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Abstract
Background: Cellular processes are controlled by gene-regulatory networks. Several
computational methods are currently used to learn the structure of gene-regulatory networks
from data. This study focusses on time series gene expression and gene knock-out data in order to
identify the underlying network structure. We compare the performance of different network
reconstruction methods using synthetic data generated from an ensemble of reference networks.
Data requirements as well as optimal experiments for the reconstruction of gene-regulatory
networks are investigated. Additionally, the impact of prior knowledge on network reconstruction
as well as the effect of unobserved cellular processes is studied.

Results: We identify linear Gaussian dynamic Bayesian networks and variable selection based on
F-statistics as suitable methods for the reconstruction of gene-regulatory networks from time
series data. Commonly used discrete dynamic Bayesian networks perform inferior and this result
can be attributed to the inevitable information loss by discretization of expression data. It is shown
that short time series generated under transcription factor knock-out are optimal experiments in
order to reveal the structure of gene regulatory networks. Relative to the level of observational
noise, we give estimates for the required amount of gene expression data in order to accurately
reconstruct gene-regulatory networks. The benefit of using of prior knowledge within a Bayesian
learning framework is found to be limited to conditions of small gene expression data size.
Unobserved processes, like protein-protein interactions, induce dependencies between gene
expression levels similar to direct transcriptional regulation. We show that these dependencies
cannot be distinguished from transcription factor mediated gene regulation on the basis of gene
expression data alone.

Conclusion: Currently available data size and data quality make the reconstruction of gene
networks from gene expression data a challenge. In this study, we identify an optimal type of
experiment, requirements on the gene expression data quality and size as well as appropriate
reconstruction methods in order to reverse engineer gene regulatory networks from time series
data.
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Background
The temporal and spatial coordination of gene expression
patterns is the result of a complex integration of regulatory
signals at the promotor of target genes [1,2]. In the last
years numerous methods have been developed and
applied to reconstruct the structure and dynamic rules of
gene-regulatory networks from different high-throughput
data sources, mainly microarray based gene expression
analysis, promotor sequence information, chromatin
immunoprecipitation (ChIP) and protein-protein interac-
tion assays [3-6]. Popular reconstruction methods include
Bayesian networks [7-9], robust regression [10-12], partial
correlations [13-15], mutual information [16,17] and sys-
tem-theoretic approaches [18,19]. Approaches using gene
expression data either focus on static data or on time
series of gene expression. The later approach has the
advantage of being able to identify causal relations, i.e.
gene-regulatory relations, between genes without the need
of actively perturbing the system. The reconstruction of
gene networks is in general complicated by the high
dimensionality of high-throughput data, i.e. many genes
are measured in parallel, with only few replicates per gene.
Together with observational noise, these complications
impose a limit on the reconstruction of gene networks
[20,21]. In this study we focus on the following three chal-
lenges that a reconstruction of gene-regulatory networks
from time series of gene expression data is facing.

• The quality of data derived from high-throughput gene
expression experiments is largely limited by noise. For
example the typical magnitude of observational noise in
microarray measurements is about 20–30% of the signal
[22]. In high-throughput techniques dynamical noise
maybe expected to play a minor role due to the underlying
population sampling of the data. In contrast, data derived
from gene expression at the single cell level can exhibit a
significant amount of dynamical noise as well as strong
cell to cell variations [23].

• Data size, i.e. length of a time series and number of rep-
licates, is limited by the cost of experiments. The typical
length of time series measurements in microarray studies
is around 10–20 time points [24,25] and 3–5 replicates.
Therefore, any model underlying network reconstruction
methods must be simple, i.e. contain as few parameters as
possible, and robust.

• Gene regulation is due to the activity of transcription
factors (TFs) which is in most cases post-translationally
controlled by additional factors. This activity is not
directly observed by measuring TF expression levels. How-
ever, many network reconstruction methods based on
time series assume the activity of TFs to be directly related
with their expression levels, thereby omitting additional
hidden variables [10,26]. Accounting for hidden variables

in the framework of network reconstruction methods
based on time series demands more data in order to esti-
mate the additional parameters and can complicate a bio-
logical interpretation of the hidden variables [27].

A systematic study requires data of several gene regulatory
networks where the structure is known in detail. Since no
experimental data fulfilling these requirements is cur-
rently available we use an ensemble of synthetic gene reg-
ulatory networks to generate gene expression data. This
approach allows us to investigate in depth the effect of
noise, data size and hidden variables in the form of unob-
served processes on the reconstruction of gene regulatory
networks. We evaluate three methods for the reconstruc-
tion of gene regulatory networks from time series which
are either based on a discrete or a continuous representa-
tion of the network states: discrete dynamic Bayesian net-
works (discrete DBNs), linear Gaussian DBNs and linear
regression in combination with variable selection. All
these techniques have been used in former studies, how-
ever a comparison of the three methods using temporal
gene expression data is missing so far. Time series can be
measured under different experimental conditions
including changes in the culture conditions or perturba-
tions of network components by gene knock-outs (KOs).
For example the time series experiments conducted by
Spellman et al. generated data under different culture con-
ditions and using different mutant backgrounds in order
to reveal a more comprehensive picture about gene regu-
lation during the yeast cell cycle [24]. We study different
experimental design strategies in order to identify optimal
experiments for the identification of the underlying net-
work structure. Additionally, we investigate the require-
ments on data size and data quality that must be met by a
successful network reconstruction. Beside gene expression
data, other data sources or a combination of them can be
called in to reveal the structure of gene-regulatory net-
works. These data sources include chromatin immuno-
precipitation (ChIP) experiments, promoter analysis and
protein-protein interaction assays. Within a Bayesian
learning framework, these additional data sources can be
incorporated as prior knowledge. For example p-values of
TF-DNA interactions given by ChIP experiments have
been applied as prior knowledge about gene-gene interac-
tions [28]. Here, we investigate the influence of prior
knowledge on the reconstruction of gene-regulatory net-
works. We present a model for prior knowledge based on
probabilities for gene-gene interactions. The model is
used to generate prior knowledge with different levels of
accuracy. The accuracy of the inferred networks is com-
pared to the accuracy of the prior knowledge using differ-
ent amounts of gene expression data. This allows us to
identify conditions when the use of prior knowledge can
improve the prediction accuracy.
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In a typical study of a gene-regulatory network the states
of many molecular components of the network are not
observed, such as the phosphorylation-level of proteins or
their cellular localization. Using synthetic gene-regulatory
networks enables us to study the effect of unobserved
processes on the network reconstruction by artificially
hiding subsets of the complete data, such as protein levels
and promotor states. We investigate the influence of these
unobserved states on the identification of the network
structure by time series experiments and gene KOs.

The paper is organized as follows. In the first section the
generation of the different data sets from an ensemble of
100 synthetic networks is explained. In the second section
the reconstruction of the gene networks using linear Gaus-
sian DBNs is studied. Here, we also focus on the optimal
type of biological experiment in order to identify the
underlying network structure. In section three two alterna-
tive network reconstruction methods, discrete DBNs and
variable selection based on F-statistics, are evaluated and
compared with linear Gaussian DBNs. Section four stud-
ies the impact of data sizes and observational noise. In
section five we investigate the network reconstruction
based on prior knowledge and gene expression data. In
the last section the effect of unobserved processes, e.g.
protein-protein and protein-DNA interactions, on the
structure and identification of gene-gene interaction net-
works is studied.

Results and Discussion
Data generation and evaluation
In order to evaluate the performance of the different net-
work reconstruction methods we generate an ensemble of
100 synthetic networks. This approach allows us to evalu-
ate the average performance of a method without biasing
the evaluation in favor of a single network or network fea-
ture. Each network consists of 30 genes of which 10 are
TFs and 20 are pure target genes. A TF can itself be target
gene while a pure target gene is not allowed as a transcrip-
tional regulator of another gene. The distinction between
transcriptional regulator and pure target gene allows us to
substantially reduce the possible number of regulatory
interactions and with it the amount of data needed to
identify them. Our approach is also applicable in situa-
tions where the total number of genes is much larger com-
pared to the number of involved transcriptional
regulators as the computational cost of the network recon-
struction methods applied scale linearly with the number
of pure target genes (see Methods).

Continuous gene expression data is generated by simulat-
ing the network dynamics with non-linear ODEs (see
Methods). Observational error is incorporated via an
additive-multiplicative error model [29]. This error model
corresponds with a first order approximation to log-nor-

mal distributed expression levels [30]. In order to identify
the optimal data type and experiment for the identifica-
tion of the underlying network structure we apply differ-
ent simulation scheme. Either random perturbations from
steady state or specific perturbations of the steady state by
TF KOs are simulated and time series are sampled during
relaxation of the network back to steady state. In order to
apply discrete DBNs to the continuous data obtained
from ODEs the data is subsequently discretized. Among
different discretization scheme we choose binary quantile
discretization for which we observe the lowest error rates
of the reconstructed networks. For the evaluation of dis-
crete DBNs we also simulate the networks with probabil-
istic Boolean logic resulting in binary gene expression
data. The effect of hidden variables is investigated using a
54-dimensional network of non-linear ODEs which mod-
els the interaction of 10 genes with their respective pro-
motor, mRNA and protein states [31]. As above, we
generate time series data by single gene KOs and subse-
quent sampling during relaxation to a new steady state.
However, we use only the mRNA data in order to recon-
struct the gene-gene interaction network. This approach
corresponds to a microarray experiment where the pro-
motor or protein states are not observed.

Based on the studied question, we use two alternative
approaches for the evaluation of the reconstructed net-
works. In the first three sections we evaluate our results by
calculating three error rates which are based on an edge-
wise comparison of the best reconstructed network with
the true network: (1) The false negative rate (FNR) gives
the percentage of missed edges from all true edges. (2) The
false positive rate (FPR) gives the percentage of predicted
edges from all false edges. (3) The realized false discovery
rate (FDR) gives the percentage of false edges among the
predicted edges (see Methods). In the last two sections we
study the effect of prior knowledge and hidden variables.
Here, MCMC simulations are applied in order to calculate
posterior probabilities for single gene-gene interactions
(see Methods). Receiver operating characteristic (ROC)
curves and the corresponding area under the ROC curve
are used as a measure for the overall accuracy of the net-
work reconstruction based on MCMC simulations.

Reconstruction of gene networks using linear Gaussian 
DBNs
We start our investigation by evaluating the reconstruc-
tion of 100 gene regulatory networks using linear Gaus-
sian DBNs. Figure 1(a) shows box plots of the three error
rates of network reconstruction based on data of a single
time series for each network. Each time series is generated
by a random perturbation of the corresponding network
from its steady state and consists of 40 data points per
gene. The observational noise level is 2%. As indicated by
the high error rates, the average network reconstruction
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from this data sets is very poor. Almost 60% of the pre-
dicted edges are wrong (see FDR, Figure 1(a)), while only
30% of the true interactions are also predicted (see FNR,
Figure 1(a)). Most of the network structures cannot be
identified although the temporal resolution of the under-
lying data is relatively high due to a high sampling rate. In
Figure 1(b) we change the sampling rate and the number
of replicates. Here, for each network we generate 10 time
series with 4 data points each as opposed to the previous
approach where one time series with 40 data points per
network is used. Thus, the total size of the data is equiva-
lent in both approaches. However, for each of the 10 time
series the steady states of the networks are perturbed inde-
pendently. The resulting error rates are considerably
smaller. Only about 30% of the predicted edges are wrong
while about 50% of all true edges are also discovered.
These results clearly indicate that several random pertur-
bations contain more information about the gene regula-
tory interactions compared to a single time series with an
equivalent data size, i.e. with a higher sampling rate. In
general perturbations are necessary to push the gene regu-
latory network out of its steady state. However, a single
perturbation of all genes is unlikely to reveal the regula-
tory impact of all TFs onto their target genes as some of
these TFs will be perturbed in a similar manner. Therefore
several uncorrelated perturbations are necessary to distin-
guish between the regulatory impact of each TF onto its
target genes.

However, conducting several independent, random per-
turbation of all the components of a gene-regulatory net-
work is not experimentally feasible. Moreover,

perturbations which change the structure and function of
the underlying network unspecifically should be avoided.
We therefore study specific perturbations of the gene reg-
ulatory networks in the form of TF knock-outs (KOs).
Each of the 10 TFs in the 100 synthetic networks is
knocked out separately and time series are sampled while
the system relaxes back to its new steady state. The result-
ing error rates of the network reconstructions are shown in
Figure 1(c). All three error rates are significantly smaller (t-
test on all three rates, p < 10-16) compared to the error rates
based on random perturbations as shown in Figure 1(b).
On average only 20% of the predicted edges are wrong
while almost 60% of all true interactions are discovered.
Thus, specific TF KOs additionally improve the identifica-
tion of the network structures. The additional gain over
random perturbations as in Figure 1(b) can be explained
by the specificity of the TF KOs. The perturbations applied
in Figure 1(b) change the levels of all genes at the same
time and do not reveal the specific impact of a single TF.
In contrast, our results indicate that a perturbation by TF
KOs gives the required specificity in order to reveal the
regulatory connections between the genes. Depending on
the biological system studied, several TF KOs represent a
considerable experimental effort in order to achieve inde-
pendent and specific perturbations of the biological sys-
tem. High-throughput RNAi based gene KOs are an
attractive possibility to generate the data required for a
successful reconstruction of gene-regulatory networks
[32].

In a study based on static Bayesian networks Werhli et al.
[33] come to a similar the conclusion. They show that

Box plots of error rates of the reconstruction of 100 networks using linear Gaussian DBNsFigure 1
Box plots of error rates of the reconstruction of 100 networks using linear Gaussian DBNs. Each network consists of 30 
genes. Error rates are determined by comparing the best reconstructed network with the true network. All three plots are 
based on the same number of data points per gene. The boxes show lines at the lower quartile, median, and upper quartile val-
ues. Outliers are indicated by open circles. (a) One time series replicate with 40 data points per gene based on a random per-
turbation of the steady state. (b) 10 independent time series replicates each with 4 data point per gene based on random 
perturbations of the steady state. (c) 10 time series replicates of length 4 each based on single TF knock-outs. FNR: false-nega-
tive rate. FPR: false-positive rate. FDR: realized false discovery rate. The observational noise level is 2%.

FNR FPR FDR
0

0.2

0.4

0.6

0.8

1

E
rr

or
 R

at
es

FNR FPR FDR
0

0.2

0.4

0.6

0.8

1

FNR FPR FDR
0

0.2

0.4

0.6

0.8

1

(a) (c)(b)
Page 4 of 16
(page number not for citation purposes)



BMC Systems Biology 2007, 1:11 http://www.biomedcentral.com/1752-0509/1/11
active interventions improve the identification of the net-
work structure over an inference solely based on passive
observations. Here, active interventions are necessary in
order to resolve the ambiguity of certain edge directions
intrinsic to the inference of network structures based on
static and passive observations. Active interventions can
break the symmetry of correlations between nodes in a
network and identify the causal, i.e. assymmetric, relation
between the nodes. It is important to note that the
improvement due to TF KOs we observe is not due to a
similar phenomenon as observed by Werhli et al. for static
Bayesian networks. All edges in the DBNs we apply are
directed in time and represent causal relations per se. The
gain of TF KOs over a single replicate time series as in Fig-
ure 1(a) is only due to the larger number of independent
replicates in the form of specific perturbations of the
underlying network. This can be already seen by the
improvements of the error rates from Figure 1(a) to 1(b).

Reconstruction of gene networks with alternative 
methods: discrete DBNs and variable selection
In this section we compare linear Gaussian DBNs to more
commonly used and related methods to reconstruct gene
regulatory networks from time series. First, we focus on
discrete DBNs. The data underlying Figure 1(c) is discre-
tized prior to the application of discrete DBNs. We use a
binary quantile discretization. The resulting error rates are
shown in Figure 2(a). It turns out that the overall perform-
ance of discrete DBNs is rather poor compared with the
performance of linear Gaussian DBNs on the correspond-
ing continuous data. The average FDR is 50% meaning
that half of the predicted edges are wrong. Only about
25% of all true gene-gene interactions are also identified.

Both error rates are considerably higher than the corre-
sponding error rates of linear Gaussian DBNs (compare
Figure 1(c) and Figure 2(a)). These results suggest that dis-
cretization of the continuous data leads to a large infor-
mation loss. In order to improve our results we also tested
a different discretization method, i.e. ternary quantile dis-
cretization in combination with an information preserv-
ing coalescence of discretization levels [34]. We observe
no significant improvement between the corresponding
FDRs (data not shown). Data discretization leads to a
qualitative and coarse representation of the dynamics.
Different time scales of the dynamics cannot be reflected
without considering a finer sampling rate and a higher
number of discretization levels. However, more discreti-
zation levels also require an increase in data size in order
to identify all the necessary parameters of the correspond-
ing multinomial conditional probability distributions.
For the data sizes and networks studied, we observe a con-
siderably better performance of linear Gaussian DBNs
compared to discrete DBNs despite the fact that linear
Gaussian DBNs make stronger assumptions about the
underlying dynamics. We therefore conclude that the
advantage of discrete DBNs to capture also non-linear
effects can only be utilized with much larger data sizes
than we consider and that are usually available in a time
series microarray experiment.

Alternative to the discretization of continuous data is the
simulation of the network dynamics by probabilistic
Boolean logic. We simulate the dynamics by applying
simple activation and inhibition rules to the regulation of
a gene and combine the regulation by different TFs in a
logic OR gate. We also incorporate dynamical noise into

Box plots of error rates of the reconstruction of 100 networks using discrete DBNs (a-b) or variable selection based on F-sta-tistics (c)Figure 2
Box plots of error rates of the reconstruction of 100 networks using discrete DBNs (a-b) or variable selection based on F-sta-
tistics (c). The network reconstruction is based on: (a) Binarily discretized data underlying Figure 1(c). (b) Binary data gener-
ated by simulating the networks with probabilistic Boolean logic. 10 time series with 4 data points per gene are used. (c) Same 
data underlying Figure 1(c) but using variable selection for the network reconstruction.

FNR FPR FDR
0

0.2

0.4

0.6

0.8

1

E
rr

or
 R

at
es

FNR FPR FDR
0

0.2

0.4

0.6

0.8

1

FNR FPR FDR
0

0.2

0.4

0.6

0.8

1

(a) (b) (c)
Page 5 of 16
(page number not for citation purposes)



BMC Systems Biology 2007, 1:11 http://www.biomedcentral.com/1752-0509/1/11
the simulation in form of random switches in the out-
come of the regulatory rules (see Methods). In Figure 2(b)
we show the corresponding error rates based on the net-
work reconstruction from Boolean data. As one can see,
the overall performance of discrete DBNs on Boolean data
has much improved. Especially the average FDR is very
low, i.e. about 10%. The FNR indicates that 55% of all true
edges are identified on average. These results are consider-
ably better than the performance of discrete DBNs on the
discretized data in Figure 2(a) and the FPR and FDR are
significantly better as the corresponding rates of linear
Gaussian DBNs on the continuous data in Figure 1(c) (T-
test: FPR, p < 10-16; FDR, p = 10-13). These results might
question which of the two modeling frameworks, contin-
uous ODEs or Boolean logic in combination with dynam-
ical noise, accurately reflect cellular dynamics? Boolean
networks are a very crude representation of the time-con-
tinuous cellular dynamics underlying gene regulatory net-
works. Especially the different time scales involved in the
regulation of genes cannot be described by Boolean net-
works without considering additional hidden variables.
In contrast, non-linear ODEs are a natural framework for
the description of cellular processes as they incorporate
time scales as well as the concentration of transcripts
directly. The consideration of dynamical noise is impor-
tant in order to understand the dynamics on a single cell
level [23]. Here, dynamical noise can play a role due to the
low concentrations of molecular species and random ther-
mal fluctuations of the cellular environment. Addition-
ally, cell to cell variations in the kinetic parameters, e.g.
induced by variable expression levels of the enzymes, are
important. However, high-throughput techniques based
on population sampling cannot reveal a single cell resolu-
tion in a time series. Here, observational noise plays the
dominant role. Based on our results we suggest the use of
linear Gaussian DBNs as they better fit the data generated
by high-throughput experiments.

Next we investigated an alternative network reconstruc-
tion method that can be applied to continuous time series
data: variable selection based on F-statistics. The method
we use is based on a linear regression of the TF expression
levels at time t against the expression levels of each target
gene at time t + 1. In an repetitive step-wise selection and
elimination procedure a set of optimal predictors, i.e. TFs,
is build for each target gene according to a partial F-test.
The TF with the significantly highest partial correlation
coefficient is included in the set of predictors, while the TF
in the set with the lowest, non-significant partial correla-
tion coefficient is excluded. This step-wise selection proce-
dure leads to a local optimization of the set of TFs for each
gene. Figure 2(c) shows the corresponding error rates of
the networks reconstructed by variable selection based on
the data underlying Figure 1(c). All three error rates are on
average similar to the error rates of the reconstruction

using linear Gaussian DBNs. The average FNR is 50%,
thus about half of the true gene-gene interactions are iden-
tified. At the same time about 15% false interactions are
predicted. The overall good performance of the variable
selection procedure seen in Figure 2(c) can be attributed
to the relatively large data size (= 40 data points per gene)
and the limited number of regressors (10 TFs) as well as
the simplicity of the regulatory model which excludes any
interactions between TFs. It is important to note, that the
realized error rates are governed by the parameters of the
F-statistics and the significance level α of the partial corre-
lations between the expression levels of TFs and target
genes in the final network. In the given example α ≤ 0.01
is chosen to give a FNR comparable with Figure 2(b).
Larger significance levels lead to a larger FPR and FDR.
Thus, in order to get low error rates only TFs with a small
p-value are included in the network. One has to keep in
mind that a clear interpretation of the p-values is not pos-
sible due to the problem of multiple testing.

The effect of data size and noise
In this section we investigate the impact of data size and
observational noise on the reconstruction of gene regula-
tory networks by linear Gaussian DBNs. Figure 3 shows
the average FNRs and FDRs of the reconstruction of 100
networks with respect to data size and different observa-
tional noise levels. As in Figure 1(c), the underlying data
is generated by single KO experiments of all 10 TFs of a
given network. The data size is varied by using different
sampling rates in the TF KO experiments. On the x-axis of
Figure 3(a–b) the length of the time series of a single TF
KO experiment is given. A time series of length 2 indicates
a total data size of 20 time points per gene, i.e. 2 data
points per time series × 10 TF KO experiments. As
expected, the error rates increase with the noise level but
decrease with data size.

Conducting 10 TF KO experiments each with 2 data
points per gene leads to a FDR of about 50% given a meas-
urement error in the order of 20%. The FDR can be low-
ered in two ways. A FDR of 40% is achieved either by
halving the measurement error to 10% or by measuring
longer time series, i.e. 16 data points per gene. As the
measurement error is intrinsic to the experimental
method, our results can be interpreted as an estimate for
the required number of data points per gene needed in
order to identify a network structure of a certain quality. It
is important to note that the TF KO experiments underly-
ing Figure 3 represent an optimal experimental design for
the identification of the true network structure. As men-
tioned above, a single time series of an equivalent data
size contain much less information about the underlying
network structure. Therefore our estimates represent only
a lower bond for the required number of data points per
gene if other design strategies are used.
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Realistic observational noise levels of microarray experi-
ments are in the order of 20%–30% of the signal [22]
while the data size of time series experiments usually
range from 10–20 time points per gene [24,25]. Our
results indicate, that network reconstruction with cur-
rently available data will still give rise to many false pre-
dictions (FDR ~ 50%).

The influence of prior knowledge
Prior knowledge can potentially improve the accuracy of
the inferred networks [28]. However, the degree of
improvement depends on the quality of the prior knowl-
edge as well as the amount of available gene expression
data. In this section we investigate the benefits of the use
of prior knowledge in form of prior probabilities for gene-
gene interactions within a Bayesian learning scheme. We
compare the accuracy of a network reconstruction based
on prior knowledge alone with the accuracy of a recon-
struction based on the corresponding posterior probabili-
ties calculated by MCMC simulations. This enables us to
predict under what circumstances, i.e. quality of the prior,
amount of gene expression data, the use of prior knowl-
edge can be a benefit for the reconstruction of gene regu-
latory networks.

We develop a simple model where the prior knowledge is
given by the probability of a gene-gene interaction based
on two probability distributions for true and false interac-

tions respectively. The model is depicted in Figure 4(a).
The prior interaction probabilities are drawn from two
truncated normal distributions, x ± ~ N ± (µ ± δ, σ) where
N+ is the probability distribution for true interactions and
N- is the probability distribution for false interactions. The
parameters µ is set to 0.5 and the standard deviation σ is
set to 0.1. The accuracy of the prior knowledge is control-
led by the parameter δ which is used to separate the means
of both distributions. We use the model to generate prior
probabilities for a subset of 20 networks each consisting
of 30 genes. The accuracy of the prior knowledge is calcu-
lated using receiver operating characteristic (ROC) curves.
ROC curves display the TPR in dependence of the FPR.
The TPR and FPR are determined in dependence of a pre-
diction threshold for the prior probabilities; edges with a
probability above the threshold are included in the net-
work. The accuracy corresponds with the area under the
ROC curve (AUC). A random prediction has an accuracy
of 0.5 meaning that on average the prediction cannot dis-
tinguish between true and false edges.

Figure 4(b) shows average ROC curves based on the prior
probabilities for different levels of δ. For δ = 0 the average
ROC curve corresponds with the ROC curve of a random
prediction (dashed curve in Figure 4(b)). This is expected
as the distribution of the prior probabilities for true and
false edges are the same for δ = 0. With increasing δ the
average predicting accuracy increases. For δ = 0.1, a predic-

The relation between data size and observational noiseFigure 3
The relation between data size and observational noise. Average false-negative (FNR) and realized false discovery rates (FDR) 
for different levels of observational noise in dependence of the data size. Observational noise follows an additive-multiplicative 
Gaussian error model with a common standard deviation ρ. The results are based on the reconstruction of 100 networks. The 
data is generated by KOs of all 10 TFs in each network and sampling a different number of time points per KO. For example 
two data points per time series correspond with 20 data points per gene in total.
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The benefit of using prior knowledgeFigure 4
The benefit of using prior knowledge. Reconstruction of 20 networks based on MCMC simulations using prior knowledge and 
gene expression data. The reconstruction is evaluated using receiver operating characteristic (ROC) curves and the area under 
the ROC curve (AUC) as a measure for the accuracy of the reconstruction. (a) The prior knowledge model used to generate 
prior gene-gene interaction probabilities for true (N+) and false edges (N-) respectively. The parameter δ controls the accuracy 
of the prior knowledge by determining the separation of the means of both truncated Gaussian probability distributions. (b) 
Average ROC curves of a network reconstruction based on prior gene-gene interaction probabilities alone. Each curve repre-
sents a different level of δ. The dashed curve indicates the performance of a random prediction. It corresponds with an accu-
racy (AUC) of 0.5. (c) Average ROC curves of a network reconstruction based on prior knowledge and gene expression data. 
The size of the expression data is 10 data points per gene. The posterior probabilities are calculated by MCMC simulations. 
Each curve represents a different level of accuracy of the prior knowledge and corresponds with the prior knowledge used in 
panel (b). (d) Average accuracy of the prior networks versus average accuracy of the posterior networks for different data 
sizes. The dashed-dotted line indicates the equivalence between prior and posterior accuracy.
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tion threshold corresponding to a TPR of 80% leads to
10% false-positives. Thus, a prediction based on this prior
knowledge alone leads already to very accurate networks.

Figure 4(c) shows average ROC curves based on the poste-
rior probabilities of gene-gene interactions. These poste-
rior probabilities are determined by MCMC simulations
using gene expression data and prior knowledge (see
Methods). The data size of the gene expression data is 10
data points per gene. If the prior knowledge on gene-gene
interactions is uninformative, i.e. δ = 0, the mean accuracy
(i.e. mean AUC) is about 55%. Thus, on average 10 data
points can improve the random prediction of the unin-
formative prior. Increasing the accuracy of the prior, by
increasing the parameter δ, also increases the accuracy of
the posterior networks. With δ = 0.1 and a data size of 10
data points per gene the average posterior accuracy is
65%. This shows that the use of prior knowledge can
improve the prediction accuracy compared to a prediction
based on gene expression data alone.

It is interesting to compare whether the posterior net-
works are always of a higher accuracy compared to the
accuracy of the prior networks. Figure 4(d) depicts the
average accuracy of the prior networks versus the average
accuracy of the posterior networks for different data sizes.
Points above the dashed line show an increase in accuracy
of the posterior networks relative to the accuracy of the
prior networks. Points below the dashed line indicate a
respective decrease in accuracy. The four curves in Figure
4(d) depict the dependency between prior and posterior
accuracy for four different data sizes. The bisecting line
indicates the situation when no gene expression data is
used: prior and posterior accuracy are the same. If gene
expression data is included the slope of the curves
decreases from one. This can be explained by the fact that
the posterior probability of a network structure is given by
the product of the prior and the likelihood (see Equation
5). As the prior is data-independent and the likelihood is
proportional to the data size, the impact of the prior onto
the posterior decreases with data size. This implies, that
the slope of the curves decrease with larger data sizes. This
can be seen in Figure 4(d) by comparing the slopes of the
curve corresponding to 10 and 25 data points. The slope
of the curve will approach one in the limit of small gene
expression data as in this case the likelihood of the data
will also approach one.

The average accuracy of the networks predicted by gene
expression data alone, i.e. by using an uninformative
prior, corresponds with the leftmost points in the graph.
For example the average accuracy of networks predicted
by using 25 data points per gene is 68%. This prediction
can be increased by using more informative priors. How-
ever, this increase in accuracy is relatively weak as indi-

cated by the slope of the curves. Once the curves cross the
dashed line, prior knowledge alone gives a better predic-
tion than a combination of prior knowledge and gene
expression data. This indicates that the use of a combina-
tion of prior knowledge and gene expression data within
a Bayesian learning framework is not always of an advan-
tage. Only situations where the amount of gene expres-
sion data is very limited can show a considerable increase
in accuracy by the use of prior knowledge. However,
under these data situations a prediction based on the prior
knowledge alone might lead to more accurate networks.
As the prior and posterior accuracy cannot be determined
using real data, it is not possible to decide whether a com-
bination of prior knowledge and gene expression data will
give any benefit. Our results indicate that the overall gain
by combining data in a Bayesian learning framework, i.e.
data situations corresponding to points above the dashed
line in Figure 4(d), is limited.

Nevertheless, prior knowledge can be of a benefit in the
reconstruction of networks from time series. It can be used
to restrict the number of possible gene-gene interactions,
e.g. by allowing gene-gene interactions only between TFs
and target genes which have a significant prior probabil-
ity. This improves heuristic search procedures as it restricts
the space of the possible posterior models (see Methods).
However, if detailed information on the promotor struc-
ture is available, alternative approaches which do not use
the temporal information of the gene expression data
explicitly are even more appropriate [35-37].

The effect of hidden variables
A gene-regulatory network is always integrated into a
larger biochemical network which also includes proteins,
small signalling molecules and regulated transport
between cellular compartments. These processes and
quantities are usually not resolved or measured parallel to
expression studies, i.e. they are hidden to the experimen-
tator. We study the effect of hidden variables using a gene-
regulatory network developed by [31] which is based on a
coupled system of ODEs for 54 variables including
mRNAs, proteins and promotors. Figure 5(a) shows the
structure of the gene-gene interaction network as given in
[31]. Nodes in the graph represent genes, solid edges rep-
resent interactions based on direct transcriptional regula-
tion, i.e. the mRNA product of the gene is a TF which
binds to the promoter of the respective target gene and
regulates its expression whereas the dotted edges represent
protein-protein interactions. All the depicted interactions
are indirect in the system of ODEs, since the interaction
between genes is communicated by their products and
promotor states. Thus, Figure 5(a) is an abstraction of the
underlying physical model. Since our network reconstruc-
tion method assumes direct dependencies via the first
order Markov assumption of fully-observed DBNs, we
Page 9 of 16
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cannot expect that the recovered structure resembles the
network in Figure 5(a). But we can deduce a more realistic
reference network from the system of ODEs. All direct
interactions in the system of ODEs are defined by the
structure of corresponding Jacobian matrix. This structure
can be used to deduce an interaction graph for the subset
of observed variables, i.e. mRNAs (see Methods). Figure
5(b) displays the structure of the model reduced to the
observed mRNA components. Again, all shown interac-
tions in the network are indirect. Interpreting mRNA
nodes as gene nodes, all interactions present in Figure
5(a) are also present in Figure 5(b). However, many more
indirect interactions arise. All of them have a clear physi-
cal justification: a change in the level of one mRNA directly
influences the levels of the corresponding target mRNAs.
Therefore, the edges in the network of Figure 5(b) corre-
spond either to direct transcriptional regulation (solid
edges in Figure 5(a)) or indirect regulation due to unob-
served processes. Because of the first order Markov
assumption underlying our method we expect, that all of
the edges in Figure 5(b) can be recovered by a network
reconstruction based on time series data.

Figure 5(c) shows a network recovered from time series
data generated under single KOs of all 10 genes using lin-
ear Gaussian DBNs and MCMC simulations in order to
calculate posterior probabilities for the mRNA-mRNA
interactions (see Methods). All depicted edges have a pos-
terior probability ≥ 0.5. We choose this threshold since all
remaining edges have a significantly lower probability.
Only 3 out of 28 predicted edges are based on TF-medi-
ated gene regulation and are also present in Figure 5(a).
However, these edges are not among the most likely
edges. In contrast, 15 out of 28 predicted edges are also in
the network of Figure 5(b). Most of these edges represent
self regulation. Some of the edges are due to indirect pro-
tein-protein or protein-DNA interactions. E.g. the regula-
tion B → A is reconstructed with high probability, P(B →
A) = 0.89. It is due to the unobserved protein interaction
of A and B (see dotted lines in Figure 5(a)). A KO of gene
B strongly affects the steady state level of gene A by lower-
ing the overall degradation of the positive regulator A.
Thus B is a negative regulator of gene A. The recovered
edge reflects an important regulation within the network,
which would have been missed, if gene B was classified as
a pure target gene based on prior knowledge. For example
many methods that combine ChIP data with gene expres-
sion data can only recover interactions between direct
transcriptional regulators and their target genes [35-37].
In order to identify these unobserved processes, we sug-
gest to use prior knowledge, such as gene ontologies, to
identify the set of possible transcriptional regulators. Reg-
ulators predicted from time-series which are not classified
as transcriptional regulators might indicate unobserved
regulatory processes.

Our results indicate that networks reconstructed from
time series gene expression data can contain many regula-
tory interactions which are not based on direct transcrip-
tional regulation, but reflect regulation due to unobserved
processes, e.g. protein-protein interactions. A biological
example of a process, unobserved in microarray experi-
ments that is crucial for the regulation of target genes
involves the SWI4/SWI6 (SBF) controlled transcription of
G1-specific genes during the yeast cell cycle. Phosphoryla-
tion of the SBF repressor WHI5 by CLN3/CDK1 leads to a
derepression of G1-specific transcription [38]. The tran-
scriptional activity of the SBF complex is not determined
by the expression level of its components. In terms of
reconstructing gene networks this means that the first
order Markov assumption of DBNs, i.e. a relation between
the expression level of a transcription factor and its regu-
latory potential, is not fulfilled due to hidden variables.
Alternative approaches include hidden variables directly
into their model in order to increase the prediction accu-
racy [27]. However, a clear biological interpretation of
these additional variables is difficult, as the nature and
number of the hidden variables is usually unknown.

The hidden activity of TFs can be revealed by relating TF
binding sites in promotor regions of target genes with the
expression levels of the target genes [35-37]. The crucial
difference between these approaches and the approach
studied in this paper is that the former group genes with
similar TF binding sites and use their expression levels as
measurement replicates for the reconstruction of the hid-
den TF activity. These approaches have less requirements
on the number of data points per gene, but are only appli-
cable if additional information about the promotor struc-
ture of genes is available. Also, temporal information is
not explicitly used.

In order to reconstruct directed gene regulatory networks,
i.e. networks that distinguish between regulator and tar-
get, from gene-expression data alone, either time series
experiments, several gene KO experiments or, as indicated
by this study, a combination of both must be conducted.
However, our results indicate an inherent limitation to
the reconstruction of gene-gene networks by gene expres-
sion data alone as the recovered edges between genes do
not necessarily reflect direct transcriptional regulations.

Conclusion
In this study we identify suitable reconstruction methods,
types of experiments and requirements on data size and
quality in order to reverse engineer gene regulatory net-
works from time series data. Our results suggest that linear
Gaussian DBNs and variable selection are both appropri-
ate methods to reconstruct the network structure from
time series of gene expression data. Discrete DBNs are well
suited for the reconstruction of probabilistic Boolean net-
Page 10 of 16
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works. However, we find that their ability to reconstruct
networks from discretized gene expression data is limited
by their higher requirements on data size. In order to opti-
mally identify the structure of gene-regulatory networks
we show that experimental data should be generated
while specifically perturbing the underlying network. We
suggest TF KOs as specific perturbations that allow a net-
work reconstruction from relatively short time series.

The trade-off between observational noise and data size is
described and estimates for the amount of data needed in
order to reconstruct accurate networks given a certain level
of observational noise are provided. For example at least
20 data points per gene are necessary in order to perform
better than a random prediction given observational noise
levels of 20% which corresponds with the noise level of
data commonly derived from microarray measurements.

We identify conditions under which prior knowledge can
improve the prediction accuracy. The benefit of prior
knowledge within a Bayesian learning framework is lim-
ited to a particular data setting where only a small amount
of gene expression data is available.

We show that unobserved cellular processes lead to the
reconstruction of regulatory relations between genes
which are not based on direct transcriptional regulation.

The ambiguity of the regulatory relations represent an
inherent limitation to the reconstruction of gene-regula-
tory networks from time series of gene expression.

Methods
Network reconstruction
Dynamic Bayesian networks (DBNs) are used to model
the stochastic evolution of a set of random variables. The
assumption underlying DBNs is a first-order Markov
dependence: the state of each variable depends only on
the state of its immediate effectors, i.e. it's parents at the
previous time point. This assumption can be formalized
in the following factorization of the joint probability dis-
tribution of a DBN:

Here, x denotes a vector of N random variables measured

at T time points;  is the i-th variable at time t. D is the

data matrix (i.e. time series of gene expression values). P(x
= D) is the joint probability of x being in state D.

 is a conditional proba-

bility distribution describing the dependence of the state
of the i-th component of x at time t + 1 on the state of its
parents at time t. Equation 1 defines a first-order auto-
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regressive process in time. Any instantaneous or higher
order dependencies are excluded. The factorization of
Equation 1 corresponds with a graphical representation
where variables are represented as nodes and edges
between variables are defined by the conditional proba-
bilities. Learning the structure of a DBN is equivalent to
finding a factorization of Equation 1 which maximizes a
certain network score given some data instance. The Baye-
sian scoring metric as introduced by [39] is used to evalu-

ate the structure of a DBN. It is given by logP( |D) =

logP(D| ) + logP( ) + const. where  defines the
factorization of Equation 1 and thus corresponds to the

graphical structure of the DBN. P( ) is the prior proba-

bility of the network structure and P(D| ) is its mar-
ginal likelihood. An important feature of the Bayesian
score is its decomposability: the score of a DBN is the sum
of the scores of the log conditional probabilities for each
node. The calculation of the Bayesian score for a given
DBN and data instance is based on the marginal likeli-
hood of the data,

P(D| ) = ∫ dθ P(D| ,θ)P(θ| ),  (2)

where θ is a vector of parameters of the conditional prob-
ability distributions. The marginal likelihood is an aver-

age of the likelihood P(D| , θ) over all possible

parameters assigned to the DBN with structure . If a
certain parameter set is not highly supported by the data,
Equation 2 will penalize conditional probabilities with
many parameters, i.e. a node with many incoming edges
or in case of discrete DBNs many states. Thus, Equation 2
matches the complexity of a model to the data size [40].
Two types of DBNs have been applied in this study: dis-
crete and linear Gaussian DBNs. Discrete DBNs model the
distribution of multinomial random variables. Before the
application of discrete DBNs, the gene expression data is
discretized. We either use binary quantile discretization or
discretization approaches which rely on an information-
preserving coalescence of discretization levels [34]. The
marginal likelihood of a given model structure is com-
puted using standard approaches [39,41]. Linear-Gaus-
sian DBNs model the conditional distribution of
Gaussian random variables assuming a linear dependence
between a variable xi at time t + 1 and its parents pa[xi] at

time t:

The R-package "Deal" is used for the calculation of the
corresponding marginal likelihood [42]. The code is
adopted in order to regress successive time points. For a
detailed discussion on the derivation of the formulas of
the marginal likelihood for multinomial and linear Gaus-
sian conditional probability distributions see e.g. [42,43].
For a general introduction to DBNs see e.g. [40].

Bayesian score using knock-out data

The Bayesian score assumes that all data stems from the
same underlying DBN. Because the underlying network
structure is changed by gene knock-outs the Bayesian
score must be adopted for the use of knock-out data
[44,45]. Due to its decomposability, the Bayesian score
factorizes into terms for each variable. Therefore, the total
network score can be computed by considering each vari-
able xi and its parents pa[xi] together with the appropriate

subset of data  separately. Manipulating the state

of variable xi to a certain value k changes its conditional

probability distribution:

Hence, manipulating variable xi makes it independent of

its parents. This implies that the data subset  used

to score the conditional probability distribution
P(xi|pa[xi]) must not include data of xi and its parents

derived under manipulation of xi.

Exhaustive evaluation of all possible TF combinations

Searching for an optimal set of regulators of a given gene
is often done using local optimization techniques [7].
However, with the restrictions of TFs as possible regula-
tors and a maximum number of TFs per gene it is feasible
to perform an exhaustive computation of the Bayesian
scores for all possible combinations of TFs and target

genes. Given M TFs regulating N genes,  TF-

target gene combinations are evaluated. Here, Mmax is a

prior restriction on the maximum number of TFs per tar-
get gene; in this study Mmax = 4. If M <<> N, the total

number of combinations is still feasible to compute even
for a large number of genes. In case of real biological data,
prior knowledge derived from gene ontologies or ChIP
analysis can be used in order to restrict the set of possible
regulators.
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Markov chain Monte Carlo simulations
In order to update prior biological knowledge about the
network structure by new data D, the posterior probability
of network is computed using Bayes theorem:

P(D| ) is the marginal likelihood and P( ) is a struc-
tural prior which can be used to include prior knowledge
on gene-gene interactions. It can be derived from addi-
tional data sources as e.g. promotor analysis or ChIP
experiments. The normalization constant Z is given by

. For large models, i.e. more than 4

variables, it is not feasible to compute Z by exhaustive
methods as for DBNs with N variables the corresponding

model space includes  models. Markov chain Monte
Carlo (MCMC) simulations are used to approximate pos-
terior probabilities of model features, i.e. gene-gene inter-
actions, by frequencies of samples taken from a random
walk in model space [21,46]. The Markov chain is started
with the best model (see above) making an equilibration
of the chain unnecessary. In each step a new TF combina-
tion for a given gene is chosen randomly (termed new
model). The Metropolis-Hastings acceptance criterion is
used to determine the acceptance probability A of the new
model:

where

Since the proposal probabilities for an old vs. a new
model are equal they are omitted in Equation 7. For a
given network of N genes the Markov chain is sampled in
N2 steps (≡1 MCMC cycle) in order to achieve an inde-
pendence of successive samples. The convergence of the
Markov chain is monitored during run-time (see below).
After convergence, the final posterior probabilities of the
model features are determined by averaging across sam-
ples,

where L is the sample number and fk(·) is the indicator
function for feature k.

Monitoring MCMC convergence

As an indicator for the convergence of the Markov chain
the variance of edge probabilities is monitored by block-
averaging during run-time. Running the MCMC simula-
tion from t0 up to tn for a decade of n MCMC cycles, this

decade is divided into b blocks of length . For each

block i the block mean of each edge Xj is calculated from

its  block samples:

The overall decade mean and variance of each edge Xj is
then calculated from its b block means:

The procedure is initialized with a decade size of n = b and
in successive decades the size is updated as nnew = b × nold.
The mean of the last decade can be used as the mean of the
first block in the new decade. The MCMC simulations in
the present study run for about 106 MCMC cycles to
achieve an variance of all edge probabilities ≤ 10-4.

Reducing model space
Data size as well as constraints on the maximal number of
parents per node can lead the MCMC simulation to stay
in a restricted area of model space for a long time. As a
negative side effect some edges are never altered giving rise
to misleading posterior probabilities of either 0 or 1 with
a variance of 0. To circumvent these difficulties two strat-
egies are used to restrict the model space and thereby
improving MCMC convergence rates:

1. In case of data coming from the set of synthetic net-
works only TFs can be regulators of a gene in the network.

2. Due to its decomposability the Bayesian score of DBNs
can be pre-calculated for each possible TF target gene com-
bination before the MCMC simulation in model space is

started. For each gene xi the Bayesian score  of its best

parent combination pa[xi]* is determined. The model

space Mi for gene xi is reduced by excluding all parent com-
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bination for gene xi with a score below a given threshold,

i.e.,

where α ∈ [0,1]. In this way it is possible to focus only on
models with high posterior probabilities. The conver-
gence of the MCMC simulation can be accelerated by a
factor of 10 while at the same time computing accurate
posterior probabilities (data not shown).

Variable selection based on F-statistics
Variable selection is a common method in regression
analysis used to reduce a potentially large set of regressors.
In order to identify a potential set of TFs for each gene
step-wise forward selection and backward elimination of
variables (i.e. TFs) is used. The selection/elimination crite-
rion is based on a partial F-test. In each step the variable
with the most significant partial correlation coefficient is
selected while the variable with the smallest and non-sig-
nificant partial F-statistics is removed. The final set of TFs
is filtered for variables with a p-value of the partial corre-
lation coefficient p <= 0.01. Variable selection is per-
formed with the functions 1 m and step of the statistical
computing environment R [47].

Random networks and data generation
Each network is represented by a random connectivity
matrix of size 10 TF × 30 genes. The connectivity matrix is
constructed by sampling the number of TFs for each of the
30 genes from uniform distribution: 1 ≤ #TFs ≤ Mmax. The
TFs are randomly connected each having either activatory
or inhibitory effect on the regulation of the target gene.
Two different types of network dynamics are simulated.

• In the ODE setting, the expression dynamics of a gene is
modelled by a constant activation, a first-order degrada-
tion and a saturating Hill function which combines acti-
vation and repression of the gene by its regulators. Time
delays, due to the transcription and translation of a gene,
are not taken into account. All TFs are assumed to act as
homo-dimers. The regulatory strength of TF j onto target
gene i is given by a randomly chosen coefficient -1 ≤ αij ≤
1. The corresponding system of coupled non-linear ODEs
is given by,

where xi is the expression level of gene i and Ai and Ri are
the sets of activating and inhibiting TFs of gene i respec-
tively as defined by the connectivity matrix. Each gene has
a constant activation term bi = 5 and is self-regulated by a
degradation term with strength λi = 0.5. The value of K is

equal to the sum of activator and inhibitor concentrations
for which a half-maximal transcription rate is achieved; it
is set to K = 1 for all genes. The gene expression model is
coupled to an observation model which accounts for
additive-multiplicative Gaussian noise [30]:

yi = εa + xi(1 + εm); εa/m ~ N(0, ρ).  (14)

For simplicity the standard deviation ρ of the additive
noise term σa and of the multiplicative noise term σm is
chosen to be equal. ρ is ranging between 0.02 ≤ ρ ≤ 0.2.
The steady state of the system of ODEs is determined
numerically. After perturbation from steady state, the sys-
tem is sampled during relaxation back to steady state. A
KO of a gene is simulated by setting its expression level to
zero during the integration.

• In a Boolean network the sign of the coefficients of the
connectivity matrix identify a TF either as an activator
(changing the state of a target according to [0,1] → 1) or
as an inhibitor ([0,1] → 0). The action of activators and
inhibitors is combined by a logical OR gate. Time series
are generated starting with a random initial state of the
networks. The effect of noise is simulated by randomly
flipping the outcome of the logical OR gate with a proba-
bility according to the noise strength.

Calculation of error rates
Three error rates of the network reconstruction are calcu-
lated. The false-negative (FN) rate, false-positive (FP) rate
and realized false discovery rate (FDR) are given by:

FN, FP, true-negatives (TN) and true-positives (TP) are
based on a edge-wise comparison of the best predicted
network with the true network.

Performance on a network with hidden variables
The gene-regulatory network proposed by [31] was used
to examine the effect of hidden variables on the perform-
ance of network reconstruction. The complete connectiv-
ity matrix of the dynamical model proposed by [31] is
defined by all non-zero entries of the corresponding Jaco-
bian matrix:
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From this complete connectivity matrix we construct a
smaller matrix connecting only an observed subset of var-
iables, i.e. mRNA states in the present case. For each hid-
den variable X ∉ {mRNAs} the row and column
corresponding to X is removed from A and all parent-var-
iables of X are connected with all children of X. In this way
all indirect regulations are preserved. The reduced connec-
tivity matrix Aobs for a given set of observed variables is
unique and the order of removing nodes from the full net-
work is irrelevant.
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