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Abstract
We discuss issues of structural and practical identifiability of
partially observed differential equations, which are often
applied in systems biology. The development of mathematical
methods to investigate structural nonidentifiability has a long
tradition. Computationally efficient methods to detect and cure
it have been developed recently. Practical nonidentifiability, on
the other hand, has not been investigated at the same
conceptually clear level. We argue that practical identifiability is
more challenging than structural identifiability when it comes to
modeling experimental data. We discuss that the classical
approach based on the Fisher information matrix has severe
shortcomings. As an alternative, we propose using the profile
likelihood, which is a powerful approach to detect and resolve
practical nonidentifiability.
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Introduction
Biological modeling and Box’s statement
Traditional biological reasoning often is rather qualita-
tive, descriptive, and static, which results, for example, in
cell biology in so-called ‘pathway cartoons’.Mathematical
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models based on differential equations can help to turn
these into a quantitative, predictive, and dynamic un-
derstanding of the underlying system. Discussing
modeling in general, in 1979, George E.P. Box coined his
famous statement: “All models are wrong, but some are

useful” [1]. Although the former part of the quote is
intuitively clear, because every model necessarily poses a
simplification of reality, the latter highlights the impor-
tance of assessing what constitutes a useful model.

Bad, good, and useful models
Three properties comprise a useful model. First, it has to
capture the main effects of the question of interest, that
is, describe the data with reasonable accuracy, and
neglect the rest. Second, a useful model has to make
experimentally falsifiable predictions to be testable.
Models that exhibit these two properties are good
models. Third, the model should enable to gather in-

sights about the biological system. In a typical modeling
process, one starts off with an initial model based on
current biological knowledge. Usually, this model cannot
explain the data and therefore is a bad model. On the
basis of biological intuition and trial-and-error, one in-
creases the model complexity until the data can be
fitted. Often, this leads to an overparameterized model
that overfits the data. The parameters of such a model
and, in turn, its predictions are not well determined, and
it thus remains a bad model.

The path from such a bad model toward a good model is
laborious: additional data need to be measured and in-
tegrated, the model complexity needs to be reduced and
balanced to the available data, or a combination of both.
This process needs to be iterated until a good model is
found, which has well-determined parameters and
predictions.

However, such a good model also needs to deliver bio-
logical insights in order to be useful. Only this third
property turns a good model into a useful model. In this

sense, the final goal of mathematical modeling in sys-
tems biology is not the model itself but to use the model
to understand biology. One example of how a model can
be used to gain biological insight, which would be un-
attainable by merely assessing the data by itself, was
given by Becker et al. [2].
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Parameter identifiability
The concept of identifiability is strongly linked to the
transition from bad models to good models. Identifi-
ability analysis is necessary to create good models that
can describe the data and have well-determined pa-
rameters and predictions. It is especially important
when modeling biological systems because the limited
amount and quality of the experimental data with large
measurement noise in only partially observed systems
often lead to bad models during the modeling process.
Concerning identifiability, one distinguishes between

structural identifiability dealing with inherently inde-
terminable parameters because of the model structure
itself, and practical identifiability, dealing with insuffi-
ciently informative measurements to determine the
parameters with adequate precision.
Partially observed dynamical systems
A biological system is translated into ordinary differen-
tial equations (ODEs)

_x ¼ f ðx; p; uÞ; (1)

comprising n model states x(t), unknown parameters p to

be estimated from time-resolved experimental data, and

external stimuli u(t). As data is often recorded on a relative

scale, scaling and offset parameters for background cor-

rections need to be estimated in parallel. Furthermore, in

typical applications, not all components of a cell-biological

system can be measured, for example, because of the

limited availability or restricted capability of antibodies to

discriminate between unphosphorylated, that is, inactive,

and phosphorylated, that is, active, proteins. Thus, an

observation function g($) is required, which maps the in-

ternal states x to the observations:

y ¼ gðx; p; tÞ: (2)

Typically, the dimension m of y is smaller than the
dimension n of x. We are therefore dealing with param-
eter estimation in partially observed systems. Moreover,
in systems biology, these ODE models are typically stiff,
nonlinear, sparse, and nonautonomous, and the discrete-
time observations are noisy.

Parameter estimation is usually performed based on the
weighted residual sum of squares, the negative

log-likelihood assuming Gaussian errors

c2resðpÞ ¼
Xm
k¼ 1

Xdk
l ¼ 1

 
yDkl � gkðp; tl Þ

sDkl

!2

; (3)

to determine the agreement of experimental data with the

model trajectories, where yDkl and sDkl represent dk data

points and measurement errors at time points tl for each
observable.
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A common point estimate for the best parameter vector
is the maximum likelihood estimator

bp ¼ arg min
�
c2resðpÞ

�
: (4)
Structural identifiability
Definition of structural identifiability and connection
to observability
Partially observed dynamical systems often exhibit

structural nonidentifiability. A model is structurally
identifiable if a unique parameterization exists for any
given model output. A parameter pi is globally structurally
identifiable [3], if for all parameter vectors p, it holds

yðpÞ ¼ yðp0Þ0pi ¼ p0i: (5)

An individual parameter pi is structurally nonidentifi-
able, if changing the parameter does not necessarily alter

the model trajectory y, because the changes can be fully
compensated by altering other parameters. Local
structural identifiability of a parameter is defined by
reducing the definition to a neighborhood v(p) instead
of the entire parameter space. A model is structurally
identifiable, if all of its parameters are structurally
identifiable. Multiple related definitions for structural
identifiability exist; for a comprehensive discussion, see
a recent overview [4].

A structurally nonidentifiable parameter implies the

existence of a manifold in parameter space upon which
the trajectory y is unchanged. However, on this mani-
fold, the dynamic variables x of the model can change,
for example, by a scaling factor, and are thus not
uniquely determinable. This is denoted as nonobserv-
ability, a concept closely related to parameter noni-
dentifiability [5e9].

A priori analysis of structural identifiability
Two basic approaches exist to assess structural identifi-
ability of nonlinear dynamic models. A priori methods
only use the model definition, whereas a posteriori
methods use the available data to find nonidentifiable
parameters. Many a priori algorithms have been devel-

oped based on a variety of approaches. Powerful methods
use Lie group theory because nonidentifiabilities are
closely related to symmetries in the system [10e13].
Furthermore, a variety of notable methods exist, which
are based on power series expansion [14], generating
series [15,16], seminumerical approaches [17,18], differ-
ential algebra [19e27], differential geometry [28], and
numerical algebraic geometry [29]. For reviews of some of
these approaches, see Refs. [28,30,31]. Many of these
approaches, especially the early developed methods, can
only be applied to rather low-dimensional systems
Current Opinion in Systems Biology 2021, 25:60–6
9

www.sciencedirect.com/science/journal/24523100


62 Mathematical Modelling
because of their computational complexity. Thus, recent
developments have mainly focused on improving the
computational efficiency of the algorithms, for example,
by local sensitivity calculations.

As a promising example, Joubert et al. [32] proposed a
comprehensive and computationally fast pipeline to cure
structural nonidentifiabilities by reparameterization of the

model in a five-step procedure: (1) a numerical identifi-
ability analysis based on sensitivities; (2) symbolic iden-
tifiability calculations for the low-dimensional candidates
from (1), this renders the procedure fast; (3) computation
of new model parameters, this step is not unique but
requires decisions of the modeler; (4) simplify the original
model leading to a lower dimensional parameter vector;
and finally (5) check the identifiability of the reparame-
terized model. In an application to a model with 21
states and 75 parameters, two groups of nonidentifiable
parameters were detected, and the model was reparame-

terized within minutes.

Analysis of structural identifiability using
experimental data
In contrast to the aforementioned methods, a posteriori
methods use the available data to perform identifiability
analysis. They infer structural nonidentifiability based
Figure 1

Illustrative example of likelihood contour plots and profile likelihood for
fiable parameters. Subfigures (A), (B), and (C) show contour plots of c2res ab
colors in the contour plots signify a lower value of c2res. Thresholds for confide
and plotted both in the contour plots and the profile likelihood plots. The lowest
profile likelihood plot. For the identifiable parameter (A), the profile likelihood
fidence interval. For the structurally nonidentifiable parameter (B), the profile li
contour plot, this translates to a flat path, along which c2res does not change. T
the low c2res region for lower values of the parameter, never reaching the 95%
can be derived.
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on model fits to experimental data. Similar to some
sensitivity-based a priori approaches, these approaches
only assess local structural identifiability.

One approach by Hengl et al. [33] suggested to perform
numerous fits and investigate nonparametrically whether
the final parameter estimates form a low-dimensional
manifold in parameter space. This approach also allows

to disentangle different sets of coupled nonidentifiable
parameters.

An informative and successful method is based on the
profile likelihood [34]. The idea of the profile likelihood
is to vary one parameter pi after the other around the
maximum likelihood estimate (Equation (4)) and
reoptimize the remaining ones.

PLðpiÞ ¼ min
pjsi

�
c2resðpÞ

�
(6)

For the two-parameter examples in Figure 1, the blue

dashed lines show the path in the parameter space
determined by Equation (6). Figure 1A shows the profile
likelihood of an identifiable parameter. For a structurally
nonidentifiable parameter, the profile likelihood yields a
flat line, as shown in Figure 1B. Plotting the remaining
an identifiable parameter and structurally and practically nonidenti-
ove as well as the profile likelihood versus the parameter below. Lighter
nce intervals corresponding to a confidence level of 95% are shown in red
value of c2res is denoted by a gray asterisk in both the contour plot and the
reaches both an upper and lower threshold, thus leading to a finite con-
kelihood is completely flat, thus yielding infinite confidence intervals. In the
he practically nonidentifiable parameter (C) shows an infinite extension of
confidence interval threshold. In contrast, a finite upper confidence bound
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parameters along the profiled parameter reveals which
parameters are coupled to the nonidentifiable one [35].
The profile likelihood was recently extended to include
two-dimensional profiles to allow for the identification
of parameter interdependence [36].

Profile likelihood calculation can be computationally
demanding for larger systems because of the numerical

reoptimization. Addressing this issue, a fast a posteriori
method to test identifiability without the need to
calculate complete profiles using radial penalization was
recently developed [37].

Structural nonidentifiability can also be investigated a
posteriori by a Bayesian Markov chain Monte Carlo
(MCMC) sampling approach. However, for nonidentifi-
able systems, efficient mixing and thus convergence of
the Markov chains is difficult [38]. This problem can
be cured by informative priors, but these would mask

the problem and should only be implemented if they are
based on actual biological insights and prior information.
One recent application in the field identified a minimal
subset of reactions in a signaling network with a com-
bination of parallel tempering and LASSO regression
methods [39].

Reparameterizing structurally nonidentifiable models
Given the recent advances in the computational effi-
ciency of methods, we essentially consider determining
structural identifiability no longer a bottleneck in the
modeling of nonlinear dynamic systems with ODEs. For
models with a high number of connected structurally
nonidentifiable parameters, finding and resolving these

structural nonidentifiabilities can still be challenging.
This is often the case if the number of observed states is
much lower than the number of dynamic states. When
the structurally nonidentifiable parameters are deter-
mined, the problem is usually fixed by a reparameteri-
zation of the model. In the simplest case, this is
accomplished by fixing some of the involved parameters
to a certain value. The price to be paid is typically that
the information about the scale of some components is
lost, which can limit the predictive power of the model.
Nevertheless, biologically meaningful reparameterization

of the models after finding nonidentifiabilites remains a
challenging task (G.Massonis et al., arXiv:2012.09826v2).
Practical identifiability
From structural to practical identifiability
Structural identifiability implies practical identifiability
only for an infinite amount of data with zero noise.
Practical identifiability is important for obtaining precise
parameter estimates. Moreover, it is especially crucial to
ensure that model predictions are well determined. It is
analyzed increasingly often to judge a model’s predic-
tivity [40e44]. The notion of practical identifiability
has been rather vague in the literature, mainly referring
www.sciencedirect.com
to large confidence intervals [45e47]. Some approaches
exist that define practical identifiability as a combina-
tion of model structure and experimental protocol
without actual data [48,49]. In contrast, we consider a
combination of model and data as practically identifiable
if the confidence intervals of all estimated parameters
are of finite size [35].

Parameter confidence intervals and identifiability
The profile likelihood (Equation (6)) provides a proper
assessment of confidence intervals of estimated pa-

rameters in ODE models (Figure 1) by

CIPLðpiÞ ¼ �
pi j PLðpiÞ�c2res

�bp�þDa

�
; (7)

where Da denotes the a quantile of the c2 distribution with

df = 1 degrees of freedom for point-wise confidence in-

tervals [34].

The traditional method for determining confidence in-
tervals based on the Fisher information matrix (FIM)
leads to accurate confidence intervals for linear regression
models. Because the solutions of all nontrivial ODE
models are nonlinear in their parameters, using this

method for analyzing, identifiability of such models is
questionable [50]. Furthermore, in contrast to FIM-based
confidence intervals, profile likelihoodebased confi-
dence intervals can be asymmetric and are invariant
under reparameterizations of the model, for example, the
often applied logarithmic transformation of the parame-
ters. Figure 2 shows five parameters with FIM-based and
profile likelihoodebased confidence intervals, mainly
taken from applications in synthetic biology [51,52].

Identifiability is obtained if all estimated parameters are

structurally and practically identifiable, that is, have
finite confidence intervals. A nonidentifiable parameter
is called practically nonidentifiable if the confidence in-
terval becomes finite for a given confidence level by
adding additional measurements for the existing ob-
servables (Figure 1C). By adding enough data, a practi-
cally nonidentifiable parameter can be made identifiable.

Bayesian methods for identifiability analysis
Bayesian sampling approaches, for example, MCMC,
can be used to assess practical identifiability [53e55].
This, however, is only feasible if the model is structur-
ally identifiable because structural nonidentifiabilities
will lead to bad mixing of the sampling algorithms.

Given a structurally identifiable model, MCMC sam-
pling yields similar results as the profile likelihood
analysis [38]. However, a recent application in a
spatiotemporal reactionediffusion model showed that it
is one order of magnitude slower than the profile like-
lihood [56]. To the best of our knowledge, a compre-
hensive benchmark study comparing the two methods is
so far missing.
Current Opinion in Systems Biology 2021, 25:60–69
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Figure 2

Parameter confidence intervals based on Fisher information matrix and profile likelihood. Confidence intervals for five parameters based on profile
likelihood (blue) and on quadratic approximation using the Fisher information matrix (FIM; orange). FIM-based confidence intervals have two major
problems. First, because of the nonlinearity of the underlying systems, the Cramér-Rao bound on the error is invalid, and thus, the FIM-based confidence
intervals become uncontrollable for a finite amount of measurements. While in (A), the FIM-based interval is larger than the profile likelihood–based
interval, in (B), it is smaller. Second, FIM-based intervals are insensitive to practical nonidentifiabilities. In (C), the FIM-based confidence interval is finite,
and thus, the practically nonidentifiable parameter is not detected. In (D), the practically nonidentifiable parameter leads to a flat FIM-based interval,
wrongly suggesting structural nonidentifiability. Although the structurally nonidentifiable parameter in (E) is correctly detected, similarly to (D), the
calculation of the FIM is challenging because of its singularity in flat likelihood landscapes. The parameters (A)–(D) are adapted from two applications in
synthetic biology ((A), (B), (C) from a study by Schneider et al. [52] and (D) from a study by Ochoa-Fernandez et al. [51]). Parameter (E) is from a minimal
nonidentifiable toy model. Gray asterisks signify the maximum likelihood estimate of the parameter.
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Experimental design and model reduction
Model predictions
To test the predictive power of a model, confidence
intervals for the predictions can be computed. For this
purpose, forward evaluations of the model are used, for
example, bootstrap approaches [57] or sensitivity anal-
ysis [58]. They typically require large numerical efforts

in the context of nonlinear biological models with a
high-dimensional parameter space. A more powerful
approach is the prediction profile likelihood.

PPLðzÞ ¼ min
p2fp j gpredðpÞ¼ zg

�
c2resðpÞ

�
; (8)

which is obtained by minimizing c2resðpÞ (Equation (3))

under the constraint that the model response gpredðpÞ is

equal to the prediction z. The prediction profile likelihood
propagates the uncertainty from the experimental data to

the prediction by exploring the prediction space instead of

the parameter space [59].
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Model predictions have to be sufficiently precise to
produce insights. For special cases, this can be achieved
without identifiability [60,61]. If the model predictions

are not of sufficient precision, one has two principal op-
tions to tailor the model complexity to the information
content of the data: (1) measure additional data, corre-
sponding to an increase of the dimension of the obser-
vation function g in Equation (2) or (2) reduce themodel
complexity according to the available data, corresponding
to a decrease of the dimension of the parameter space
and/or of theODE system f in Equation (1). Both options
increase the practical identifiability of the model.

Achieving practical identifiability by new
measurements with optimal experimental design
Practical identifiability can be achieved by adding new

data [44,62]. The process of determining the most
informative targets and time points for the new mea-
surements is known as optimal experimental design and is
frequently applied in different modeling fields, for
www.sciencedirect.com
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Figure 3

Flowchart of the entire modeling process from initial to final model including identifiability analysis. The modeling process begins with the
inception of an initial model based on prior knowledge and the underlying biological research question. It ends with the final validated model and the
biological insights it provides. The flowchart shows how identifiability analysis is embedded into the overall modeling workflow. The topics discussed in
this review related to structural identifiability (blue) and practical identifiability (red) are highlighted with colors in the flowchart. The remaining tiles in gray
represent aspects that are beyond the scope of this review. The intricacy of the flowchart shows that the path to biological insights requires multiple
iterations of different methods. Identifiability analysis is an integral part of this workflow and should be performed to gain insights from predictive models
with well-determined parameters. Furthermore, methods dealing with structural and practical identifiability should always be focused on ultimately
progressing along the path toward biological insights.
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example, metabolic models [63], animal science [64],
linear perturbation networks [65], or synthetic biology
[66]. The task is related to the search for an additional

measurement that contains the maximal information
about the system or parts of it. For improving the
identifiability of a specific parameter, the model trajec-
tories along the corresponding parameter profile can be
investigated [67,68]. Thereby, measurement points
with maximal information content for the parameter of
interest can be determined, which corresponds to tra-
jectories with high spread. Similarly, the prediction
profile likelihood (Equation (8)) determines the pre-
diction uncertainty of the model at a potential new
measurement time point [59], thus promoting the

identifiability of the whole model. Measurement points
with high prediction uncertainty are effective to
constrain the model further, whereas measurements
www.sciencedirect.com
with a low prediction uncertainty are better suited for
model selection purposes.

Achieving practical identifiability by reducing model
complexity
If measuring additional data is not feasible, the
complexity of the model has to be reduced. One way is
to fix parameter values or ratios of parameters by means
of prior knowledge [69], sensitivity analysis [70,71], or
profile likelihood [72]. However, fixing parameters can
decrease the interpretative relevance of the model’s
predictions.

Taking this into account, a systematic model reduction
strategy that tailors model complexity to the available
data was suggested by Maiwald et al. [73]. On the basis

of likelihood profiles, they discuss four basic scenarios
Current Opinion in Systems Biology 2021, 25:60–69
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that are discriminated based on the profile likelihood by
the combinations of either (1) the profile flattens out for
a logarithmized parameter going to infinity or (2) to
minus infinity, and either other parameters are (a)
coupled to the investigated one or (b) not. For all four
possible combinations, there is a cure. For case (1/a),
one differential equation is replaced by an algebraic
equation; for (1/b), states can be lumped; for (2/a), a

variable is fixed, leading to a structural nonidentifiability
that can be cured by the methods discussed previously,
and for (2/b), a reaction can be removed from the model.
This model reduction strategy has been applied, for
example, in Refs. [51,52,74]. Independent of the
applied method, model reduction steps, and in partic-
ular, the conclusions thereof, should always be docu-
mented together with the model according to good
scientific practice to facilitate reproducibility.
Conclusions
Given the multitude of recently developed methods
[13,16,27,32], we consider the file of identifying struc-
turally nonidentifiable parameters as closed. Future
research in this field could focus on identifying biolog-
ically plausible reparameterizations of the model, for

which no comprehensive method yet exists to our
knowledge. Furthermore, the extension of the concept
of identifiability to different model types, for example,
mixed effects models [75,76], is of interest.

Achieving practical identifiability for model and data is
more laborious in practice. Practical nonidentifiabilities
can be detected reliably, for example, by the profile
likelihood method [31]. To achieve identifiability, the
model complexity has to be reduced or additional data
must be added. Profile likelihoodebased model reduc-
tion [73] and optimal experimental design [68] provide

valuable methods for these purposes. A flowchart
locating structural and practical identifiability analysis as
discussed in this review within the entire modeling
process is given in Figure 3.

Although the availability of advanced methods for the
detection and cure of structural and practical noni-
dentifiabilities is promising, two related challenges
remain. In many applications identifiability analysis is
not performed with state-of-the-art methods. Particu-
larly, identifiability analysis based on the FIM can be

misleading in typical applications in systems biology. We
propose a more consequent use of the discussed
methods for structural identifiability and especially
profile likelihood for practical identifiability analysis to
check the limitations and predictive power of mathe-
matical models. In summary, we believe the focal point
of research in systems biology should always remain on
the biological insights that can be gained from mathe-
matical models, which are structurally and practically
identifiable.
Current Opinion in Systems Biology 2021, 25:60–69
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