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ABSTRACT Dynamic modeling has become one of the pillars of understanding complex biological systems
from amechanistic point of view. In particular, ordinary differential equations are frequently used tomodel the
dynamics of the interacting states, e.g., molecular species in cell signaling pathways. The equations typically
contain many unknown parameters, such as reaction rates and initial conditions, but also time-dependent
parameters, i.e., input functions driving the system. Both are a priori unknown and need to be estimated from
experimental, time-resolved data. Here, we discuss an application of indirect optimal control methods for
input estimation and parameter estimation in themammalian target of rapamycin (mTOR) signaling.Whereas
the direct identification and quantification of different active mTOR complexes, e.g., mTOR complex 2
(mTORC2), is only possible by highly challenging experiments, the mathematical framework allows to
reconstruct its dynamics by solving an appropriate Euler–Lagrange equation based on Pontryagin’s maximum
principle. The inherently large search space underlying this approach allows to test specific biological
hypotheses about the activation of protein kinase B (AKT) by mTORC2 and to reject an alternative model
with high statistical power. Hereby, we identify a minimal model that has AKT threonine phosphorylation as
a prerequisite for serine phosphorylation by mTORC2. Based on this model, the activation of mTORC2 is
predicted to be inhibited by drugs, targeting the receptors of the ERBB receptor family.

INDEX TERMS Cancer, optimal control, parameter estimation.

I. INTRODUCTION
Input estimation and parameter estimation in ordinary dif-
ferential equations (ODEs) are two sides of the same medal
even though the dimensionality of the search space is finite
for parameter estimation and infinite for input estimation.
To determine both jointly, input functions can be finitely
parameterized, e.g., using a finite set of basis functions.
This is the principle of direct optimal control methods.
Alternatively, an indirect method can be employed, where
parameters are integrated into the ODE as (constant) states
and the optimality condition derived from Pontryagin’s max-
imum principle must be satisfied.

Both themethods have their advantages and disadvantages.
Nowadays, direct methods have become very popular due
to their robustness and applicability to large scale problems.
On the other hand, indirect methods have shown to yield
more precise results in some applications and be less affected
by ‘‘pseudominima’’ as being generated by direct methods;
see [1] and [2] for a comparison of direct and indirect methods
and [3] for a more general overview.

In recent years, biological systems and biomedical ques-
tions have more and more prompted the interest of theo-
reticians. Their ideas have led to the applications of con-
trol theory in biology [4], [5]. Dynamic modeling by ODEs
has become a wide-spread technique to analyze and under-
stand the mechanisms of complex biological systems [6], [7].
On the other hand, maximum-likelihood estimation and like-
lihood theory provide a solid statistical framework for uncer-
tainty analysis [8], identifiability analysis [9], and model
selection [10]. However, combining maximum-likelihood
with optimal control methods is not straightforward. In an
earlier work [11], we have shown that the cost functional

φ[u] =
∫
(x[u]− xD)2 + (u− uD)2dt

with ODE states x, input functions u, and the corresponding
data functions xD and uD can be employed for uncertainty
analysis by the profile-likelihood method when choosing
appropriate weighting functions for the residuals resx = x −
xD and resu = u − uD. Thereby, we coupled an indirect
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optimal control method based on the Euler–Lagrange equa-
tion of input estimation with maximum-likelihood theory and
gave it statistical meaning.

In this letter, we focus on applying the indirect, variational
method used in [11] to answer a biological question in the
context of mammalian target of rapamycin (mTOR) signal-
ing, combining the advantages of variational calculus, and
statistical interpretation.

II. METHODS
Let

ẋ = f (x, u, p) (1)

be a dynamic system defined on the time interval I = [0,T ]
with states x ∈ C∞(I ,Rn), inputs u ∈ C∞(I ,Rm), and
parameters p ∈ R`. Furthermore, let {x(ti)D}i=1,...,nD be
the measurements of the states x at times ti with uncertain-
ties {σi}i=1,...,nD . The measurements are translated into time-
continuous data and weighting functions

xD : t 7−→ spline
(
t|ti, xDi

)
(2)

wDx : t 7−→
∑
i

αi
√
2πτ 2

e−
(t−τ )2

2τ2
1

σi � σi
(3)

where � denotes the elementwise multiplication, spline(·)
represents an interpolation spline, τ 2 is the variance of the
Gaussians employed for extending the statistically moti-
vated (1/σ 2)-weighting over the time axis, and the αi val-
ues are normalization factors compensating the finite size
of the interval I . The case of unobserved states corresponds
to wD ≡ 0.

Without loss of generality let us assume that u is part of
the measured quantities. Thus, it is treated analogously to x.
Consequently, the functional to be minimized reads

φ[u] =
∫
I

[√
wDx � (x[u]− xD)

]2
+
[√

wDu � (u− uD)
]2dt

(4)

and the first variation δφ can be expressed as

δφ|u = 2
∫
I
∇uf ∗a+ wDu � (u− uD)dt · δu (5)

where ∗ denotes the transpose and ∇uf is the Jacobian
of f with respect to u. The elements of the function
a ∈ C∞(R,Rn) are the adjoint sensitivities, satisfying the
equations

ȧ = −∇x f ∗a− wDx � (x − xD) a(T ) = 0

ẋ = f (x, u, p) x(0) = x0.
(6)

Beyond the contributions from u, the first variation δφ is also
affected by changes δp in the parameters and δx0 in the initial
state values. All contributions together with the stationarity
condition are collected in the following equations:

2 · a(0) · δx0 = 0 (initial values) (7)

2
∫
I
a∗∇pf |p̂dt · δp = 0 (parameters) (8)(

∇uf ∗a+ wDu � (u− uD)
)
· δu = 0 (input). (9)

FIGURE 1. Pathway diagram. AKT threonine phosphorylation and serine
phosphorylation are mediated by ERBB receptor phosphorylation and
mTORC2. Principally, the two AKT phosphorylation steps can occur in both
orders, denoted as activation paths 1 and 2. These present the two model
hypotheses employed for model selection.

Equation (6) highlights that the original ODE has become
a boundary value problem. Plugging (9) into (6) yields the
Euler–Lagrange equations of input estimation, which return
the optimal trajectories (x, a, u) for fixed parameters p and
initial values x0. The gradient expressions, (7) and (8), are
used for successive optimization based on a trust-region algo-
rithm with SR1 update to approximate the Hessian [12].

III. RESULTS
Variational parameter estimation is applied to the mTOR
signaling pathway, a pathway being in the focus of cancer
research due to its major role for cell survival and prolifera-
tion. One of its key players is AKT exerting its downstream
activity by two phosphorylation sites: threonine (T308) and
serine (S473). The threonine site is phosphorylated by a
cascade from the receptor level via phosphoinositide 3-kinase
(PI3K) and phosphoinositide-dependent kinase-1 (PDK1).
In contrast, the serine site is phosphorylated by mTOR com-
plex 2 (mTORC2), which is modeled as an unknown input
function to be determined by the variational approach.

The cell line employed for this letter is the SKBR3 breast
cancer cell line. In order to stimulate downstream signal-
ing, the cells were stimulated for 60 min with heregulin
(HRG), an ERBB3 ligand, which induces dimer forma-
tion between ERBB3 and ERBB2 and thus activates PI3K
and PDK1. Dimer formation, phosphorylation, and levels
of mTORC2 can be affected by different anticancer drugs.
In this letter, cells were treated with pertuzumab, erlotinib,
and a combination of both at the time point 0 min. After
60 min, cells were stimulated with HRG, in addition to the
drug, being still present in the system. These treatments
represent the different experimental conditions. For a full
specification of materials and methods, see [13].

An abstraction of the mTOR signaling pathway is shown
in Fig. 1. The model comprises basal phosphorylation
of the ERBB2 receptor as well as HRG-induced phos-
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FIGURE 2. Observed states. Experimental data of ERBB2 and AKT
phosphorylation sites were employed for functional parameter
estimation. Different time courses obtained for untreated control cells as
well as cells treated with pertuzumab, erlotinib, or both drugs
simultaneously are visualized by different colors. Two activation path
hypotheses were tested, shown in columns, resulting in significantly
different model predictions.

phorylation of ERBB2 by dimer formation with ERBB3.
The phosphorylated dimer is subject to two inactiva-
tion processes. First, dephosphorylation is controlled by
a negative feedback of downstream targets and, thereby,
occurs proportional to AKT phosphorylation. Second, the
dimer is degraded by the proteasome, potentially shift-
ing the steady state of receptor phosphorylation. Serine
phosphorylation and threonine phosphorylation of AKT are
mediated by the input state mTORC2 and the active
receptor dimer, respectively. Depending on the order of
the two phosphorylation steps, the AKT protein takes a
different activation path, denoted as paths 1 (blue) and
2 (orange). Even if both the paths coexisted in the cells, the
importance of each path could be assessed by concentrating
on one pathway at a time: for hypothesis 1, all reaction rate
parameters corresponding to path 2 are set to zero whereby
activation path 2 is switched off in the model. Accordingly,
for hypothesis 2, activation path 1 is switched off. See [14,
Secs. 1 and 2] for the model equations and a full specification
of the parameters.

Both the model hypotheses were tested with the same
experimental data, i.e., relative values of ERBB2 phospho-

rylation (y1), AKT serine phosphorylation (y2), and AKT
threonine phosphorylation (y3) for the four experimental con-
ditions. Based on the model structure, the observation func-
tion reads

y1 = (pERBB2+ pERBB2 ∗ ERBB3 ∗ HRG)/s1
y2 = (pS-AKT+ pSpT-AKT)/s2
y3 = (pT-AKT+ pSpT-AKT)/s3

(10)

where ‘‘p’’ denotes phosphorylation, ‘‘S’’ and ‘‘T’’ refer
to serine and threonine, and ‘‘∗’’ indicates complex
formation. Without loss of generality, the scaling factors
satisfy s1 = s2 = 1. For each hypothesis, 500 fits determining
rate constants, initial conditions, and themTORC2 input were
started from different points in parameter space to control
convergence to the global optimum. See [14, Sec. 3] for
more details. The fits with the lowest objective value, one
for each hypothesis, are shown in Fig. 2. Each panel shows
four measured time courses corresponding to the different
experimental conditions and visualized as dots with 1σ error
bands. The predictions by the fitted models are shown as
solid lines. For both the hypotheses, ERBB2 phosphorylation
and AKT serine phosphorylation are accurately described.
However, the transient AKT threonine phosphorylation
observed after pertuzumab treatment can only be explained
by hypothesis 2. The free choice of an mTORC2 input func-
tion is fully utilized for hypothesis 1 to describe the course
of AKT serine phosphorylation at the cost of a mismatch of
threonine phosphorylation.

Both the hypotheses generate significantly different pre-
dictions on the dynamics of the unobserved states, i.e., for
the reconstructed input course of mTORC2 and the inter-
nal dynamic states (see Fig. 3). According to hypoth-
esis 1 [Fig. 3(a)], erlotinib does not inhibit mTORC2
formation, whereas pertuzumab has a slight inhibitory effect
on mTORC2, which is not further increased by the cotreat-
ment. In contrast, assuming hypothesis 2 [Fig. 3(b)], both the
drugs, pertuzumab and erlotinib, inhibit mTORC2 formation
and the most effective inhibition occurs upon cotreatment
with both the drugs. This pattern has already been reported
for other downstream targets, e.g., mitogen-activated protein
kinase (ERK) [13].

Based on the model predictions for the four AKT states as
shown in Fig. 3(c), hypothesis 1 corresponds to a very low
ratio of doubly versus singly phosphorylated AKT. Thereby,
the observed serine phosphorylation is exclusively explained
by pS-AKT, whereas pSpT-AKT corresponds to the observed
threonine phosphorylation. In contrast, hypothesis 2 favors
a constellation, where pT-AKT provides a rather constant
contribution of threonine phosphorylation, featuring a mod-
est drop upon stimulation with HRG. Single phosphorylated
AKT and double phosphorylated AKT exist in similar pro-
portions, where the double phosphorylated form, pSpT-AKT,
exhibits a larger fold-change to HRG stimulation.

The persistence of these results was verified by an
observability analysis based on the 500 fits per hypothesis,
see [14, Sec. 4].
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FIGURE 3. Unobserved states. The model makes distinct predictions for the two activation path hypotheses (line type) and different experimental
conditions (colors). (a) and (b) Input estimation by the variational approach employs prior information about the dynamics and uncertainty of
mTORC2, being represented by the gray dashed line and the shaded area. (c) Assumptions about the activation paths directly affect the pS-AKT and
pT-AKT levels and eventually lead to distinct model predictions for the remaining states.

IV. CONCLUSION
Variational parameter estimation was applied to analyze and
test two activation path hypotheses about mTOR signaling in
the breast cancer cell line SKBR3. The analysis shows that
serine phosphorylation as prerequisite for threonine phos-
phorylation, hypothesis 1, is in contradiction with the AKT
threonine phosphorylation data and is therefore rejected.
In contrast, threonine phosphorylation as a prerequisite for
serine phosphorylation, hypothesis 2, explains the experi-
mental data at such a level that the improvement obtained
for the overarching model, featuring coexistence of both
the paths, would not be significant. Based on our model
for hypothesis 2, the anticancer drugs, pertuzumab and
erlotinib, are predicted to inhibit mTORC2 formation and,
thereby, reduce the levels of double phosphorylated AKT.
This effect is highly enforced by cotreatment with both
the drugs. Although our approach combining indirect opti-
mal control methods and trust-region elements is limited
to a certain model size, we see the advantage that it
guarantees a huge search space for possible input course
solutions. Possible misspecification of the input by a finite-
dimensional parameterization is automatically avoided.
Thereby, a highly stringent assessment of competing
hypotheses is enabled, and allows the rejection of wrong
model hypotheses not only over a large range of parameter
values but also over a large class of input functions.
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