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Identifiability is fundamental to any parameter estimation 
process and plays a role in a wide range of scientific research 
disciplines. Structural identifiability is a well-defined and purely 
model-based property that can be analysed in the absence of 
experimentally measured data with various methods. In 
contrast, practical identifiability lacks a concise technical 
definition that is agreed upon, leading to conflicting assess-
ments. We focus on the practical identifiability analysis of or-
dinary differential equation models in systems biology and 
point out the differences between definitions and their impli-
cations. We differentiate between classifications based on 
sensitivity and classifications based on confidence intervals. 
We advocate for precise wording in discussions of practical 
identifiability analysis results so that the employed method is 
clear from the terminology.
We propose that model parameters should be termed a priori 
or a posteriori sensitive if sensitivity-based methods are used 
and finitely identified if the assessment is based on confidence 
intervals.
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Introduction
Advancements in computational power have signifi-

cantly enhanced the role of mathematical modelling in 
systems biology and medicine. Mathematical models 
can be used to determine reaction rates, make pre-

dictions for the concentrations of reactants that cannot 
be experimentally observed directly, and develop an 
understanding of the specific mechanisms that drive a 
system’s behaviour. Furthermore, they are used in the

development of clinical decision tools. Particularly for 
mechanistic models, identifiability is a crucial property 
that must be fulfilled in order for the mechanistic 
interpretation to be valid and the model predictions to 
be trustworthy. A structurally and practically identifiable 
model should exhibit finite confidence intervals for all 
estimated parameters and provide unique predictions. 
In contrast, structurally nonidentifiable models can 
yield identical predictions for different parameter con-

figurations and are at high risk of producing unreliable 
out-of-sample predictions. In short, identifiability anal-

ysis is of high importance to achieve reliable and 
reproducible results and thereby support research 
performed in a wet laboratory and in clin-

ical applications.

As mathematical models have grown in size and 
complexity, more advanced identifiability analysis 
methods are needed. Several methods [1—13] have 
been developed to address the question of structural 
identifiability, a property that solely depends on the 
model structure itself, not on measured data. If, 
depending on the model structure, the right method is 
chosen, nearly any model can be analysed within mi-

nutes, making a priori structural identifiability analysis 
accessible for routine modelling workflows [14,15].

Beyond a priori structural identifiability, an a posteriori 
practical identifiability analysis is also needed to confirm 
the robustness of the modelling results. In this context, 
a priori means before the model is calibrated or applied 
to real experimental data, and a posteriori means after 
the model has been calibrated with the available data. If 
the data are insufficient, the signal-to-noise level is too 
low, or the time-points at which measurements were 
taken are not in the regions of informative dynamics, an 
a priori structurally identifiable model can still be a 
posteriori practically nonidentifiable with respect to the 
available data. This aspect has been less explored, with 
fewer powerful methods available for its assess-

ment [16—18].

We review the differences between various definitions 
of practical identifiability and illustrate their implica-

tions with the help of toy models. The goal is to high-

light the different flavours of practical identifiability 
analyses, establish clear wording, and also to provide 
guidance in choosing a suitable method for a 
given problem.
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Defining practical identifiability
In general, structural identifiability is a prerequisite for 
practical identifiability. Moreover, it is easy to misin-

terpret results of practical identifiability analyses if a 
structurally nonidentifiable model is not recognised 
as such.

Both structural and practical identifiability can be 
assessed for any differentiable nonlinear model. In 
particular, for (partially observed) dynamical systems, 
represented by a system of ordinary differential equa-

tions (ODEs)

_x(t) = f (x(t); �; u(t)); (1)

with n model states x(t), a set of p unknown parameters

� that have to be estimated from experimental data, and 
external possibly unknown stimuli u(t). The model 
predictions y are generated from the model states via the 
observation function g

y(t; �) = g(x(t); �; t) (2)

and can be mapped to the discrete, time-resolved 
experimental data (t D , y D ), which are typically noisy. 
For systems biological models, it is typical for only about 
50 %—80 % of states x(t) to be experimentally 
observed [19].

A parameter component i is said to be globally struc-

turally identifiable if for all parameter configurations

�, � ′

y(�) = y(� ′ ) ⟹ θ i = θ′i (3)

holds, where y(�) ≡ y(∙, �) denotes the entire pre-

diction trajectory graph [20,21]. Similarly, a parameter 
component i is locally structurally identifiable at a 
point � if there exists a local neighbourhood η(�) 
around it such that condition (3) holds for all � ′ ∈ η 
(�). Thus, a parameter θ i is structurally nonidentifiable 
if its value can be changed without any influence on 
the trajectories y because the changes can be fully 
compensated by changing the values of the remain-

ing parameters.

In contrast to structural identifiability, practical identi-

fiability does not have a single universally agreed upon 
definition. Usually, the question of practical identifi-

ability arises either during the design of new experi-

ments or after new experimental data have been 
recorded. The broad idea on which researchers seem to 
agree is that practical identifiability analysis should 
answer the question of whether and how precisely the 
parameter values of a model can be estimated given a 
specific experiment [22—31].

One tool commonly used to analyse whether changes in 
the value of a parameter are influential for the model 
outputs is sensitivity analysis. The sensitivity of a 
parameter θ i given by s i = ∂y/∂θ i can be used to assess 
the influence of a parameter, and based on some defi-

nitions, a parameter that scores below a certain 
threshold is then termed practically nonidentifiable 
[22]. If the uncertainty associated with a measurement 
is known, it can be used to scale the parameter sensi-

tivity ∂y/∂θ i of the associated prediction, yielding the 
residual sensitivity ∂r/∂θ i = σ − 1 ∂y/∂θ i . Combining these 
sensitivities for all model predictions with respect to all 
parameters yields the sensitivity matrix

S =
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(4)

evaluated at a fixed ̂  � and time-points t 1 , …, t N . Using 
the sensitivity matrix, collinearity of parameter di-

rections in the prediction space can be analysed with 
principal component analysis or singular value decom-

position [13,22—25]. This not only tests the sensitivity 
of the model predictions with respect to changes in the 
value of a single parameter at a time, but also detects 
linear combinations of multiple parameters, which can 
together compensate for changes in any single one of the 
parameters in this group. For all of these methods, 
usually some kind of heuristic threshold value must be 
chosen, below which a model or a parameter is called 
nonidentifiable. What unites these methods is that they 
are usually performed on simulated data that are 
designed to resemble the real experimental conditions, 
but were not actually measured experimentally. Addi-

tionally, the sensitivity analysis presented here is a local 
property calculated around a particular parameter 
configuration ̂  �, but can be expanded by repeating the 
analysis for different parameter configurations.

Before the practical identifiability analysis, the model 
may have been fitted to actual measurement data to 
achieve a local analysis in the relevant region of the 
parameter space. However, sensitivity-based methods 
do not incorporate the goodness of fit of a model to data, 
which means that they can only provide a ranking of the 
model parameters from most sensitive to least sensitive
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given an experimental design. If the actual measure-

ment data are not used to calibrate the model before the 
analysis, these methods can and should be applied a 
priori to use the results for experimental design. To 
clarify, we will refer to the results and assessments 
produced by the various forms of sensitivity matrix 
analysis as parameter sensitivity. If the model was cali-

brated to actual measurement data before the analysis, it 
is an a posteriori parameter sensitivity analysis, and if 
the analysis is performed before any calibration, an a 
priori parameter sensitivity analysis. In the following, 
the terminology used for describing the outcome of such 
an analysis will be that a parameter θ i is a priori/a 
posteriori (in)sensitive given the (planned) experi-

mental design.

Another major branch of practical identifiability focuses 
on a posteriori analyses using the profile likelihood or its 
local approximation through the Fisher information 
matrix, and defines a parameter as practically identifi-

able at a given confidence level, if the associated profile 
likelihood based confidence interval is finite 
[25—27,31—37]. The profile of a parameter θ i is calcu-

lated by fixing θ i to values around its optimum and 
reoptimising the remaining parameters. Then, the 
likelihood after reoptimisation is plotted against the 
different values for θ i and if the likelihood is not influ-

enced by changing the parameter, this parameter is 
nonidentifiable. The boundary of the confidence inter-

val is determined by the parameter values at which the 
profile likelihood for the parameter crosses a certain 
critical value, which depends on the desired confidence 
level. However, in contrast to sensitivity-based ap-

proaches, the critical value to be crossed by the profile 
likelihood is not based on a heuristic choice but is 
instead determined by the asymptotic distribution of 
the likelihood ratio test statistic. If the profile likelihood 
flattens out and does not cross the necessary critical 
value for arbitrarily small or large parameter values (or 
both), the confidence interval is not bounded in this 
direction, which means that the parameter value is not 
constrained to a finite range by the available data, at the 
specified confidence level. As illustrated, for instance, in 
Ref. [16], the Fisher information matrix cannot be used 
to construct reliable confidence intervals or decide a 
posteriori practical identifiability for nonlinear models in 
the finite identification sense, due to the fact that it 
only encodes a local quadratic approximation of the 
likelihood landscape at the point estimate. Analyses 
using the profile likelihood depend on measured data 
and thus can only be applied a posteriori. The termi-

nology for describing the outcome of such a profile-

based practical identifiability analysis will be that a 
parameter θ i is finitely identified to the confidence level 
α, given the experimental data, if the profile crosses the 
critical value. Conversely, a parameter is not finitely 
identified if the profile does not cross the critical value 
on at least one side. Moreover, a model is finitely

identified to the confidence level α as a whole, if all its 
parameters are finitely identified.

On a higher level, both the sensitivity-based and confi-

dence-interval-based methods can be applied in the 
scope of Monte Carlo simulations, where the respective 
criteria are evaluated for many different randomly 
sampled parameter configurations and/or many simu-

lated data realisations [23,38—40]. However, in both 
cases the analysis is predicated on the fact that either 
some heuristic threshold value must be chosen for the 
sensitivity-based criteria, or realistic values for the pa-

rameters must already be known, so that realistic data 
realisations can be simulated from them.

It should be stressed that it is not only possible but 
common for a parameter that was found to be sensitive 
according to either an a priori or a posteriori sensitivity 
analyses, not to be finitely identified by specific mea-

surement data realisations up to the desired confidence 
level. This is why precise and coherent wording 
regarding practical identifiability analyses is crucial to 
avoid miscommunication or misinterpretation of results.

Typical causes for practical non-
identifiability
In order to better understand practical identifiability, 
the differences between sensitive and finitely identified 
parameters, and to disentangle the possibilities and 
limitations of different analysis methods, it is important 
to understand possible causes of parameter insensitivity 
and nonfinitely identified parameters, respectively. 
Here, we focus on two of the most common causes. For 
the following discussion, we assume a structurally 
identifiable model whose predictions provide a good fit 
to the observed data.

Imprecise or unsuitable data
The most prominent and common causes for practical 
identifiability problems can be summarised under 
imprecise or unsuitable data. Two cases can be distin-

guished: imprecisely informative data due to large noise, 
and uninformative, unsuitable data due to unsuitable 
experimental design. Even for a globally structurally 
identifiable model with well-fitted data, it is possible to 
find that, due to high uncertainty in the data, the values 
of some or all of the parameters are not strongly 
constrained by the data, rendering them insensitive. In 
such cases, an a priori sensitivity analysis could be used 
to determine the maximal data uncertainty, such that 
the model sensitivity is above some threshold. Similarly, 
an a posteriori analysis can be used to determine an 
appropriate heuristic threshold from the data. In a pro-

file likelihood analysis, increasing the data uncertainty 
generally results in larger confidence intervals. The 
scenario of insufficient data is shown in row B of Figure 1 
in comparison to sufficient data in row A.

Flavours of practical identifiability Heinrich et al. 3

www.sciencedirect.com Current Opinion in Systems Biology 2025, 42:100556



The second point of an unsuitable experimental design 
is of greater interest. One example of this is a very fast 
reaction, where the relevant dynamic part of the reac-

tion is not captured by data and only late observations 
are given, where the system is already in saturation, 
resulting in nearly constant data for that observable. For 
that reaction parameter, an upper bound cannot be

found using these kinds of data, as it only restricts the 
parameter to a lower bound. This can be discovered 
using the profile likelihood and is illustrated in row C of 
Figure 1. Here, the results of a sensitivity analysis are 
less clear. An a priori sensitivity analysis, where infor-

mation about the most likely parameter values and 
measured time points is not yet available, cannot reliably

Figure 1

a

b

c

Current Opinion in Systems Biology

Example of effects of uninformative data on identifiability, illustrated using a simple two-state ODE system A→ 
k∙A

B, where A(0) = A 0 and the reaction rate k 
are estimated, B(0) = 0 is fixed and only the second component B(t) is observed. The true parameter values were taken as (A 0 ; k) true = (1;0:5). Row A: 
Ideal case of data with sufficiently high signal-to-noise ratio (σ B = 0.03) coupled with observations in informative time ranges. The first panel shows the 
simulated data and a fit to the data. The combination of the model with the data leads to finite identification of both parameters up to a confidence level of 
3σ ≈ 99.7% and beyond, as shown in the second and third columns. The fourth panel shows the a posteriori sensitivities of the prediction trajectories 
with respect to the true parameter values, divided by the respective observation uncertainties. It can be seen that measurements cover the respective 
regions of high sensitivity for both parameters. Row B: Case of low signal-to-noise ratio (σ B = 0.25) in the data. This leads to much wider but still finite 
confidence intervals for both parameters and thus the parameters are still finitely identified. The sensitivity analysis in the fourth panel shows the same 
dynamics as in row A, except for a shift on the vertical axis due to the lower signal-to-noise ratio. Row C: Case of high signal-to-noise ratio (σ B = 0.03) in 
terms of the noise magnitude but insufficient observations in informative time ranges, wherefore the reaction rate k is not finitely identified by the given 
observations. At a confidence level of 1σ ≈ 68.3%, the confidence interval of k is only bounded from below, but arbitrarily fast reaction speeds k → ∞ 

are still consistent with the data. The fourth panel shows that the taken time points only cover the region of low sensitivity for k.
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detect this problem. This is because the time window 
where the informative dynamics take place depends on 
the reaction rate. Therefore, it cannot be guaranteed 
that an experimental design will cover the relevant time 
points without knowledge about the likely parameter 
values. In comparison, an a posteriori sensitivity analysis, 
based on parameter values that were already calibrated 
on measured data and reusing the same time points in 
the simulation as those given in the measurements, will 
detect parameters which are insensitive at the given 
most likely parameter values. This example of an a 
posteriori sensitivity analysis also highlights how an a 
priori sensitivity analysis can be of use here: If the 
parameter values are unknown, sensitivity analysis can 
be used for a range of possible parameters to determine 
the experimental time points needed to sufficiently 
calibrate the model to data for any parameter value in 
the possible range.

Model complexity mismatches the data
Usually, when a new model is developed with the aim of 
explaining given experimental data, it is not clear from 
the outset which of the many conceivable reaction 
mechanisms are essential for describing the system’s 
behaviour and which can be neglected. In this case, 
identifiability analysis can be used to find the smallest 
model that describes the data sufficiently well. An 
illustrative example is the relation between a 
Michaelis—Menten type kinetic of the form d[P]/ 
dt = k cat [S]/(K m + [S]), describing the steady-state 
approximation of enzyme kinetics and mass-action ki-

netics following the equation d[P] m.a. /dt ∝ [S]. A direct 
comparison between their respective equations shows 
that mass-action kinetics are recovered as a limiting case 
from the Michaelis—Menten mechanism for K m ≫ [S]. 
If a Michaelis—Menten model is fitted to mass-action 
data, the Michaelis—Menten mechanism is able to fit

Figure 2

b

a

Current Opinion in Systems Biology

Effects of mismatched model complexity for given data, illustrated on data generated via a mass-action mechanism and fitted by both a mass-action and

Michaelis–Menten mechanism. The data, showing concentration over time, were generated via mass-action law S → 
k E S

P with dE/dt = 0, where (S 0 ;E 0 ;
P 0 ) = (5; 0:1; 0) are the initial concentrations of the substrate S, enzyme E, and product P, respectively, with simulated observation noise σ P = 0.1 at

true parameter value k true = 0.5. Row A: Fit of single-parameter mass-action S → 
k E S

P from which the data were generated. Unsurprisingly, the single 
parameter k is finitely identified by the simulated data, as we see by the parabolic profile in the second panel. Row B: Two-parameter Michaelis–Menten

mechanism S → 
k cat E S=(Km +S) 

P fitted to mass-action data. As one can see from the profiles (columns 2 and 3), due to the over-parametrised model, neither
parameter is finitely identified by the data, although the model is locally structurally identifiable at the MLE. Overall, the ratio of the parameters k cat /K m in 
the Michaelis–Menten model is similar to the value of k of the underlying process. However, the associated profiles illustrate that even at a constant ratio 
k cat /K m , the quality of the model fit is worse if both parameters are small, leading to a lower bound on both parameter values. Instead, if both values are 
increased to arbitrarily large values, the resulting model fit is still compatible with the given data up to a confidence level of 1σ ≈ 68.3 %, leading neither 
parameter being finitely identified. The sensitivity analysis in the last column illustrates that although data points are given in the region where the model 
parameters are most sensitive, the parameters are nevertheless not finitely identified by the data.
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the mass-action data perfectly. Nevertheless, if one 
calculates profile likelihoods for the parameters, the K m -
value is only bounded from below by the data, but not 
from above. Thus, a profile likelihood-based identifi-

ability analysis would reveal the K m -parameter as prac-

tically nonidentifiable, thereby assisting in the data-

driven reduction of superfluous mechanisms from the 
model [41]. This case is illustrated in Figure 2, where a 
Michaelis—Menten kinetic is fitted to mass-action data, 
resulting in the parameters k cat and K m not being 
finitely identified.

The case of an over-parametrised model cannot be 
detected using sensitivity analysis methods. Usually, 
parameters such as the K m are a priori less sensitive 
than other parameters, but it is still possible for its 
values to be finitely determined, given suitable data. As 
sensitivity methods perform the analysis based on 
simulated data, using the given model as the basis for 
the simulations, the case of an over-parametrised model 
cannot be detected. In the last column of Figure 2 it 
can be seen that the data were simulated in regions of 
high sensitivity for this model. Nevertheless, the 
overall sensitivities of the parameters k cat and K m are 
lower compared to the simpler mass-action model with 
parameter k.

Conclusion
Even though practical identifiability analysis has been 
accepted as a useful tool for model analysis and devel-

opment, the technical definition of practical identifi-

ability itself remains vague and differs between authors. 
Furthermore, it is common for models to be practically 
identifiable with respect to some definitions but prac-

tically nonidentifiable with respect to others. To limit 
miscommunication among practitioners, we advocate for 
the use of clear and distinctive wording when discussing 
the results of practical identifiability analyses, such that 
it is unambiguously clear from the terminology which 
class of methods was employed in the analysis and thus 
which of the possible definitions of practical identifi-

ability is implied by this.

A priori practical identifiability analyses using a purely 
model-based method, i.e. without referring to recorded 
measurements of any kind, such as sensitivity analysis, 
result in statements about the sensitivity of the model 
with respect to its parameters. This flavour of practical 
identifiability analysis can be performed a priori to 
determine the necessary signal-to-noise ratio or to aid in 
developing an experimental design by scanning the ex-

pected parameter range and possible combinations of 
observables for insensitive parameters. On the other 
hand, a posteriori analyses via purely model-based 
methods, without referring to measurements, also use 
information about the experimental design, and, if 
available, fitted parameter values, and can determine

insensitive parameters that occur, for example, due to an 
unsuitable experimental protocol.

A posteriori practical identifiability analyses using data-

based methods, such as the profile likelihood, assess the 
confidence intervals of parameters given a confidence 
level and typically require more computational re-

sources. Such analyses ultimately make statements 
about whether a parameter is finitely identified at a 
certain critical value, given the model and the data.

Nevertheless, both major categories of practical identi-

fiability analysis have valid applications, which we 
attempted to highlight with two small examples, 
presenting their respective benefits and limitations. We 
hope that the aspects highlighted in this review aid 
newcomers to the field and provide an overview of prac-

tical identifiability for researchers in the life sciences, 
who usually come from a wide range of backgrounds.
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