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On the different flavours of practical identifiability
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Identifiability is fundamental to any parameter estimation
process and plays a role in a wide range of scientific research
disciplines. Structural identifiability is a well-defined and purely
model-based property that can be analysed in the absence of
experimentally measured data with various methods. In
contrast, practical identifiability lacks a concise technical
definition that is agreed upon, leading to conflicting assess-
ments. We focus on the practical identifiability analysis of or-
dinary differential equation models in systems biology and
point out the differences between definitions and their impli-
cations. We differentiate between classifications based on
sensitivity and classifications based on confidence intervals.
We advocate for precise wording in discussions of practical
identifiability analysis results so that the employed method is
clear from the terminology.

We propose that model parameters should be termed a priori
or a posteriori sensitive if sensitivity-based methods are used
and finitely identified if the assessment is based on confidence
intervals.
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Introduction

Advancements in computational power have signifi-
cantly enhanced the role of mathematical modelling in
systems biology and medicine. Mathematical models
can be used to determine reaction rates, make pre-
dictions for the concentrations of reactants that cannot
be experimentally observed directly, and develop an
understanding of the specific mechanisms that drive a
system’s behaviour. Furthermore, they are used in the
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development of clinical decision tools. Particularly for
mechanistic models, identifiability is a crucial property
that must be fulfilled in order for the mechanistic
interpretation to be valid and the model predictions to
be trustworthy. A structurally and practically identifiable
model should exhibit finite confidence intervals for all
estimated parameters and provide unique predictions.
In contrast, structurally nonidentifiable models can
yield identical predictions for different parameter con-
figurations and are at high risk of producing unreliable
out-of-sample predictions. In short, identifiability anal-
ysis is of high importance to achieve reliable and
reproducible results and thereby support research
performed in a wet laboratory and in clin-
ical applications.

As mathematical models have grown in size and
complexity, more advanced identifiability analysis
methods are needed. Several methods [1—13] have
been developed to address the question of structural
identifiability, a property that solely depends on the
model structure itself, not on measured data. If,
depending on the model structure, the right method is
chosen, nearly any model can be analysed within mi-
nutes, making a priori structural identifiability analysis
accessible for routine modelling workflows [14,15].

Beyond a priori structural identifiability, an a posteriori
practical identifiability analysis is also needed to confirm
the robustness of the modelling results. In this context,
a priori means before the model is calibrated or applied
to real experimental data, and a posteriori means after
the model has been calibrated with the available data. If
the data are insufficient, the signal-to-noise level is too
low, or the time-points at which measurements were
taken are not in the regions of informative dynamics, an
a priori structurally identifiable model can still be a
posteriori practically nonidentifiable with respect to the
available data. This aspect has been less explored, with
fewer powerful methods available for its assess-
ment [16—18].

We review the differences between various definitions
of practical identifiability and illustrate their implica-
tions with the help of toy models. The goal is to high-
light the different flavours of practical identifiability
analyses, establish clear wording, and also to provide
guidance in choosing a suitable method for a
given problem.
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Defining practical identifiability

In general, structural identifiability is a prerequisite for
practical identifiability. Moreover, it is easy to misin-
terpret results of practical identifiability analyses if a
structurally nonidentifiable model is not recognised
as such.

Both structural and practical identifiability can be
assessed for any differentiable nonlinear model. In
particular, for (partially observed) dynamical systems,
represented by a system of ordinary differential equa-
tions (ODEs)

X(1) = f(x(),0,u(2)), (1)

with » model states x(7), a set of p unknown parameters
0 that have to be estimated from experimental data, and
external possibly unknown stimuli u(z). The model
predictions y are generated from the model states via the
observation function g

Y(faa) :g(x(l)’oaf) (2)

and can be mapped to the discrete, time-resolved
experimental data A, yD), which are typically noisy.
For systems biological models, it is typical for only about
50 %—80 % of states x(#) to be experimentally
observed [19].

A parameter component 7 is said to be globally struc-
turally identifiable if for all parameter configurations

0,0

y(0) =y() = 6, =09 )

holds, where y(f) = y(-, 0) denotes the entire pre-
diction trajectory graph [20,21]. Similarly, a parameter
component 7 is locally structurally identifiable at a
point @ if there exists a local neighbourhood 7(f)
around it such that condition (3) holds for all # € 7
(). Thus, a parameter f; is structurally nonidentifiable
if its value can be changed without any influence on
the trajectories y because the changes can be fully
compensated by changing the values of the remain-
ing parameters.

In contrast to structural identifiability, practical identi-
fiability does not have a single universally agreed upon
definition. Usually, the question of practical identifi-
ability arises either during the design of new experi-
ments or after new experimental data have been
recorded. The broad idea on which researchers seem to
agree is that practical identifiability analysis should
answer the question of whether and how precisely the
parameter values of a model can be estimated given a
specific experiment [22—31].

One tool commonly used to analyse whether changes in
the value of a parameter are influential for the model
outputs is sensitivity analysis. The sensitivity of a
parameter 0; given by s; = dy/d0; can be used to assess
the influence of a parameter, and based on some defi-
nitions, a parameter that scores below a certain
threshold is then termed practically nonidentifiable
[22]. If the uncertainty associated with a measurement
is known, it can be used to scale the parameter sensi-
tivity dy/d0; of the associated prediction, yielding the
residual sensitivity dr/df; = 0~ 'dy/d0;. Combining these
sensitivities for all model predictions with respect to all
parameters yields the sensitivity matrix

MO,n)  (8,n)
86, 86,
a6, a0,
S=1: Do (4)
a6, a0,
a6, a0,
evaluated at a fixed 8 and time-points 71, ..., zy. Using

the sensitivity matrix, collinearity of parameter di-
rections in the prediction space can be analysed with
principal component analysis or singular value decom-
position [13,22—25]. This not only tests the sensitivity
of the model predictions with respect to changes in the
value of a single parameter at a time, but also detects
linear combinations of multiple parameters, which can
together compensate for changes in any single one of the
parameters in this group. For all of these methods,
usually some kind of heuristic threshold value must be
chosen, below which a model or a parameter is called
nonidentifiable. What unites these methods is that they
are usually performed on simulated data that are
designed to resemble the real experimental conditions,
but were not actually measured experimentally. Addi-
tionally, the sensitivity analysis presented here is a local
property calculated around a particular parameter
configuration @, but can be expanded by repeating the
analysis for different parameter configurations.

Before the practical identifiability analysis, the model
may have been fitted to actual measurement data to
achieve a local analysis in the relevant region of the
parameter space. However, sensitivity-based methods
do not incorporate the goodness of fit of a model to data,
which means that they can only provide a ranking of the
model parameters from most sensitive to least sensitive
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given an experimental design. If the actual measure-
ment data are not used to calibrate the model before the
analysis, these methods can and should be applied a
priori to use the results for experimental design. To
clarify, we will refer to the results and assessments
produced by the various forms of sensitivity matrix
analysis as parameter sensitivity. If the model was cali-
brated to actual measurement data before the analysis, it
IS an a posteriori parameter sensitivity analysis, and if
the analysis is performed before any calibration, an a
priori parameter sensitivity analysis. In the following,
the terminology used for describing the outcome of such
an analysis will be that a parameter §; is a priori/a
posteriori (in)sensitive given the (planned) experi-
mental design.

Another major branch of practical identifiability focuses
on a posteriori analyses using the profile likelihood or its
local approximation through the Fisher information
matrix, and defines a parameter as practically identifi-
able at a given confidence level, if the associated profile
likelihood based confidence interval is finite
[25—27,31—37]. The profile of a parameter 0; is calcu-
lated by fixing 6; to values around its optimum and
reoptimising the remaining parameters. Then, the
likelihood after reoptimisation is plotted against the
different values for 6, and if the likelihood is not influ-
enced by changing the parameter, this parameter is
nonidentifiable. The boundary of the confidence inter-
val is determined by the parameter values at which the
profile likelihood for the parameter crosses a certain
critical value, which depends on the desired confidence
level. However, in contrast to sensitivity-based ap-
proaches, the critical value to be crossed by the profile
likelihood is not based on a heuristic choice but is
instead determined by the asymptotic distribution of
the likelihood ratio test statistic. If the profile likelihood
flattens out and does not cross the necessary critical
value for arbitrarily small or large parameter values (or
both), the confidence interval is not bounded in this
direction, which means that the parameter value is not
constrained to a finite range by the available data, at the
specified confidence level. As illustrated, for instance, in
Ref. [16], the Fisher information matrix cannot be used
to construct reliable confidence intervals or decide a
posteriori practical identifiability for nonlinear models in
the finite identification sense, due to the fact that it
only encodes a local quadratic approximation of the
likelihood landscape at the point estimate. Analyses
using the profile likelihood depend on measured data
and thus can only be applied a posteriori. The termi-
nology for describing the outcome of such a profile-
based practical identifiability analysis will be that a
parameter 0; is finitely identified to the confidence level
o, given the experimental data, if the profile crosses the
critical value. Conversely, a parameter is not finitely
identified if the profile does not cross the critical value
on at least one side. Moreover, a model is finitely
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identified to the confidence level a as a whole, if all its
parameters are finitely identified.

On a higher level, both the sensitivity-based and confi-
dence-interval-based methods can be applied in the
scope of Monte Carlo simulations, where the respective
criteria are evaluated for many different randomly
sampled parameter configurations and/or many simu-
lated data realisations [23,38—40]. However, in both
cases the analysis is predicated on the fact that either
some heuristic threshold value must be chosen for the
sensitivity-based criteria, or realistic values for the pa-
rameters must already be known, so that realistic data
realisations can be simulated from them.

It should be stressed that it is not only possible but
common for a parameter that was found to be sensitive
according to either an a priori or a posteriori sensitivity
analyses, not to be finitely identified by specific mea-
surement data realisations up to the desired confidence
level. This is why precise and coherent wording
regarding practical identifiability analyses is crucial to
avoid miscommunication or misinterpretation of results.

Typical causes for practical non-
identifiability

In order to better understand practical identifiability,
the differences between sensitive and finitely identified
parameters, and to disentangle the possibilities and
limitations of different analysis methods, it is important
to understand possible causes of parameter insensitivity
and nonfinitely identified parameters, respectively.
Here, we focus on two of the most common causes. For
the following discussion, we assume a structurally
identifiable model whose predictions provide a good fit
to the observed data.

Imprecise or unsuitable data

The most prominent and common causes for practical
identifiability problems can be summarised under
imprecise or unsuitable data. Two cases can be distin-
guished: imprecisely informative data due to large noise,
and uninformative, unsuitable data due to unsuitable
experimental design. Even for a globally structurally
identifiable model with well-fitted data, it is possible to
find that, due to high uncertainty in the data, the values
of some or all of the parameters are not strongly
constrained by the data, rendering them insensitive. In
such cases, an a priori sensitivity analysis could be used
to determine the maximal data uncertainty, such that
the model sensitivity is above some threshold. Similarly,
an a posteriori analysis can be used to determine an
appropriate heuristic threshold from the data. In a pro-
file likelihood analysis, increasing the data uncertainty
generally results in larger confidence intervals. The
scenario of insufficient data is shown in row B of Figure 1
in comparison to sufficient data in row A.
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Example of effects of uninformative data on identifiability, illustrated using a simple two-state ODE system Ak'—f‘B, where A(0) = Ap and the reaction rate k
are estimated, B(0) = 0 is fixed and only the second component B(t) is observed. The true parameter values were taken as (Ag, k)y,e = (1,0.5). Row A:
Ideal case of data with sufficiently high signal-to-noise ratio (65 = 0.03) coupled with observations in informative time ranges. The first panel shows the
simulated data and a fit to the data. The combination of the model with the data leads to finite identification of both parameters up to a confidence level of
30 = 99.7% and beyond, as shown in the second and third columns. The fourth panel shows the a posteriori sensitivities of the prediction trajectories
with respect to the true parameter values, divided by the respective observation uncertainties. It can be seen that measurements cover the respective
regions of high sensitivity for both parameters. Row B: Case of low signal-to-noise ratio (65 = 0.25) in the data. This leads to much wider but still finite
confidence intervals for both parameters and thus the parameters are still finitely identified. The sensitivity analysis in the fourth panel shows the same
dynamics as in row A, except for a shift on the vertical axis due to the lower signal-to-noise ratio. Row C: Case of high signal-to-noise ratio (5 = 0.03) in
terms of the noise magnitude but insufficient observations in informative time ranges, wherefore the reaction rate k is not finitely identified by the given
observations. At a confidence level of 16 = 68.3%, the confidence interval of k is only bounded from below, but arbitrarily fast reaction speeds k — «
are still consistent with the data. The fourth panel shows that the taken time points only cover the region of low sensitivity for k.

The second point of an unsuitable experimental design
is of greater interest. One example of this is a very fast
reaction, where the relevant dynamic part of the reac-
tion is not captured by data and only late observations
are given, where the system is already in saturation,
resulting in nearly constant data for that observable. For
that reaction parameter, an upper bound cannot be

found using these kinds of data, as it only restricts the
parameter to a lower bound. This can be discovered
using the profile likelihood and is illustrated in row C of
Figure 1. Here, the results of a sensitivity analysis are
less clear. An a priori sensitivity analysis, where infor-
mation about the most likely parameter values and
measured time points is not yet available, cannot reliably
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Effects of mismatched model complexity for given data, illustrated on data generated via a mass-action mechanism and fitted by both a mass-action and

Michaelis—Menten mechanism. The data, showing concentration over time, were generated via mass-action law Ski P with dE/dt = 0, where (So, Eo,
Py) = (5,0.1,0) are the initial concentrations of the substrate S, enzyme E, and product P, respectively, with simulated observation noise op = 0.1 at

true parameter value kiye = 0.5. Row A: Fit of single-parameter mass-action SkiSP from which the data were generated. Unsurprisingly, the single
parameter k is finitely identified by the simulated data, as we see by the parabolic profile in the second panel. Row B: Two-parameter Michaelis—Menten

Keat ES/(Km+S ) . ' . .
mechanism S Lﬁ ¥ )P fitted to mass-action data. As one can see from the profiles (columns 2 and 3), due to the over-parametrised model, neither

parameter is finitely identified by the data, although the model is locally structurally identifiable at the MLE. Overall, the ratio of the parameters koK in
the Michaelis—Menten model is similar to the value of k of the underlying process. However, the associated profiles illustrate that even at a constant ratio
keat/Km, the quality of the model fit is worse if both parameters are small, leading to a lower bound on both parameter values. Instead, if both values are
increased to arbitrarily large values, the resulting model fit is still compatible with the given data up to a confidence level of 16 = 68.3 %, leading neither
parameter being finitely identified. The sensitivity analysis in the last column illustrates that although data points are given in the region where the model

parameters are most sensitive, the parameters are nevertheless not finitely identified by the data.

detect this problem. This is because the time window
where the informative dynamics take place depends on
the reaction rate. Therefore, it cannot be guaranteed
that an experimental design will cover the relevant time
points without knowledge about the likely parameter
values. In comparison, an a posteriori sensitivity analysis,
based on parameter values that were already calibrated
on measured data and reusing the same time points in
the simulation as those given in the measurements, will
detect parameters which are insensitive at the given
most likely parameter values. This example of an a
posteriori sensitivity analysis also highlights how an a
priori sensitivity analysis can be of use here: If the
parameter values are unknown, sensitivity analysis can
be used for a range of possible parameters to determine
the experimental time points needed to sufficiently
calibrate the model to data for any parameter value in
the possible range.

Model complexity mismatches the data

Usually, when a new model is developed with the aim of
explaining given experimental data, it is not clear from
the outset which of the many conceivable reaction
mechanisms are essential for describing the system’s
behaviour and which can be neglected. In this case,
identifiability analysis can be used to find the smallest
model that describes the data sufficiently well. An
illustrative example is the relation between a
Michaelis—Menten type kinetic of the form d[P]/
dr = ke [S1/(K, + [S]), describing the steady-state
approximation of enzyme kinetics and mass-action Kki-
netics following the equation d[P]y, ,/d7r o« [§]. A direct
comparison between their respective equations shows
that mass-action kinetics are recovered as a limiting case
from the Michaelis—Menten mechanism for K, > [S].
If a Michaelis—Menten model is fitted to mass-action
data, the Michaelis—Menten mechanism is able to fit
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the mass-action data perfectly. Nevertheless, if one
calculates profile likelihoods for the parameters, the K-
value is only bounded from below by the data, but not
from above. Thus, a profile likelihood-based identifi-
ability analysis would reveal the K,-parameter as prac-
tically nonidentifiable, thereby assisting in the data-
driven reduction of superfluous mechanisms from the
model [41]. This case is illustrated in Figure 2, where a
Michaelis—Menten kinetic is fitted to mass-action data,
resulting in the parameters 4., and K,, not being
finitely identified.

The case of an over-parametrised model cannot be
detected using sensitivity analysis methods. Usually,
parameters such as the K, are a priori less sensitive
than other parameters, but it is still possible for its
values to be finitely determined, given suitable data. As
sensitivity methods perform the analysis based on
simulated data, using the given model as the basis for
the simulations, the case of an over-parametrised model
cannot be detected. In the last column of Figure 2 it
can be seen that the data were simulated in regions of
high sensitivity for this model. Nevertheless, the
overall sensitivities of the parameters £, and K, are
lower compared to the simpler mass-action model with
parameter 4.

Conclusion

Even though practical identifiability analysis has been
accepted as a useful tool for model analysis and devel-
opment, the technical definition of practical identifi-
ability itself remains vague and differs between authors.
Furthermore, it is common for models to be practically
identifiable with respect to some definitions but prac-
tically nonidentifiable with respect to others. To limit
miscommunication among practitioners, we advocate for
the use of clear and distinctive wording when discussing
the results of practical identifiability analyses, such that
it is unambiguously clear from the terminology which
class of methods was employed in the analysis and thus
which of the possible definitions of practical identifi-
ability is implied by this.

A priori practical identifiability analyses using a purely
model-based method, i.e. without referring to recorded
measurements of any kind, such as sensitivity analysis,
result in statements about the sensitivity of the model
with respect to its parameters. This flavour of practical
identifiability analysis can be performed a priori to
determine the necessary signal-to-noise ratio or to aid in
developing an experimental design by scanning the ex-
pected parameter range and possible combinations of
observables for insensitive parameters. On the other
hand, a posteriori analyses via purely model-based
methods, without referring to measurements, also use
information about the experimental design, and, if
available, fitted parameter values, and can determine

insensitive parameters that occur, for example, due to an
unsuitable experimental protocol.

A posteriori practical identifiability analyses using data-
based methods, such as the profile likelihood, assess the
confidence intervals of parameters given a confidence
level and typically require more computational re-
sources. Such analyses ultimately make statements
about whether a parameter is finitely identified at a
certain critical value, given the model and the data.

Nevertheless, both major categories of practical identi-
fiability analysis have wvalid applications, which we
attempted to highlight with two small examples,
presenting their respective benefits and limitations. We
hope that the aspects highlighted in this review aid
newcomers to the field and provide an overview of prac-
tical identifiability for researchers in the life sciences,
who usually come from a wide range of backgrounds.
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