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Abstract 

Background: Surveillance testing within healthcare facilities provides an opportunity to prevent severe outbreaks of 
coronavirus disease 2019 (COVID‑19). However, the quantitative impact of different available surveillance strategies 
and their potential to decrease the frequency of outbreaks are not well‑understood.

Methods: We establish an individual‑based model representative of a mental health hospital yielding generalizable 
results. Attributes and features of this facility were derived from a prototypical hospital, which provides psychiatric, 
psychosomatic and psychotherapeutic treatment. We estimate the relative reduction of outbreak probability for three 
test strategies (entry test, once‑weekly test and twice‑weekly test) relative to a symptom‑based baseline strategy. 
Based on our findings, we propose determinants of successful surveillance measures.

Results: Entry Testing reduced the outbreak probability by 26%, additionally testing once or twice weekly reduced 
the outbreak probability by 49% or 67% respectively. We found that fast diagnostic test results and adequate compli‑
ance of the clinic population are mandatory for conducting effective surveillance. The robustness of these results 
towards uncertainties is demonstrated via comprehensive sensitivity analyses.

Conclusions: We conclude that active testing in mental health hospitals and similar facilities considerably reduces 
the number of COVID‑19 outbreaks compared to symptom‑based surveillance only.
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Background
Treatment and care facilities with intermediate to long-
term treatment durations pose a setting in which active 
COVID-19 surveillance strategies are urgently required. 
This became apparent from reports of disastrous out-
breaks in skilled nursing facilities [1] which host a popu-
lation at an age-related high risk of fatal disease courses 
[2]. Psychiatric and psychosomatic facilities are faced 

with the challenge to maintain and ensure patient and 
staff security with at the same time increasing psychi-
atric symptoms in patients [3] and safety concerns in 
regard to a possible hospital stay. Establishing ways to 
effectively protect these populations allows these facili-
ties to continue their regular functions despite of the 
current circumstances. Thus, these facilities in particular 
may substantially benefit from interventions intended to 
decrease the risk of possible COVID-19 outbreaks.

Surveillance aims at the disruption of evolving infec-
tion clusters in order to halt the spread of infection. 
Existing COVID-19 surveillance strategies revolve 
around detection of infected individuals in order to 
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isolate them and their close contacts. To this end, pos-
sible infections are commonly confirmed by polymerase 
chain reaction (PCR) tests [4]. Yet, such tests are sub-
ject to certain structural constraints as they need to be 
performed in a laboratory which effectively delays the 
initiation of isolation and tracing. To circumvent these 
constraints, the use of point-of-care (PoC) tests in the 
form of faster but less sensitive antigen tests has been 
proposed. Although those tests might only detect indi-
viduals with high enough viral loads to actually be infec-
tious [5], the fact that those tests can be carried out by 
each individual autonomously allows to make at least a 
tentative COVID-19 diagnosis with greater flexibility and 
in a less centralized manner. This highlights their possible 
use for surveillance in single institutions.

High quality evidence about the benefits of surveil-
lance testing is sparse. Mathematical modelling studies 
complement empirical evidence by conceptualizing the 
important aspects of the problem [6] and by identifying 
the main determinants responsible for observed phe-
nomena. There are existing modelling studies that tackle 
different aspects of surveillance testing, such as limited 
availability of test resources [7], cohorting of staff and 
residents [8], and regular testing of staff/residents at dif-
ferent frequencies [9]. Those results are of limited gen-
eralizability: Most models report outcomes for which a 
reasonable quantification of uncertainties is impossible, 
e.g. the cumulative number of infections at a late stage 
of the outbreak. Uncertainties about the structure of 
the infection spread and the underlying epidemiological 
parameters amplify the uncertainties of the outcome in a 
non-linear manner which complicates the conduct of rig-
orous analyses.

We add to the available body of evidence by proposing 
an individual-based model representative of a prototypi-
cal psychiatric-psychosomatic hospital offering treatment 
to patients for extended periods of time. Our study aims 
at providing some generalizable key results with a robust 
quantification of their uncertainty. This is achieved by 
conducting a comprehensive set of sensitivity analyses of 
parameters and various structural assumptions presented 
in an easily accessible form.

Methods
Structure of simulation model
We simulated the propagation of infection and imple-
mentation of surveillance measures in a hospital (Ober-
berg Fachklinik Schwarzwald) with 60 inpatients with 
an average duration of stay of 8 weeks and 80 staff mem-
bers. The hypothetical clinics were initialized with fully 
susceptible populations whose dynamic evolutions were 
simulated in daily increments for a total simulation time 
of 100  days. The facility was modelled as a semi-closed 

environment: Propagation of infection within the clinic 
was treated as a closed system, but interactions with 
the environment outside of the clinic could introduce 
infected individuals into the clinic. Figure 1A shows the 
different possibilities of virus intrusion into the clinic: 
New infectious patients may be admitted to the clinic, 
patients may be visited by infectious visitors or be 
infected on a temporary weekend leave from the clinic 
while staff could get infected between work shifts. Each 
simulation was subject to a set of parameter assumptions; 
the sets of parameters used in this study were extracted 
from the literature and are summarized in Table  1. A 
detailed discussion of epidemiological parameters and 
their implications for the model is provided in Additional 
file 1.

Modelling infection spread
The infection dynamics were implemented in the model 
at the level of individual agents which represented indi-
viduals in the clinic population. Individual-based mod-
els offer a high flexibility and allow for incorporation of 
inter-individual heterogeneity and inherent stochastic-
ity, such that they are well suited to model relevant fea-
tures of the epidemiological dynamics realistically [25]. 
The current state of disease progression was tracked for 
every agent individually. Based on the current state of the 
infected individuals within the clinic, the probability of 
infection was derived for all susceptible individuals. The 
risk of infection depended on the disease states of the 
agents but also on various dynamic properties, such as 
quarantine, possible absence from the clinic and current 
infectivity of agents. The infection dynamics were sto-
chastic, i.e. it was randomly drawn whether an agent was 
infected on a given day or not.

The disease progression was modelled structurally 
similar to a homogeneous stochastic SEIR-model [26], 
but extended to incorporate characteristic features of 
COVID-19 and a more realistic transmission structure. 
Asymptomatic individuals who display no noticeable 
symptoms nevertheless show a significant transmission 
potential [12]. This is partly due to presymptomatic 
transmission, as viral shedding begins already before 
symptom onset [27], i.e. during the incubation period. 
This lead to an extended list of states incorporated in our 
model: Susceptible S , Exposed E , Presymptomatically 
Infected IP , Symptomatically Infected IS , Asymptomati-
cally Infected IA , Removed R . The progression of disease 
states is illustrated in Fig. 1B.

Variations in the natural history of the disease are not 
only manifested in the display of symptoms but also in 
the timing of the different disease states. It has been 
shown that accounting for stochasticity in these tim-
ings significantly affects the modelled spread of a virus 
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[26]. Consequently, the incubation time, the sympto-
matic time as well as the presymptomatic time were 
defined as random variables. The resulting distribu-
tions of these durations are visualized in Fig. 2A assum-
ing best guess parameters. The range of the uniformly 
distributed presymptomatic time was based on [1, 18, 
19, 27], incubation time and symptomatic time were 
lognormal with parameters as defined in Table 1. Addi-
tionally, individuals vary in their individual infectious-
ness due to their different biological and behavioural 
components [28]. Empirically, this varying degree of 
infectiousness can be used to explain the offspring dis-
tribution, i.e. the number of secondary cases caused by 
the respective primary cases [29]. For transmissions of 
SARS-CoV-2, these offspring distributions have been 
observed to be highly asymmetric [16, 17], imply-
ing the existence of super-spreading. Based on these 
observed distributions, similar distributions have been 
reproduced qualitatively in our model by defining the 

individual infectiousness to be Gamma-distributed, 
refer to Additional file 2 for details.

Temporal variations of the infectiousness of agents 
at different stages of their disease were represented by 
time-dependent infectivity profiles [28]. The infectivity 
of agents was modelled to increase linearly until a peak 
infectivity is reached, after which it will decrease linearly 
until the end of the symptomatic phase [30]. Figure  2B 
shows a sample of infectivity profiles for 20 random indi-
viduals. The profiles vary in their behaviour over time 
and in their general scale, representing random time 
spans for disease courses and agents with different trans-
mission potential.

Heterogeneity in the transmission structure has been 
found to play a key role in infection spread, e.g. by appli-
cation of infection models on networks [31] or age-
stratified contact matrices [32]. In order to implement a 
relevant heterogeneous transmission structure into our 
model, the four agent classes—patients, low-risk staff, 

Fig. 1 Schematic illustration of virus intrusion (A), disease progression (B) and the implementation of surveillance (C). S: Susceptible, E: Exposed, IP
: Presymptomatically Infectious, IS: Symptomatically Infectious, IA: Asysmptomatically Infectious, R: Recovered. Panel C demonstrates symptom‑based 
baseline surveillance in a hypothetical case scenario. Agent 1 has been infected outside of the clinic (index case) and infects agent 2, who goes 
on to infect agent 3 and 4. On day 6, agent 2 is isolated due to developing symptoms and once the case is ascertained a day later, contact tracing 
isolates the primary infector (backward tracing) and subsequent infections by agent 2 (forward tracing). The isolated individuals are then tested, 
confirming that agent 1 and agent 3 are infectious. Agent 4 is released as the infection is not yet detectable
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Table 1 Summary of the used model parameters and their uncertainties according to literature

Upper and lower bounds are used for 1-way sensitivity analysis as they represent the existing lack of knowledge about these parameters. The term “derived from” 
indicates that input from the stated sources was not directly applicable in the model and required some form of subjective judgement and modification prior to the 
inclusion into the model

Name Unit Lower Best Upper Description Source

Asymptomatic fraction [%] 10 20 30 Fraction of asymptomatic disease courses [10–13]

Asymptomatic infectivity [%] 40 70 100 Infectiousness of asymptomatic individuals compared to 
symptomatic individuals

[1, 11, 12]

False symptoms [agents/day] 0.5 1 2 Average daily amount of non‑COVID‑19 related sympto‑
matic individuals

Assumed

False traces [agents] 4 8 12 Average amount of erroneously traced individuals assuming 
perfect tracing efficiency

Assumed

Heterogeneity modifier [] 2 4 6 Scaling factor of infectivity in transmission matrix of high‑
risk/low‑risk staff

Assumed

Incubation mean [days] 5 5.5 6 Mean of incubation time [14, 15]

Incubation SD [days] 2.1 2.3 2.5 Standard deviation of incubation time [14]

Infectivity heterogeneity [] 1 1.5 1000 Heterogeneity in individual infectivity: Shape parameter of 
the Gamma‑distribution

Derived from [16, 17]

Isolation fraction [%/day] 50 70 90 Fraction of symptomatic individuals isolated daily Assumed

Outside infection [] 0.01 0.04 0.16 Scaling factor of infection risk outside of clinic Assumed

Peak infectiousness [days] − 1 1 3 Time shift of peak infectiousness relative to symptom onset [18]

Prevalence [%] 0.005 0.02 0.08 COVID‑19 prevalence in population including non‑con‑
firmed cases

Assumed

R0 [] 1.5 3 5 Average number of infections an individual causes inside of 
clinic

Assumed

Symptom mean [days] 3.5 5 6.5 Mean of symptomatic infectious time Derived from [19–22]

Symptom SD [days] 1.1 1.5 1.9 Standard deviation of symptomatic infectious time Derived from [19–22]

Test compliance [%] 60 80 100 Fraction of individuals compliant with repeated surveillance 
testing

Assumed

Test sensitivity [%] 80 90 100 Sensitivity of diagnostic test Derived from [5, 23, 24]

Test specificity [%] 98 99.5 100 Specificity of diagnostic test Assumed

Tracing fraction [%] 50 70 90 Fraction of infections reconstructed by contact tracing Assumed

Fig. 2 Illustration of randomized disease state retention times (A) and random sample of 20 infectivity profiles (B). Distributions of retention times 
for different disease states (A) correspond to the best guess parameters extracted from literature. Each infectivity profile (B) describes the time 
course of infectiousness of one random individual. The individual profiles differ in their onsets and infectivity levels
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average-risk staff and high-risk staff—were defined. The 
transmission rates between these classes were modified 
using transmission matrices, which included information 
about the staff’s occupation and the duration of shifts. In 
order to adjust the scale of transmission dynamics, model 
parameters were calibrated to return pre-specified values 
of the reproduction number R0. A more detailed descrip-
tion of the modelled infection dynamics and the calibra-
tion process is provided in Additional file 2.

Modelling conduct of surveillance
Surveillance measures are implemented to detect and 
prevent the spread of infection within the clinic. This is 
achieved by enforcing strict quarantine on individuals 
who display symptoms or individuals who were tested 
positive in screening measures, e.g. achieved by relocat-
ing the agent out of the clinic. Once an agent is quaran-
tined, the agent was assumed to be non-infectious during 
the time of isolation. While this is likely not entirely real-
istic, this is a decent approximation in the light of the 
multitude of other, more critical modelling assumptions. 
The fundamental concepts of outbreak detection and 
containment represented a symptom-based baseline sur-
veillance scenario which was common to all considered 
surveillance strategies. It comprised (i) isolation based on 
symptoms, (ii) case ascertainment via diagnostic testing, 
and (iii) subsequent contact tracing to isolate contacts at 
high risk of possible contagion due to previous contact 
with the index case.

Isolation based on symptoms was modelled as a daily 
probability of isolating an agent in the symptomatic state 
IS . Typical symptoms of COVID-19 are not specific to 
this disease and may be mild, such that the possibility 
of unjustified isolations of healthy individuals has been 
included. In order to properly deal with such ambigu-
ous cases, a case-ascertainment process is needed to 
distinguish non-infectious from infectious individuals. 
Modelling case-ascertainment required specification of 
a diagnostic test which could assess the disease state of 
an individual or, more specifically, whether the individ-
ual was infectious. The performance of the diagnostic 
test used in the model has been uniquely specified by its 
sensitivity, specificity, and test-to-result delay. Perfor-
mance of the PoC test used in the model was based on 
the Panbio™ COVID-19 antigen rapid test (Abbott) [24] 
as employed in the factual hospital. Finally, contact trac-
ing disrupts possible chains of infection once infected 
individuals are detected. It was modelled by immediate 
isolation of secondarily infected individuals once the pri-
mary case has been ascertained, given a certain success 
probability of locating the secondary cases. Figure  1C 
summarizes the three mentioned concepts inherent to 
baseline surveillance by displaying hypothetical chains of 

infection and their subsequent detection via the surveil-
lance measure.

Four different surveillance strategies were evaluated 
quantitatively: The aforementioned symptom-based 
baseline surveillance strategy in which testing is only 
initiated because of symptoms and three active surveil-
lance strategies. Active surveillance strategies comprised 
preventive testing of the clinic population. The first 
investigated strategy was the symptom-based baseline 
surveillance. The second strategy, termed entry testing, 
aimed at detecting the intrusion of the virus into the 
clinic at the entry point, in addition to baseline surveil-
lance. To this end, patients which were newly admitted to 
the clinic or who returned from temporary absence were 
tested immediately when entering the clinic and five days 
after, which accounted for potentially long incubation 
times. The third and fourth strategy implemented regu-
lar testing of the clinic population on top of entry test-
ing and baseline surveillance, i.e. testing every agent once 
weekly or twice weekly, respectively. These regular tests 
were simulated to be performed each Friday for once 
weekly testing and additionally each Tuesday for twice 
weekly testing. Considering that the result likely depends 
on slight variations in the incubation time or presympto-
matic time for which exact knowledge about the distri-
bution is sparse and constantly shifting, different testing 
days have not been analysed. As individual agents may 
refuse to participate in preventive testing measures, com-
pliance to testing measures was defined as an additional 
agent property which was randomly assigned to each 
agent independent of their role with a certain probability 
given by the corresponding parameter. Non-compliant 
agents were not tested for strategies which imposed regu-
lar testing on the clinic population, i.e. for the third and 
fourth strategy. However, all agents were assumed to be 
compliant to isolation based on symptoms or a positive 
test result as this was the case in the actual clinic.

Quantifying outcomes
In order to quantitatively evaluate the efficacy of the 
different strategies, suitable outcome measures were 
defined. The primary outcome measure of interest was 
the reduction of outbreak probabilities between two 
defined strategies. An outbreak was defined as N ≥ 3 
new infections over a time span of T = 10 days, given 
a 100  day simulation run. The outbreak probability was 
defined as the proportion of simulation runs in which an 
outbreak occurred. Variations of parameter assumptions 
affect the outbreak probability for different strategies 
similarly. Consequently, ratios of outbreak probabilities 
of two strategies are likely less impacted by the parameter 
uncertainty than it is the case for absolute probability val-
ues. Stochastic uncertainty was minimized by generating 
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at least 200.000 simulation runs for any simulation sce-
nario, i.e. for any combination of parameters and strat-
egy considered. The remaining stochastic uncertainty of 
results was indicated by error bars where applicable. In 
order to assess parameter uncertainty comprehensively, 
all model parameters were varied in a 1-way sensitiv-
ity analysis. This analysis varied one parameter at a time 
within its existing uncertainty, keeping all other param-
eters fixed at their best guess value. Parameters which 
have been observed to have little to no impact on results 
were excluded in the final analyses displayed here. In 
order to assess practicability of the proposed strategies, 
the amount of people under quarantine and the number 
of tests conducted per day were monitored as secondary 
outcomes.

Results
Quantifying outbreak probability reduction
The relative reduction of outbreak probability by entry, 
once weekly and twice weekly testing relative to the 
symptom-based baseline strategy is displayed in Fig. 3 for 
all parameter combinations relevant to the 1-way sensi-
tivity analysis.

Implementing entry testing reduced the probabil-
ity of an outbreak by 26% relative to the baseline only 
strategy, additionally testing of the clinic population 
once or twice weekly reduced the outbreak relative 
to the baseline strategy by 49% and 67%, respectively. 
The best guess outbreak probability reductions were 
mostly robust to variations of parameters and the large 

number of simulations conducted lead to narrow sto-
chastic uncertainties. The sensitivity of the diagnostic 
test and compliance of the clinic population critically 
determined the efficacy of the strategy. Both of these 
parameters are not epidemiological quantities and can 
therefore be target for optimization in applications, 
which due to their large impact may lead to a consid-
erable reduction in outbreaks. Epidemiological param-
eters with noticeable impact on the uncertainty of 
results were the reproduction number (R0), the prob-
ability of contracting an infection outside of the clinic 
(OutsideInfection) and the timing of the peak of infec-
tiousness (PeakInfectiousness). An analysis of best-case 
and worst-case parameters for outbreak probability 
reduction provides a span of results of 8% to 61% for 
entry testing, 22% to 86% for once weekly testing and 
37% to97% for twice weekly testing.

In order to assess the efficacy of the symptom-based 
baseline surveillance, it has been compared to a sce-
nario with no surveillance in Additional file  3: Fig. S2 
analogously to the analysis in Fig. 3. Conducting baseline 
surveillance compared to no surveillance at all reduced 
the probability of an outbreak by 49% assuming best 
guess parameters. This result lacked robustness to many 
parameter assumptions, ranging between values of 32 
to 68%. Notably, this result was sensitive to assumptions 
on parameters which are important to the efficacy of 
symptom-based surveillance, such as the proportion of 
asymptomatic cases (AsymptomaticFraction), the tim-
ing of the peak of infectiousness (PeakInfectiousness), the 

Fig. 3 Reduction of outbreak probability by active testing strategies relative to the symptom‑based baseline strategy. Results are illustrated on 
a log2‑scale. The black lines correspond to the estimate of outbreak reduction for the best guess parameters. Each point corresponds to the 
estimated outbreak reduction for a 1‑way sensitivity analysis of the corresponding parameter towards its upper bound (red) or lower bound (blue). 
Uncertainties due to stochasticity of the dynamics are visualized by 1 σ error bars. The results for the expected reduction of the outbreak probability 
are robust to most epidemiological parameter assumptions, the exact parameter values employed are stated in Table 1
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reproduction number (R0) and the success rate of symp-
tomatic screening (IsolationFraction).

Test specificity drives practical feasibility
Practical feasibility of the strategies was assessed by ana-
lysing the secondary outcomes, i.e. the amount of tests 
conducted per day and the amount of individuals in quar-
antine on a given day. Since testing twice weekly was the 
most extensive testing strategy proposed, these outcomes 
have been analysed in a full 1-way sensitivity analysis. The 
results are visualized in Additional file 3: Fig. S3. For the 
best guess parameters, approximately 37 tests were con-
ducted daily and one individual was isolated in quaran-
tine per day in a clinic of approximately 140 individuals. 
The number of tests was predominantly determined by 
the compliance of the clinic population. The main driver 
of total quarantine time was the specificity of the diag-
nostic test. If the specificity of the test is decreased from 
99.5 to 98%, the average amount of people in quarantine 
per day increased fourfold. This is reasonable since even 
in the absence of infections, false positives are expected 
regularly due to testing of the whole clinic population 
twice weekly. All other parameters had a comparably 
negligible effect, suggesting that effects such as over-sen-
sitive symptom detection will likely not limit the practical 

applicability of surveillance. While test specificity does 
have a large impact on the average quarantine time, it is 
mostly irrelevant in preventing outbreaks as false posi-
tives are irrelevant for infection spread compared to false 
negatives.

Effective surveillance requires immediate test results
The test-to-result delay of diagnostic tests differs between 
PCR and PoC antigen tests. Thus, analysing the effect of 
this delay on the efficacy of surveillance measures may 
provide valuable insight regarding their usefulness in 
application. In order to demonstrate possible effects, the 
different surveillance strategies were simulated for delays 
of tdel ∈ [0, 1, 2]days in contrast to the previous analy-
ses which assumed immediate availability of test results. 
Assuming previously demonstrated robustness of results, 
simulation runs were evaluated under the best guess 
parameters for all considered delays and all surveillance 
strategies.

Figure 4A shows the outbreak probabilities normalized 
relative to their value for baseline surveillance. The effect 
of increased surveillance was much more pronounced if 
the test-to-result delay is small, rendering the preventive 
effect of additional measures almost useless if the test-to-
result delays reaches two days. The decrease in efficacy 

Fig. 4 Impact of test‑to‑result delay (A), definition of outbreak size (B) and compliance (C) on the relative outbreak probability. The vertical axes 
denote outbreak probabilities on a log 2‑scale, normalized relative to the largest outbreak probability of the respective analysis. Uncertainties due to 
stochasticity of the dynamics are visualized by 1 σ error bars, but these are mostly smaller than the point size. Results correspond to the best guess 
parameter set (except for changes for the particular analysis). A Decreasing test‑to‑result delay leads to more effective surveillance. B Decreasing 
probabilities within a strategy implies containment of ongoing outbreaks. C Different levels of compliance are analysed for various regular testing 
frequencies implemented on top of the symptom‑based baseline surveillance strategy and entry testing. The horizontal axis corresponds to 
a frequency scale, as test frequency is proportional to test resources required. Benefits of increasing the test frequency are limited by lack of 
compliance, especially if test frequency is already high
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was likely due to the existence of symptomatic isolations 
in the baseline surveillance setting. Additional surveil-
lance testing will only improve upon baseline surveillance 
if infected individuals are detected before they become 
symptomatic. In order to improve on a setting in which 
symptom-based baseline surveillance is practiced, diag-
nostic tests have to provide fast test results to conduct 
effective surveillance.

Strict surveillance improves outbreak containment
Variation of the outbreak size, defined earlier as ≥ 3 
infected individuals over a course of 10  days, provides 
insight about the effective containment of ongoing out-
breaks. To this end, outbreaks have been simulated for 
the four defined strategies assuming best guess param-
eters and the outbreak probability for outbreak sizes 
Nout ∈ [2, 3, 4, 5] has been evaluated. Figure 4B shows the 
outbreak probabilities relative to their largest value, i.e. 
the baseline surveillance strategy with Nout = 2 . For each 
strategy, outbreaks of a larger size occur less frequently 
than smaller outbreaks. This implies that there is contain-
ment of outbreaks, i.e. there is a chance that outbreaks of 
a given size do not grow more severe and the outbreak 
is therefore stopped. More extensive surveillance strate-
gies lead to a stronger reduction of the outbreak prob-
ability with increasing outbreak size, indicating that 
these strategies are more likely to completely cease ongo-
ing outbreaks. While approximately 44% of outbreaks 
of size 2 evolved to outbreaks of size 5 for the baseline 
surveillance strategy, this fraction dropped to about 19% 
of outbreaks for testing twice weekly. Consequently, this 
analysis also implies that the benefit of implementing 
more active surveillance is even more pronounced in pre-
venting larger outbreaks.

Lack of compliance limits efficacy of regular testing
A population fully compliant to active surveillance test-
ing is not guaranteed in an application setting. Therefore, 
the impact of varying levels of compliance with regular 
preventive testing measures in the clinic population was 
investigated. Different test frequencies were analysed 
using the best guess parameters and assuming estab-
lished baseline surveillance and entry testing. Figure 4C 
shows the resulting outbreak probability for different fre-
quencies and varying levels of compliance relative to the 
outbreak probability of the strategy without additional 
testing. Increasing compliance from 60 to 100% of the 
population decreased the outbreak probability by 24% if 
testing was conducted once weekly and by 91% if testing 
was conducted daily. Thus it is concluded that a lack of 
compliance limits the efficacy of regular testing, espe-
cially if testing frequency is high.

Discussion
The ongoing COVID-19 pandemic necessitates appro-
priate public health responses to mitigate consequences 
for vulnerable populations. Facilities providing long-
term treatment for psychiatric patients or care homes 
for elderly residents provide exemplary settings in which 
infection surveillance can be conducted at the level of a 
single institution. Diagnostic tests provide the means 
to establish surveillance, as they have been essential to 
detect ongoing outbreaks and prevent further spread of 
the virus and will continue to be at the center of infec-
tion control in the light of emerging virus mutations [33]. 
With growing accessibility of diagnostic tests, under-
standing their role in preventing outbreaks provides 
insight in how to conduct effective surveillance in an 
application setting.

We employed an individual-based model tailored to 
the setting of a typical mental health treatment facil-
ity to explore different surveillance strategies intended 
to suppress COVID-19 outbreaks. We modelled four 
surveillance strategies: symptom-based baseline surveil-
lance, entry testing, testing once a week or testing twice a 
week. For each active surveillance strategy, estimates for 
the relative reduction of outbreak probability compared 
to the baseline strategy were obtained. We investigated 
critical determinants of the epidemiological dynamics 
and found that fast test results, high compliance and high 
test sensitivity are crucial to maximize efficacy of active 
surveillance. Investigation of the average number of diag-
nostic tests conducted and individuals under quarantine 
per day showed that regular testing is practically feasible 
if specificity of the diagnostic test is sufficiently high as 
this implies a low number of false positive test results.

A comprehensive sensitivity analysis confirmed the 
robustness of the obtained results under varying assump-
tions about a set of uncertain parameters, representing 
alternative epidemiological parameters as well as alter-
native structural assumptions. Moreover, the stochastic 
nature of the simulation model has been controlled for 
by generating a sufficient amount of simulation runs. 
Although an appropriate analysis of uncertainty has been 
conducted, the 1-way sensitivity analysis employed does 
not yield confidence or credible intervals on the gener-
ated estimates. However, the 1-way sensitivity analysis 
provides easily interpretable outcomes and introduces 
no additional bias compared to probabilistic sensitivity 
analyses, which require the specification of poorly known 
parameter probability distributions [25].

The best-case and worst-case ranges represent extreme 
case parameter sets and overestimate the underlying 
parameter uncertainty. While this can help to put results 
into perspective, the true effect estimates are much more 
likely to be in the vicinity of the reductions estimated 
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for the best guess parameters. Additionally, some of 
the parameters with large impact on the model such as 
the test sensitivity and compliance are not necessarily 
unknown and should therefore be interpreted apart from 
truly uncertain epidemiological parameters, which is not 
considered in the best/worst case analysis.

We focused on the suppression rather than mitigation 
of outbreaks, defined here as 2–5 newly infected indi-
viduals over the course of 10 days. This approach differed 
from previous modelling studies which considered out-
comes that focus on late outbreak stages, e.g. the number 
of cumulative infections [7–9]. The simulation of an out-
break for a long period of time amplifies the uncertainty 
in the assumed transmission mechanisms and in the epi-
demiological parameters due to the non-linear infection 
dynamics. Consequently, focusing the analysis on pre-
vention of small outbreaks leads to uncertainties that can 
be controlled more realistically.

The small outbreak setting additionally reduces the 
impact of the modelled contact structure on the simu-
lation results considerably. Indeed, we could see in our 
study that the impact of the parameter controlling the 
extent of heterogeneity in the contact structure was neg-
ligible. Therefore, only the variation of individual trans-
missibility needed to be incorporated into the model, but 
not necessarily an explicit contact structure as employed 
in many other studies [7–9, 31] including commonly 
encountered models with contact structure dictated by a 
network. This can be attributed to the fact that on aver-
age, the first few transmissions rely on the more general 
epidemiological parameters such as the reproduction 
number rather than the contact structure. Limiting 
results to small outbreak sizes is not restrictive in the 
practical application as even small outbreaks have major 
consequences for psychiatric clinics or skilled nursing 
facilities and should, therefore, be avoided as rigorously 
as possible.

Diagnostic tests have been characterized in the model 
by their sensitivity, specificity and their test-to-result 
delay without explicitly relating these to a PCR or PoC 
test. A PoC antigen test will usually imply a short test-
to-result delay, while a PCR test should come with the 
benefit of a higher sensitivity and specificity. The value 
of these performance measures will vary between man-
ufacturers, virus variants and the quality of the sample, 
such that the model results are to be interpreted in the 
light of the assumed test characteristics. While from a 
mathematical point of view it is legitimate to consider 
diagnostic tests with low sensitivities, surveillance 
with only low-sensitivity tests is unreasonable in the 
context of the case-ascertainment process assumed in 
the model. In applications, faster low-sensitivity tests 
can be used to screen for cases as long as results are 

confirmed with a diagnostic test with adequate sensi-
tivity and specificity. This non-trivial model extension 
was not considered in our analyses. Diagnostic tests 
quickly become unsuitable for regular surveillance test-
ing if their specificity is too low, because the resulting 
amount of false positives is problematic in active sur-
veillance settings, which is well supported by our model 
results.

Another important structural limitation is the assump-
tion of constant sensitivity of diagnostic tests during the 
course of disease. To account for this, the course of dis-
ease could be defined based on a viral load profile across 
time which is proportional to the infectiousness of an 
individual as well as to the sensitivity of the diagnostic 
test [30]. Current evidence suggests that PoC antigen 
tests can indeed perform well to detect relevant levels of 
viral load [24], highlighting the difficulty in establishing 
PoC test performance when compared to PCR tests as a 
reference standard [4]. In order to allow for a fair com-
parison between surveillance based on PCR tests and 
PoC antigen tests different detection threshold levels for 
viral load have to be included in the model. However, this 
does not affect our conclusion that short test-to-result 
delays are crucial for effective surveillance.

Conclusions
COVID-19 surveillance in hospitals with long treatment 
duration and long-term care facilities provides a unique 
opportunity to create a safe environment for a vulnerable 
population. In this context, adequate assessment of the 
gain of various mitigation strategies is sparse but urgently 
needed to establish standards for practical implementa-
tion of strategies. In order to complement the existing 
literature, we quantified the effect of various surveillance 
strategies on the probability of occurring viral outbreaks. 
We demonstrated that implementing these strategies is 
practically feasible. We found that improving strategies 
based on isolating symptomatic individuals by means 
of testing-based strategies requires fast diagnostic test 
results, highlighting a possible use of point-of-care tests 
in this setting. Furthermore, we highlight the importance 
of a compliant population in order to maximize efficacy 
of regular testing. Overall, our results suggest that estab-
lishing surveillance exceeding symptom-based screening 
alone can successfully reduce disease burden in hospitals 
and long-term care facilities.
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