as the step most sensitive to
perturbation within the core module of the JAK2/
STAT5 pathway by mathematical modeling based on
biochemical data [18], but import and export rates
could not be measured experimentally. These transport
steps are crucial as important decisions regulating cell
fate are made by the nuclear reactions of STATs.
A method to determine the rates for nuclear import

and export of STAT5 is fluorescence recovery after
photobleaching (FRAP). FRAP is a single cell fluores-
cence microscopy method routinely used to measure the
kinetics of transport processes between cell compart-
ments as well as diffusion and dynamic binding reac-
tions [19,20]. One prerequisite for a quantitative FRAP
experiment is that the investigated system is in a steady
state on the time scale of the experiment otherwise a
mathematical description of the data is difficult to
obtain. The JAK-STAT system is only in a steady state
in unstimulated cells, ligand stimulation induces phos-
phorylation of STATs and thereby perturbs the steady
state. Therefore, we focused on the nuclear import and

export rates of unphosphorylated STAT5 with the goal
to generate rates for the steady state in unstimulated
cells that can be set to a fixed value in a larger pathway
model. Biochemical data describing the phosphorylation
dynamics of the pathway components after stimulation
in combination with mathematical modeling can then
serve to indirectly determine nuclear import and export
rates for phosphorylated STAT5.
Here, we present a model for extracting the import

and export rates from FRAP experiments of STAT5B-
GFP in the steady state of unstimulated NIH3T3-EpoR
cells. Furthermore, the dependence of these rates on
STAT5B-GFP concentration and cell size is shown. To
be able to combine this information with biochemical
data from cell populations expressing STAT5B-GFP, cell
size distribution and STAT5B-GFP concentration distri-
bution within the respective cell population are addi-
tionally measured by flow cytometry. Cell size as well as
STAT5B-GFP concentration are estimated directly from
flow cytometry data after calibration of these data to
microscopy data.
The calibration procedure can be generally applied to

link data from powerful high-content techniques and
fast, efficient high-throughput methods. In combination
with the mathematical model, it provides a novel ratio-
nale to determine formerly inaccessible information for
large cell populations by less time-consuming high-
throughput measurements.

Results and Discussion
Data calibration links high-content with high-throughput
data
To formulate a general calibration procedure for com-
bining high-content and high-throughput data we use a
method based on least squares regression of the quan-
tile-quantile plot (QQ-plot) for corresponding popula-
tion measurements. Let

High-Content : Y mX dC= + (1)

where Y refers to the quantity of interest, e.g. protein
concentration, cell volume, total amount of protein, XC

and XT are observables for the high content or high-
throughput technique that are both linearly connected
to Y via slopes m, m’ and intercepts d, d’. In a more
general formalism, a measurement technique is a strictly
monotonic function F with Y = F(X), i.e. F uniquely
relates an observable to a quantity of interest. Practi-
cally, the scale of X is chosen in such a way that F is
linear. The strict monotony of F requires m, m’ to be
non-zero. Eqs. (1) and (2) show that for every value of Y

mX Y d m X Y dC T( ) ( )+ = + (3)
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= +X Y
m
m

X Y
d d
mT C( ) ( ) , (4)

i.e. XT (Y ) depends linearly on the high-content quan-
tity XC(Y ). The slope m

m and intercept d d
m of eq. (4)

need to be determined in order to translate XC into XT

and vice versa. For this purpose, the distribution quan-
tiles of XC and XT are used.
Assuming that NC and NT >NC measurements have

been performed for the high-content and high-through-
put techniques, respectively, the ordered set of measure-
ments {XC,i}i = 1,...,NC is an estimate of the NC equally
spaced quantiles { }, , ,

�XC i i NC= …1 of the theoretical distri-
bution of XC. In the same way, the sample quantiles
{ }, , ,
�XT i i NC= …1 of {XT,i}i = 1,...,NT estimate the NC theo-

retical quantiles of XT. According to eq. (4) the distribu-
tions of XT and XC belong to the same location-scale
family. Consequently, the QQ-plot of XT versus XC is
supposed to follow a straight line with intercept d d

m

and slope m
m . A least squares fit of the QQ-plot gives

asymptotically unbiased estimates of slope and intercept
for a large class of theoretical distributions. The conver-
gence of the sample quantiles to the theoretical quan-
tiles as well as the convergence of the least squares
estimator is well known and is carried out rigorously
in [21].
An implementation of this calibration procedure is

provided by the R script [Additional file 1] in the sup-
plement. A sample configuration is given by [Additional
file 2].
The calibration is then included in the overall proce-

dure linking high-throughput with high-content data
(fig. 1). The essential steps are the calibration and the
mathematical model depicted in the center of the work-
flow diagram. For calibration, the identical cell popula-
tion is measured by a single-cell technique as well as a
high-throughput method to determine a subset of
matching quantities, defined as the free variables. At the
current state of technology only flow cytometry is widely
available and fulfills the requirement of generating high-
throughput data at the single-cell level. This restricts
the free variables that can be determined experimentally
to cell volume (Vcell) and concentration of a fluores-
cently labeled marker (Ccell). A high-content technique
that can be combined with flow cytometry and that can
also assess cell volume and fluorescence intensity is
microscopy. As new high-throughput techniques
advance other parameters can be considered as free
variables. The data for the free variables are then com-
pared and the resulting calibration creates the possibility
to switch between the different measurement units.
Next, the quantities of interest, i.e. any high-content
information determined by for example microscopy that
is dependent on cell size or concentration of the

fluorescently labeled marker or both, need to be
expressed in dependence of the free variables. A valid
model and parameter estimation connecting dependent
and free variables of the single cell measurement has to
be identified. The high-throughput measurements can
then be translated via calibration into the ambit of sin-
gle-cell measurements and via the fixed parameter
model into cell population quantities. The method can
be applied to combine experimental data generated by
different experimental techniques if the free variables
can be measured by all of the techniques used for data
generation.

Nucleocytoplasmic cycling of STAT5B is modeled as
saturatable pump
As an example, the analysis of nuclear import and
export of the transcription factor STAT5B was chosen.
Nucleocytoplasmic cycling is only measurable by single
cell microscopy, namely FRAP, whereas other crucial
features such as the dynamic changes of the phosphory-
lation state of the proteins are accessed by biochemical
measurements from cell populations. In eukaryotic cells,
the nucleus is separated from the cytoplasm by the
nuclear envelope. Molecules can only migrate between
those two compartments through nuclear pores forming
small holes in the membrane. Small molecules (<20-40
kDa) can diffuse freely through nuclear pores whereas
larger molecules require active transport aided by solu-
ble transport proteins that interact with the cargo mole-
cule as well as the nuclear pore. Active nuclear import
and export are regulated by different mechanisms. In
order to be imported into the nucleus, proteins usually
carry a nuclear localization signal (NLS) to which
importins can bind and enable nuclear translocation.
Similarly, a nuclear export signal (NES) within the cargo
protein structure is recognized by an exportin. For most
proteins of the STAT family, the respective importins
have been identified (reviewed in [22]). In the case of
STAT5B however, so far no importins could be identi-
fied that directly interact with the transcription factor
[23]. Instead, import of STAT5B has been suggested to
require additional factors acting as chaperones between
the importins and STAT5B [24]. Active nuclear export
of STATs is generally mediated by the exportin CRM1.
Here, a simple model for the active transport of

STAT5B through the nuclear pore was used. A single
nuclear pore and the respective import and export fac-
tors necessary to transport a single protein of interest
were modeled as a pump [25,26] making the following
assumptions: For small concentrations, the amount of
protein transported through the pores is proportional to
the concentration. For large concentrations the trans-
port current, i.e. the number of molecules per time,
saturates. For a large set of nuclear pores for which the
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capacity of every pore may vary a Michaelis-Menten
curve is a reasonable way to model the overall current.

I c N
c
c

( ) : .= =
+

� β
γ

(5)

For large concentrations (c ≫ g) I saturates with
saturation value b. For small concentrations (c ≪ g) I
depends linearly on c with slope β

γ .
Equation (5) is the resulting current for all pores of a

cell. The constants b and g may still vary within a popu-
lation, i.e. from cell to cell. In a next step the saturation
value b = kK as well as the slope β

γ κ= K are assumed to
depend linearly on a quantity K which is the product of
the abundance of transport factors and the number of
nuclear pores. This is appropriate for two reasons:
First, if the system is in saturation and the number of

nuclear pores is doubled, then the system has twice the

capacity to transport STAT5B and the current will be
doubled. The same holds for the transport factors.
Hence, the saturation value b is proportional to the pro-
duct of transport factor abundance and nuclear pore
number. Second, if the STAT5B concentration is low
and consequently the transport rate is independent of
the concentration then doubling the number of pores or
the number of transport factors will lead to a doubling
of the transport rate. Hence, the transport rate, i.e. the
slope of the current β

γ , is proportional to the product as
well. Plugging in b = �K in β

γ κ= K reveals that γ κ
κ= is

independent of K and eq. (5) reads

I c
Kc

c
K( ) .=

+

κ
κ
κ

(6)

Consequently, given an arbitrary cell from the popula-
tion and knowing about K, the current IK is a much

Figure 1 Workflow for calibrating and linking data from different experiments. The calibration and model are the crucial steps of the
procedure described here. Data calibration by a quantile-quantile (QQ) plot allows to translate data from one technique to the units of another
measurement. Here, it is necessary to determine quantities with a known relationship from the identical cell population by both methods (blue).
Furthermore, a model has to be developed to describe the dependent variables only measurable by one technique in terms of the free variables
assessable by both techniques (green). Then, additional cell populations can be measured by the high-throughput technique only and the
information content of the data can be increased via the calibration and the model (dashed arrows, red) to be finally combined with cell
population data for mathematical modeling by an ordinary differential equation (ODE) model (transparent red). General terms are shown in bold
letters, the specific case of the example system is given below. Steps shown in transparent colors are not subject of this study.
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better estimator for the transport current than the mere
population average. The question arising from this is if
and how K is accessible. Three cases seem plausible:

1. K is dominated by the number of nuclear pores
which have a similar density throughout the cell
population. Hence, K depends linearly on the
nuclear surface area Anuc.
2. K is dominated by the number of cytoplasmic
transport factors with the same concentration in all
cells which is proportional to the cytoplasmic
volume Vcyt.
3. K is dominated by the number of nuclear trans-
port factors with the same concentration in all cells
which is proportional to the nuclear volume Vnuc.

The different hypotheses represent different models,
model 1 is without any normalization. Models 2 - 4 are
defined by the respective normalized currents:

j
I c

Anuc
j

I c
Vnuc

j
I c
Vcyt

A V Vnuc nuc cyt= = =( )
,

( ) ( )
.and (7)

Reformulating the problem as

j c
c

c
c c l A V Vl

l

l
l nuc nuc cyt( ) ( ) , , ,=

+
≡ ⋅ =


 (8)

demonstrates the concentration dependency of the
normalized transport currents under the assumption
that the parameters bl and gl are constant throughout
the population. This assumption is necessary for a valid
formula describing the import and export currents
within a population. The second formulation with al (c)
follows the idea of a linearly increasing current for small
concentrations and will also be used.

Import and export current distribution for STAT5B
Import and export currents depend on STAT5B
concentration and cell size
To determine the import and export rates aimp and aexp

39 FRAP data sets generated from cells expressing varying
concentrations of STAT5B-GFP were fitted with eq. (23)
described in the Methods section. Variable protein levels
were achieved by a tightly regulatable expression system
that we developed based on a Tet-inducible promoter.
The cell-to-cell variability of aimp and aexp exceeded

the confidence intervals of the rate values by far (fig.
2A). This supported the assumption of a confounding
variable K. The three hypotheses described above were
tested for cell-to-cell variability of the transport rates.
The comparison of different normalizations was based
on the normalized currents jl (c) given by equation (8).

For every normalization the Michaelis-Menten curve
was determined from a least squares fit, i.e. the different
normalizations were ranked by decreasing c2 values.
The results for no normalization, normalization by the
nuclear surface area and normalization by the originat-
ing compartment volumes are shown in fig. 2B-D, the
estimated parameters are shown in tab. 1.
The significance of the c2 reduction has been tested

with a bootstrap method: from the 39 data points 39
points have been drawn randomly with replacement.
Then for all models, i.e. without normalization, K ∝ A,K
∝ Vnuc and K ∝ Vcyt pairwise differences   ij i j= −2 2 of
the c2 values have been computed leading to 6 difference
values for the import and 6 difference values for the
export models. This procedure has been repeated 104

times resulting in 2 × 6 distributions  ij
exp( ) and  ij

imp( ) of
c2 difference values. The position of zero with respect to
such a distribution decides whether one of the compared
models is superior to the other. More precisely:
Let q Pij

exp

ij
exp

( )
( ) ( )= <  0 be the probability that a value δ

drawn from the distribution  ij
exp( ) is lower than zero.

Then q pij
exp( ) < means that export model j is superior to

export model i at a confidence level of 1 - p. The other way
round, q pij

exp( ) ( )> −1 means that model i is superior to
model j at 1 - p confidence level. Analogously for imp. The
computed values qij

imp( ) and qij
exp( ) can be found in fig. 3,

import values in the upper left triangle, export values in
the lower right triangle.
For the export distributions model 3 - normalization

by nucleus volume - is superior to all other models at a
99% confidence level (3s). For the import data the situa-
tion is not so clear. Models 3 and 4 cannot be discrimi-
nated and seem to describe the data equally well. Both
models are clearly superior to model 1 and exceed
model 2 at a 1s level.
We decided to follow the hypothesis of normalization

by the volumes of the originating compartments, i.e.
export model 3 and import model 4. From a biological
point of view this seems to be the most reasonable
hypothesis. From a practical point of view, models 3 and
4 describe the import equally well and cannot be distin-
guished given the data at hand.
Calibration of flow cytometry data to microscopy data
yields comparable quantities
Data calibration requires the measurement of the identi-
cal cell population by both techniques. In con-focal
microscopy only intact, living cells attached to a surface
can be observed. However, for flow cytometry cells are
detached from their growth surfaces, generating a cell
suspension of intact, living cells mixed with dead cells
and cell fragments. Therefore, the flow cytometry data
have to be preprocessed, so that it only includes living
cells and is comparable to the microscopy data. To
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Figure 2 Rates and currents of STAT5B nucleocytoplasmic cycling. (A) Summary of all rates aimp and aexp. The rates directly correspond to
the exponential of the fits to the FRAP data. Gaussian error propagation leads to the error bars for aimp and aexp. The relative uncertainty of the
fitted parameter a1 is negligible compared to the relative uncertainty of the denominator. Relative errors of concentrations and volumes can be
estimated to be around 10% and lead to the rate uncertainties. In addition, for the currents (panels (B)-(D)) a small constant error has been
added to every point to avoid overvaluing small currents. (B) Michaelis-Menten fit for import (left) and export currents (right) not normalized, (C)
normalized to nucleus surface area and (D) normalized to the respective originating compartment volume. c2 values of the fit are indicated in
the plot.
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achieve this, the scatter (F0 ∝ cell cross-section area) was
plotted against the side scatter (F1 ∝ granularity)
(fig. 4A). To exclude dead cells and cell fragments, lin-
ear cuts were sufficient: a line through the point cloud
was defined by linear regression without intercept for
the scatter plot. Based on this line two perpendicular
lines - the cuts - were introduced separating vital cells
in the inner region from undesired cells in the outer
region. The resulting subset of cells had the same

volume and STAT5B-GFP distribution as the micro-
scopy cells.
To yield comparable distributions, it has to be consid-

ered that different quantities are measured by the two
techniques. Microscopy data directly result in absolute
numbers for compartment volumes and protein concen-
trations, whereas flow cytometry data from the fluores-
cence intensity channel F2 are logarithmic due to the
amplification of the signal by the instrument and the
forward scatter of a flow cytometer using light scattering
is an approximate measure of the cell cross-section area
(see [27]). Therefore, values from either flow cytometry
or microscopy measurements had to be transformed to
yield comparable quantities. For practical reasons, the
microscopy fluorescence intensities Imicro were logarith-
mized yielding XM = log Imicro. Similarly, cell volumes
Vmicro determined by microscopy were converted to
cross-section areas assuming a spherical shape of the
cell as is the case for flow cytometry samples. This
yields X VM micro= 363

2
3 · . For flow cytometry, XF = F2

and XF = F0 for fluorescence intensity and cross section
area respectively. XM and XF defined like this build the
basis for the calibration method described above.
To take the different sensitivities of the two experi-

mental techniques for fluorescence detection into

Table 1 Estimated Parameters

b [mol/s] g [μM]

Iimp 18.04 ± 6.55 3.56 ± 2.63

Iexp 19.01 ± 7.06 6.49 ± 4.71

bA [mM/s] g [μM]

Jimp,A 16.13 ± 3.88 3.12 ± 1.63

Jexp,A 74.72 ± 22.21 7.07 ± 3.96

bV [mM μ/s] g [μM]

Jimp,Vnuc 86.37 ± 18.82 2.98 ± 1.44

Jexp,Vnuc 40.13 ± 10.54 6.81 ± 3.42

Jimp,Vcyt 22.14 ± 5.30 3.43 ± 1.71

Jexp,Vcyt 8.28 ± 2.37 5.31 ± 3.25

Estimated parameters b, bA, bV and g from the c2 fit. The uncertainties
correspond to a 1s confidence level.

Figure 3 Pairwise import/export model comparison. Plot of the estimated significance of model difference for pairwise compared import
models (upper left triangle) and export models (lower right triangle). Values q < 0.5 indicate superiority of the model on the vertical axis
compared to the model on the horizontal axis at a confidence level of 1 - q. Accordingly for values q > 0.5.
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account, the flow cytometry data was corrected for cells
that are too dim to be detected by microscopy. Then,
the quantiles of XM were plotted versus the quantiles of
XF. The best accordance in the QQ-plot is expected if
an additional cut-off is introduced to the flow cytometry
data: only XF >Z for a cut-off parameter Z is taken into
account. The accordance is measured by summing up al
l squares of the residuals for the QQ-plot (absolute c2)
and Z is chosen optimally if c2 reaches a local mini-
mum. In order to avoid that Z is chosen too large and
large parts of the flow cytometry distributions are
dropped, large Z values were penalized quadratically.
The objective function is

X n pn2 2 21
2

1
2

1= + +χ χ ( ) (9)

where p Î 0[1] is the fraction of the population that is
dropped and n = 2 for quadratic penalization. The pena-
lization is chosen on purpose to fulfill 〈(n + 1)pn)〉 = 1

for uniformly distributed p. This guarantees that the
penalization is of the same magnitude as c2. The result-
ing X2 curve for the size distribution indicated that only
the complete flow cytometry data set lead to the best
accordance, while a local minimum existed for the fluor-
escence intensity distribution (fig. 4B).
After choosing the optimal cut-off, a least squares

regression was applied to the QQ-plot. The linearity of
the data points confirmed that the shapes of the two
distributions are the same. However, even after two cuts
there were deviations for the border points that result
from a small population of cells which is detected differ-
ently by flow cytometry and by microscopy. To exclude
biased fit parameters the least squares regression was
restricted to the inner 66% region of points (fig. 4C).
Thus, data preprocessing and subsequent least squares

regression of the QQ-plot lead to comparable quantities
obtained by different experimental techniques. All func-
tions for preprocessing the flow cytometry data and for

Figure 4 Data calibration. (A) Scatter plot of flow cytometry forward scatter versus side scatter. Excluded data points are shown in light grey.
Dashed lines indicate chosen cut for data exclusion. (B) X2curves for the quantile-quantile plot versus the cut position for the flow cytometry
data for cell volume (dashed line) and fluorescence intensity (solid line). (C) Quantile-quantile plots for cell volumes (left) and fluorescence
intensities (right) used for calibration. Cell populations treated with 10 ng/ml and 250 ng/ml doxycycline are both included. Flow cytometry data
are raw data, microscopy data have been transformed to represent the same parameters as flow cytometry data. The number of quantiles
corresponds to the number of microscopy data points.
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calibration of flow cytometry to microscopy data are
included in the R script 3.1 provided in the supplement.
Distributions of transport currents for an exemplary cell
population are calculated
In order to compute the distribution of currents for a
sample flow cytometry measurement, the calibration
was combined with the formula describing the currents
(eq. (8)). As has been shown above (fig. 2D), the rates
ain and aout depend on the STAT5B concentrations Ccyt

in the cytoplasm and Cnuc in the nucleus as well as the
compartment volumes Vnuc and Vcyt for nuclear export
and import, respectively.
Since the individual cell compartments cannot be dis-

tinguished by flow cytometry, an average ratio of the
cytoplasmic to nuclear quantities had to be estimated
from microscopy data. For every FRAP data set, the
fractions fV

Vcyt
Vnuc

= were determined and averaged. In addi-
tion, we tested if the fraction fV and the cell volume V
or fC and the total concentration c of STAT5B-GFP are
correlated. A large correlation value would indicate that
an additional model for describing the dependency of
the compartment quantities on the overall quantities
would be necessary. The data lead to fV = 4.27 ± 0.11
and fc = 0.645 ± 0.015 and the correlation test revealed
cor(fV, V ) = 0.15 ± 0.28 and cor(fc, c) = -0.37 ± 0.26.
Thus, the assumption of a correlation for the cell
volume would not lead to a better estimate of fV Even
for fc considering the correlation would have a minor
effect.
For the population current calculation, only the mean

values of fV and fc were used. The resulting distributions
of import and export currents are shown in fig. 5. The

transport currents were determined for two cell popula-
tions expressing either very low or very high levels of
STAT5B-GFP. For import as well as export currents the
distributions show different average values but similar
variance. This current distribution can be directly com-
bined with other population data generated from the
same cell population, such as biochemical time course
data describing the phosphorylation dynamics of the
proteins involved. Only by using both types of data for
mathematical modeling it is possible to combine a
detailed experimental investigation of nuclear import
and export with signal transduction mediated by phos-
phorylation of signaling proteins.

Conclusion
In this study, transport rates for unphosphorylated
STAT5B were determined in single cells by FRAP and
found to follow saturation kinetics dependent on both
STAT5B-GFP expression level as well as size of the ori-
ginating compartment. This reflects a saturation of
cofactors necessary for active transport of STAT5B
through the nuclear pore complex. The parameters for
concentration and volume dependency of the cycling
currents were estimated. To predict transport currents
with the saturation model for large cell populations,
STAT5B-GFP concentration and cell size distribution
were measured by flow cytometry. As flow cytometry
only yields relative values for cell size and total cell
fluorescence, a calibration to absolute numbers gener-
ated by single cell microscopy is required. For calibra-
tion, the concentration of the transcription factor
STAT5B as well as cell size were determined by

Figure 5 Current distribution. Distribution of import (left) and export (right) currents for exemplary cell populations treated with 5 ng/ml
doxycycline (dashed lines) or 50 ng/ml doxycycline (solid lines). Transport currents are normalized to the size of the respective originating
compartment.
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confocal microscopy and flow cytometry from the iden-
tical cell population, resulting in a linear calibration
curve. Subsequently, absolute cell size and STAT5B-
GFP concentration distributions were computed from
flow cytometry data using the calibration curve. Finally,
transport current distributions and thereby cell-to-cell
variation were predicted using the saturation model.
In recent years, other members of the STAT protein

family have been studied by FRAP to investigate nucleo-
cytoplasmic cycling [12,15,28], but the data have so far
only been interpreted qualitatively. Our results provide a
procedure to link directly measured import and export
rates of unphosphorylated STAT5B with data indirectly
describing the nucleocytoplasmic cycling of activated
STAT5B generated by biochemical experiments.
Furthermore, by using an inducible expression system
for STAT5B-GFP, we identify a saturation-like behavior
of STAT5B nuclear import and export, indicating a lim-
itation in transport factors. The nature of these factors
remains to be identified.
The proposed method is generic and is applicable as

long as two conditions are fulfilled. First, the quantities
that are measured by a certain high-content method
have to be functionally related. This allows for expres-
sing a subset of the quantities, defined as the dependent
variables, as a function of the remaining, free variables.
Second, the free variables have to be part of the quanti-
ties that can be measured by a given high-throughput
method. If these conditions hold, it is possible to deter-
mine the function connecting free and dependent vari-
ables by setting up a mathematical model and
estimating its parameters. Furthermore, it is possible to
calibrate the two measurement techniques against each
other as the high-throughput quantities are in particular
part of the high-content quantities. This means that a
high-throughput measurement can be translated into
the ambit of a high-content measurement. Applying the
fixed parameter model then leads to a prediction of the
dependent variables’ distributions representing an indir-
ect determination of these variables for every cell of the
population. The method is especially useful if there is a
great discrepancy in accessibility between free and
dependent variables. This combination of two experi-
mental approaches results in a higher degree of mea-
sured variables suitable for mathematical modeling and
a reduction of non-identifiabilities in the parameter
estimation.

Methods
Experimental Procedures
The retroviral expression vector pMOWS containing
the cDNA for murine HA-EpoR was introduced into
NIH3T3 cells (ATCC) and a single cell clone stably
expressing HA-EpoR was obtained by selection with

G418. pMOWSIN-TREt-STAT5B-GFP was cotrans-
duced into NIH3T3-EpoR cells together with the
cDNA for the transactivator protein contained in
pMOWS-rtTAM2. A single cell clone stably expressing
murine STAT5B-GFP was obtained by selection with
puromycin. Expression of STAT5BGFP was regulated
by a Tet-inducible promoter included in pMOWSIN-
TREt. pMOWSIN-TREt was generated by digesting
pTRE-tight (Clontech) and inserting TREt into the
self-inactivating (SIN) retroviral vector pMOWSIN.
pMOWS-rtTAM2 was generated by introducing cDNA
of rtTAM2 from pUHrT-62-1 (H. Bujard, Heidelberg,
Germany) into pMOWS using BamHI/EcoRI restric-
tion sites [29]. To simplify identification of the nuclei
cells used for FRAP experiments also were transduced
with pMOWS-H2B-mCherry. All cells were maintained
in DMEM supplemented with 10% calf serum and 1%
PenStrep.
For FRAP experiments cells were grown to 60-80%

confluency in Labtek chambered coverglasses over night.
Doxycycline was added at a concentration of 10-250 ng/
ml approximately 16 hours before serum-starvation.
Cells were serum-starved in DMEM supplemented with
25 mM HEPES pH 7.4 and doxycycline for at least 5
hours. Confocal microscopy was performed on a Leica
SP5 with a 63×/1.4 NA oil immersion objective and the
pinhole set to 1 Airy unit. All live cell imaging was per-
formed at 37°C. For cell volume and STAT5B-GFP con-
centration estimation a z-stack of the entire cell was
acquired prior to each FRAP experiment. Cytoplasmic
and nuclear volume was estimated from z-stack data by
measuring the whole cell area or nuclear area of each
slice in ImageJ (see [30]) and calculating the respective
volume by summing up the voxels per slice. Cytoplas-
mic volume Vcyt was calculated as the difference of the
nuclear volume Vnuc subtracted from the whole cell
volume Vcell. To avoid overestimation of bright cells due
to scattered light, the number of slices considered was
determined by measuring the maximum average inten-
sity in a small region of the nucleus over the whole
stack. Only those slices with at least half the maximum
mean intensity were included in the analysis. Mean
intensities in the nucleus and the whole cell were con-
verted to GFP concentrations by using a dilution series
of recombinant SBP-GFP in PBS and embedded in 15%
polyacrylamide gel as reference. The cytoplasmic con-
centration of STAT5B-GFP ccyt was calculated as

c
V c V

Vcyt
cell cell nuc nuc

cyt

c
=

−
(10)

To determine import and export currents, STAT5B-
GFP was photobleached in the entire nuclear region
with 100% laser power (488 nm). For analysis of the
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transport dynamics 10 prebleach and approximately 240
postbleach images of the whole cell were acquired for
30-40 min after bleaching.
Flow cytometry analysis of STAT5B-GFP expression

level and measurement of the approximate cell size
were performed on a BD FACSCalibur system with the
software package CellQuest. Cells were grown in 60 mm
cell culture dishes and were treated as for microscopy.
Cells were detached from the dishes by 0.05% trypsin/
EDTA and washed once in PBS/0.3% BSA. For each cell
population 20 000 cells were measured. Forward and
side scatter were detected linearly, for fluorescence
intensity detection the signal was logarithmically ampli-
fied. NIH3T3-EpoR cells were used as control for cellu-
lar autofluorescence and cell size. Raw data was
extracted from CellQuest files with FCSExtract [31].
Fluorescence intensity values were directly used for ana-
lysis. Values for the forward scatter were assumed to be
approximately proportional to the cross-section area of
the cell [27]. Cell shape was assumed to be roughly
spherical for detached cells and therefore the relation
between cross-section area and volume is known.
For the calibration measurement, cells from one cell

population were seeded in 60 mm dishes as well as Lab-
tek chambers 20 hours before the experiment. STAT5B-
GFP expression was induced with either 10 or 250 ng/
ml doxycycline 16 hours prior to serum-starvation. Flow
cytometry analysis was performed as described above. z-
stacks of 100 tiled frames were acquired by confocal
microscopy. For each doxycyline treatment the cell
volume and the total amount of STAT5B-GFP per cell
were determined for 200 cells as described for FRAP
experiments above.

Mathematical Model
Import and export currents from FRAP data
In the biological system employed here, fluorescently
labeled STAT5B (STAT5B-GFP) is introduced into the
cells in addition to endogenous STAT5B so that

c c ccyt cyt L cyt E= +, , (11)

c c cnuc nuc nuc EL= +, , (12)

consist always of the sum of labeled (L) and endogen-
ous (E) molecule concentrations. With the concentra-
tions normalized currents are associated:

j
ccyt L
ccyt

jimp impL,
,= (13)

j
cnuc L
cnuc

jexp expL,
, .= (14)

Here imp indicates transport from cytoplasm to
nucleus and accordingly exp transport from nucleus to
cytoplasm. From the definition of jimp/exp arises a system
of coupled differential equations for the labeled mole-
cule concentrations:

c
Kj

V
c

Kj

V
c ccyt

imp

cyt cyt
cyt

exp

cyt nuc
nuc cytL L L L

c c
, , , ,= − + −  (15)

c
Kj

V
c

Kj

V
c cnuc

imp

nuc cyt
cyt

exp

nuc nuc
nuc nucL L L L

c c
, , , , .= − −  (16)

As in the previous section K = A, Vcyt, Vnuc accounts
for the normalization. The associated index l is omitted
as an index of j. The ε-terms describe the continuous
bleaching due to constant laser exposition during post-
bleach image acquisition.
The two-compartment system is in equilibrium, i.e. jimp

= jexp = j and j(t) is constant in time. Also, during the
short period of photobleaching j remains constant because
the bleaching process only destroys the fluorescing dye
but not the molecule of interest. By combining equation
(8) with the equilibrium condition and the ansatz ccyt/nuc,L
(t) = ccyt/nuc,0(t)e

-εt, equation (16) transforms into

c

c
K

V V

V V

cyt

nuc

cyt cyt

nuc nuc

imp

imp exp

,

,

exp

0

0

⎛

⎝
⎜

⎞

⎠
⎟ =

−

−

⎛

⎝

⎜
⎜

 

 ⎜⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

⎛

⎝
⎜

⎞

⎠
⎟

=:

,

,

M

cyt

nuc

c

c

  

0

0 (17)

with α imp
j

ccyt
= and α exp

j
cnuc

= . This linear ODE can
be solved. The system has a constant solution

V c t V c t N constcyt cyt nuc nuc tot, ,( ) ( ) .0 0+ = = (18)

corresponding to the eigenvalue l1 = 0 of M and a
solution

c

c
t

V

V
ecyt

nuc

cyt

nuc

t,

,
( )0

0

2
⎛

⎝
⎜

⎞

⎠
⎟ ∝

−
⎛

⎝
⎜

⎞

⎠
⎟

− (19)

with λ
α α

2 = +imp
Vcyt

exp
Vnuc

.

In the experiment, fluorescent signals Scyt and Snuc are
measured. The signal

S f t c t f t e c tL
t= = −( ) ( ) ( ) ( )

0 (20)

depends linearly on the concentration; the scaling fac-
tor f between concentration and signal may be time
dependent. In order to get rid of the scaling factor and
ε, new variables cyt and nuc are introduced and trans-
formed using eq. (20):
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cyt
VcytScyt

VcytScyt VnucSnuc

Vcyt cyt
Ntot

c
:

,=
+

= 0 (21)

nuc
VnucSnuc

VcytScyt VnucSnuc

Vnuc nuc
Ntot

c
: , .=

+
= 0 (22)

Consequently, the experimentally accessible quantities
cyt and nuc are directly associated to the concentrations
appearing in the ODE system. Note that the exponential
decrease of the signal (due to continuous bleaching) and
the proportionality factor between the signal S and the
concentration cL drop out. This is even true if the pro-
portionality factor is time dependent.
Using both eq. (19) and the experimental quantities

cyt and nuc

cyt t
V

V
nuc t

V

V
a e anuc

cyt

cyt

nuc

a t( ) ( )⋅ − ⋅ = +−
0 2

1 (23)

can be fitted to an exponential curve and the fit para-
meter a1 gives the desired result

 imp

cyt

cyt

nuc nuc

a

K
V

c

c V

=

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1

1 1 (24)

 exp

nuc

nuc

cyt cyt

a

K
V

c
c V

=

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1

1 1
.

(25)

The resulting rate function al(c) or equivalently jl(c) =
cal(c) can be used for microscopy data: cell images are
analyzed for the quantity K and for fluorescence intensi-
ties which allow calculating the protein concentrations
of interest. Plugging these values in the formula for jl(c)
yields an estimate for the current between nucleus and
cytoplasm of the investigated cell without measuring it
explicitly.

Additional material

Additional file 1: The file is an R script file designed for calibrating
flow cytometry data to microscopy data. A documentation of how to
use the script is included in the header of the file.

Additional file 2: Sample config file for populist.R. In the file
“Purpose” can either be “Calibration” or “Measurement”. “Method” is
either “FACS” or “Microscopy”. “Dox” refers to the preparation and can
have arbitrary numbers. For every value of “Dox”, an extra calibration is
performed. “Intensity” and “Volume” refer to the column names of
microscopy and flow cytometry data where intensity and volume values
can be found. Finally, “File” is the filename of the data file that should be
used.
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